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The stochastic partial differential systems have been widely used to model physical processes, where the inputs involve
large uncertainties. Flows in random and heterogeneous porous media is one of the cases where the random inputs (e.g.,
permeability) are often modeled as a stochastic field with high-dimensional random parameters. To treat the high di-
mensionality and heterogeneity efficiently, model reduction is employed in both stochastic space and physical space. An
analysis of variance (ANOVA)-based mixed multiscale finite element method (MsFEM) is developed to decompose the
high-dimensional stochastic problem into a set of lower-dimensional stochastic subproblems, which require much less
computational complexity and significantly reduce the computational cost in stochastic space, and the mixed MsFEM
can capture the heterogeneities on a coarse grid to greatly reduce the computational cost in the spatial domain. In addi-
tion, to enhance the efficiency of the traditional ANOVA method, an adaptive ANOVA method based on a new adaptive
criterion is developed, where the most active dimensions can be selected to greatly reduce the computational cost before
conducting ANOVA decomposition. This novel adaptive criterion is based on variance-decomposition method coupled
with sparse-grid probabilistic collocation method or multilevel Monte Carlo method. The advantage of this adaptive cri-
terion lies in its much lower computational overhead for identifying the active dimensions and interactions. A number
of numerical examples in two-phase stochastic flows are presented and demonstrate the accuracy and performance of
the adaptive ANOVA-based mixed MsFEM.

KEY WORDS: analysis of variance, uncertainty quantification, polynomial chaos, mixed multiscale finite
element method, two-phase flow, stochastic partial differential equation, adaptivity

1. INTRODUCTION

An important challenge in modeling flows in porous media is the treatment of complex heterogeneities and uncertain-
ties in the permeability field. The high and low permeability may be connected at different scales. The uncertainty
may arise from measurement corruption and incomplete knowledge of the physical properties. One way to describe the
uncertainty is to model the permeability as a random field, which is often experimentally determined by a covariance
function. Stochastic partial differential equations (SPDEs) are often used in modeling complex physical and engineer-
ing systems with uncertainties, which are usually characterized by a random field with high-dimensional parameters.
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To simultaneously tackle the high dimensionality and the heterogeneities, the analysis of variance (ANOVA)-based
mixed multiscale finite element method (MsFEM) is employed.

Sampling in high-dimensional random space is very difficult. If the sampling of random space is conducted in
full random space, then the number of samples increases drastically with respect to the dimensions of the random
space. This is the notoriouscurse of dimensionality, which poses great difficulties for the stochastic approximation
in a high-dimensional stochastic space. Instead of dealing with the full high-dimensional random space, the ANOVA
representation can decompose a high-dimensional model into a set of low-dimensional models [1–7]. It was first
introduced by Fisher in [2]. The decomposition is motivated by observing that there are dominant dimensions and
significant dimensional interactions in many practical physical systems. In this case, the system accuracy will not be
harmed too much if only the dominant dimensions and the significant dimensional interactions are taken into account.
The ANOVA decomposition then splits a high-dimensional stochastic model into a set of low-dimensional stochastic
submodels, which need much less computational effort. The curse of dimensionality can be considerably suppressed
using the ANOVA approach.

For each low-dimensional subproblem, a sparse grid probabilistic collocation method (PCM) can be employed.
The PCM was first introduced in [8] and has been studied extensively over the years [9]. The efficiency of the
Clenshaw-Curtis-based sparse grid PCM was demonstrated by comparing it with other stochastic methods on an
elliptic problem in [10]. In [11], an adaptive hierarchical sparse grid collocation algorithm was developed. In [12–14],
a multielement PCM was employed to study the random roughness problem, stochastic compressible flow, and plasma
flow problems.

At each collocation point, deterministic flow equations in porous media are solved; see examples in [15–17]. To
treat the heterogeneity of porous media and recover the mass conservative velocity field, the mixed MsFEM [18–20]
is employed. The main idea of the mixed MsFEMs is to incorporate the small-scale information into finite element
basis functions and couple them through a global mixed formulation of the problem. The mixed MsFEMs share some
similarities with a number of multiscale numerical methods such as the multiscale finite volume method [21], residual-
free bubbles [22, 23], two-scale conservation subgrid method [24], variational multiscale method [25], and multiscale
mortar method [26].

In this paper, a new approach is developed by combining ANOVA decomposition, sparse-grid based PCM for
moderate dimensions and multilevel Monte Carlo [27] for high dimensions, and mixed MsFEM for efficiently solving
stochastic two-phase flow equations. The combination of these model reduction techniques serves as a remedy to
handle the large-scale problems in both stochastic and spatial spaces. However, because the ANOVA decomposition
has a large number of terms if the number of random parameters is high, the total computational cost can still be
prohibitive. To improve the efficiency and reduce computational efforts, an adaptive ANOVA technique based on a
new adaptive criterion is developed. The advantage of the proposed adaptive technique is to identify the active random
dimensions with respect to the function of interest through variance decomposition on a generalized polynomial chaos
(gPC) expansion of the function of interest with relatively small computation efforts. The proposed adaptive ANOVA
technique is different from the previous adaptive ANOVA methods [5, 6, 28]. In particular, it was noted that some
adaptive ANOVA techniques, in both spatial and random spaces, were developed in [5] in the framework of the
heterogeneous multiscale method. This work focuses on analyzing the errors introduced by ANOVA decomposition
and mixed MsFEM, respectively. It is critical to understand the behavior of the two error contributions and find a good
trade-off between them to achieve accurate results with relatively low computational cost.

In our numerical examples, the permeability fields with different statistical properties and heterogeneous struc-
ture are considered. The reference solution is computed on the fine grid and using the Monte Carlo (MC) method
to sample the random space. Comparison of the solutions using ANOVA-based mixed finite element method (FEM)
and ANOVA-based mixed MsFEM with the reference solution is studied. From these computations, errors from both
ANOVA truncation and mixed MsFEM discretization are reported, respectively. It has also been observed that, in our
numerical examples, the error introduced by the mixed MsFEM method is the dominant error source. Analyzing dif-
ferent functions is also helping us to better understand the effectiveness of ANOVA-based mixed MsFEM for different
quantities of interest in oil reservoir simulations. The novel adaptive ANOVA-based MsFEM method is numerically
comparable with existing adaptive ANOVA techniques with less online computations. Our methods are developed
based on both ANOVA for dimension reduction, and variance-decomposition-based active dimension identification
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for adaptivity. Sparse grid PCM for moderate random dimensions and multilevel Monte Carlo [27] for high random
dimensions are employed to generate samples for active dimension identification. There are limitations for our de-
veloped adaptive ANOVA-MsFEM methods. For example, the accuracy of our methods depends on the accuracy of
PCM or multilevel MC.

The rest of the paper is organized as follows. In Section 2, the background for two-phase flow in stochastic
fields is presented. Section 3 is devoted to the description of mixed MsFEM and PCM. In Section 4, ANOVA-based
and adaptive ANOVA-based mixed MsFEM methods are introduced. In Section 5, the numerical results using the
methods introduced in Section 4 are presented for flow in different random porous media. Finally, some comments
and conclusions are drawn in Section 6.

2. BACKGROUND AND NOTATIONS

Let D be a convex bounded domain inRd (d = 2, 3) and(Ω,F , P ) be a probability space, whereΩ is the set of
outcomes,F is theσ algebra generated byΩ, andP is a probability measure.

Two-phase flow in random porous media is considered under the assumption that the displacement is dominated
by viscous effects, with the effects of gravity, compressibility, and capillary pressure neglected. Porosity is considered
to be constant. Here, the two phases will be referred to as water and oil, designated by subscriptsw ando, respectively.
The Darcy’s law for each phase can be written as

vj = −krj(S)
µj

k(x, ω)∇p, (1)

wherevj is the phase velocity,k is the permeability tensor,krj is the relative permeability to phasej (j = o, w), S is
the water saturation, andp is the pressure. Combining Darcy’s law with a statement of conservation of mass allows us
to express the governing equations in terms of pressure and saturation equations

−div
(
λ(S)k(x, ω)∇p

)
= Qs, (2)

∂S

∂t
+ v · ∇f(S) = 0, (3)

whereλ is the total mobility,Qs is a source term,f is the fractional flux of water, andv is the total velocity, which
are, respectively, given by

λ(S) =
krw(S)

µw
+

kro(S)
µo

, f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
,

v = vw + vo = −λ(S) k · ∇p.

From Eqs. (1)–(3), the following stochastic two-phase flow system is formulated: find random fieldsp(x,ω) :
D̄ × Ω −→ R, v(x, ω) : D̄ × Ω −→ R andS(x, ω, t) : D̄ × Ω × [0, T ] −→ R such that they almost surely (a.s)
satisfy the following equations:





div
(
v(x; ω)

)
= Qs

v(x; ω) = −λ(S)k(x; ω)∇p(x;ω)

∂S(x, t; ω)
∂t

+ v(x; ω) · ∇f(S(x, t;ω)) = 0.

(4)

Let the coefficientk(x, ω) of Eq. (4) be a stochastic field with second moment. To makek(x, ω) positive,k(x, ω) is
considered to be a logarithmic stochastic field, i.e.,k(x, ω) := exp(a(x, ω)). Here,a(x, ω) is a stochastic field and
its covariance function cov[a] : D̄ × D̄ −→ R of a(x, ω) is given by

cov[a](x1, x2) = cov[a(x1), a(x2)] = E[(a(x1)− E[a(x1)])(a(x2)− E[a(x2)])].
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For computation, truncated Karhunen-Loève expansion (KLE) [29, 30] is employed to parametrizea(x, ω) by a
finite-dimensional random fielda(x, Y ). The function cov[a] induces an integral operatorTa : L2(D) −→ L2(D) by

Tag(·) =
∫

D

cov[a](x, ·)g(x)dx ∀g ∈ L2(D).

The operatorTa is compact and self-adjoint. Consequently, there exist the eigenpairs(λm, bm(x))m≥1 of Ta such that

(bi, bj)L2(D) = δij , λ1 ≥ λ2 ≥ · · · ≥ λm · · · , lim
m−→∞

λm = 0,

where(·, ·)L2 is the usualL2 inner product. Define the mutually uncorrelated random variables by

yi(ω) :=
1√
λi

∫

D

(a(x, ω)− E[a](x))bi(x)dx, i = 1, 2, · · · .

Then, it follows the KLE ofa(x, ω). Here,a(x, ω) is assumed to admit the following truncated KLE, i.e.,

a(x, Y ) = E[a] +
n∑

i=1

√
λibi(x)yi(ω),

whereY := (y1, y2, · · · , yn) ∈ Rn. By the truncated KLE,k(x, ω) ≈ k(x, Y ) = exp
(
a(x, Y )

)
. In this paper, it was

assumed that the stochastic fieldk(x, ω) can be accurately parametrized byk(x, Y ).

3. MIXED MSFEM, SPARSE GRID COLLOCATION, AND MULTILEVEL MONTE CARLO

In this section, mixed MsFEM for spatial discretization and sparse grid collocation and multilevel Monte Carlo [27]
for discretization of stochastic space are presented.

3.1 Mixed MsFEM

The mixed multiscale finite element methods (MsFEM) used for spatial discretization is introduced in this section. To
this end, a second-order elliptic equation is considered,

{
−div(k∇p) = f in D

−k∇p · n = g on ∂D.
(5)

Equation (5) describes the single-phase flow equation in porous media. Thep refers to pressure,f refers to source
(well or sink), and velocityv = −k∇p. Let (·, ·) denote the usualL2 inner product. For mixed formulation, Eq. (5) is
rewritten as 




k−1v +∇p = 0 in D

div(v) = f in D

v · n = g(x) on∂D.

(6)

The weak formulation of Eq. (6) reads: seek(v, p) ∈ H(div, D)× L2(D)/R such thatv · n = g and
{

(k−1v, u)− (
div(u), p

)
= 0 ∀u ∈ H0(div, D)(

div(v), q) = (f, q) ∀q ∈ L2(D).

Let Vh ⊂ H(div, D) andQh ⊂ L2(D)/R be the finite element spaces for velocity and pressure, respectively. Define
V 0

h = Vh ∩H0(div, D). The numerical mixed formulation is to find(vh, ph) ∈ Vh×Qh such thatvh ·n = gh on∂D
and { (

k−1vh, uh

)−(
div(uh), ph

)
= 0 ∀uh ∈ V 0

h(
div(vh), qh

)
= (f, qh) ∀qh ∈ Qh.

(7)
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The mixed MsFEM for Eq. (7) is employed. It means that the mixed finite element approximation is performed on
the coarse grid, where the finite element basis functions are defined. In the mixed MsFEM, the piecewise constant
basis functions are applied on a coarse grid for pressure. For the velocity, the multiscale velocity basis functions are
defined. The degree of freedom of the multiscale velocity basis function is defined on the interface of the coarse grid.
Let eK

i be a generic edge or face of the coarse blockK. The multiscale basis equation associated witheK
i is defined

by




−div(k∇wK
i ) =

1
|K| in K

−k∇wK
i · n =

{
bK
i oneK

i

0 else.

For local mixed MsFEM [19],bK
i = 1/|eK

i |. If the media demonstrate strong nonlocal features including channels,
fracture, and shale barriers, some global information is needed to define the boundary conditionbK

i for better accuracy
of approximation [31, 32]. Then,ψK

i = −k∇wK
i defines the multiscale velocity basis function associated witheK

i ,
and the multiscale finite dimensional space for velocity is defined by

Vh =
⊕

K,i

ψK
i .

For stochastic systems (4), it is crucial to obtain the statistic properties (e.g., mean and variance) of solutions
efficiently. In this paper, our discussion focuses on mean and variance, as they are fundamental for obtaining approx-
imations of higher order moments. These properties could be obtained by sparse-grid PCM for moderate number of
random dimensions or by multilevel MC method [27] and analyzing the corresponding results.

3.2 Sparse Grid PCM

Sparse grids have been successfully applied to PCM in many recent works, e.g., [15–17, 33, 34]. Based on the Smolyak
formula [35], a set of Clenshaw-Curtis collocation points is chosen. With these chosen collocation points and corre-
sponding weights, the statistic properties of the solutions can be obtained. For instance, assume that{y(j)} is the set
of collocation points and{w(j)} is the corresponding weights,j = 1, · · · , Nc. At each of the collocation points, the
deterministic system is solved and the outputS(x, y(j)) is obtained. Then, the moments ofS(x, Y ) can be estimated,
e.g.,

E[S(x, t; Y )] =
∫

Ω

S(x, t; ξ)dF (ξ) ≈
Nc∑

j=1

S(x, t; y(j))w(j),

σ2
(
S(x, t; Y )

)
=

∫

Ω

(
S(x, t; ξ)− E[S(x, t; Y )]

)2
dF (ξ) ≈

Nc∑

j=1

S2(x, t; y(j))w(j) − E2[S(x, t;Y )].

4. MULTILEVEL MONTE CARLO METHOD

The multilevel Monte Carlo (MMC) method [27] can greatly reduce computational complexity through the use of
a multilevel approach that combines results obtained using two levels of timestep while reducing the variance. The
MMC method uses a geometric sequence of timesteps similar to the multigrid method and is proven to be efficient
and reliable in achieving the desired accuracy.

Oftentimes in statistics rules are created to quantify measured data; these rules are referred to as estimators. In the
standard MC method the estimator of an expected mean value is

P̂MC
N =

1
N

N∑

i=1

P i, (8)
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whereN is the number of sample points andP i is the expected value of each sample point.
Assuming that the discretized expected value approaches the exact solution for some random coefficient, as the

discretization is refined, the root-mean-square error (RMSE) is given by

e(P̂M )2 = V [P̂MC
ml,N

] + (E[Pml
− P ])2 . (9)

The first term represents the sampling error,V [P̂MC
ml,N

] = N−1V [Pml
] is the variance, and the second term is the

discretization error. To achieve RMSE less thanε both terms need to be less thanε2/2, which translates toN ≥ ε−2

for the first term (large number of samples) andml ≥ ε−1/α, whereα is the discretization convergence rate for the
second term (high discretization).

The MMC method is based on a multilevel approach, which is used in the solution of elliptic partial differential
equations. The estimator for the MMC comes from the same random sample but at different refinement levels. Then
the multilevel estimator̂PML

M is

P̂ML
ml

=
L∑

l=0

Ŷl, (10)

where

Ŷl =
1
Nl

Nl∑

i=1

(P i
ml
− P i

ml−1
), (11)

andP i
m−1

= 0. Because the expectations,Ŷl, are estimated independently for each level, the multilevel estimator
variance is

V [P̂ML
ml

] =
L∑

l=0

N−1V [Yl]. (12)

Following Eq. (9), the error in multilevel MC is expressed as

e(P̂ML
M )2 =

L∑

l=0

N−1V [Yl] + (E[Pml
− P ])2 . (13)

The multilevel varianceV [Yl] = V [Pml
− Pml−1] → 0 asl → ∞ and if the variance is decreasing, less sample

data will be needed; consequently,Nl → 1 asl →∞. The cost at the coarsest level is fixed for all levels of accuracy.
Achieving an overall RMSE ofε with MMC is easier than that achieved with the standard MC methods.

The computational cost for the multilevel and standard MC at each discretization level,l, is proportional to the
refinement multiplier∝ M2. A refinement multiplier of 2 would double the discretization level from levell to l − 1.
The costs are given as

CML = No +
L∑

l=1

Nl(M l + M l−1), (14)

CMC =
L∑

l=0

2ε−2V [Pl]M l. (15)

TheM l +M l−1 term inCML is necessary to account for computations at different levels for each multilevel sample,
and the2ε−2V [Pl] term in theCMC calculation is necessary is to account for the fact that the variance of the estimator
must be less than1/2ε2 as is the case for the multilevel method.

5. ADAPTIVE ANOVA-BASED MIXED MSFEMS

In this section, an ANOVA-based mixed MsFEM, an adaptive ANOVA-based mixed MsFEM, and a novel adaptive
ANOVA-based mixed MsFEM with a new adaptive criterion are presented.
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5.1 ANOVA-Based Mixed MsFEM

ANOVA decomposition is a general set of quantitative assessment and analysis tools for capturing the high-dimensional
relationships between model inputs and model outputs. ANOVA decomposition has been employed for improving the
efficiency of deducing high-dimensional input-output system behavior, and can be employed to relieve the computa-
tion efforts. The ANOVA decomposition method has been used in high-dimensional stochastic systems [3, 4, 6, 7].
ANOVA is based on the assumption that only relatively low-order correlations of the input variables are important,
which is valid in many physical systems. ANOVA decomposition splits a high-dimensional system into a set of low-
dimensional systems to reduce the computation cost in high-dimensional systems.

A multivariate output functionS(x, t;Y ) : Rn −→ R. S(x, t;Y ) is taken to be water saturation or other functions
of interest in the two-phase flow system (4). The statistic properties ofS(x, t; Y ) can be obtained by solving the sys-
tem (4) using the mixed MsFEM, adaptive ANOVA, PCM, and multilevel MC in Section 3. For simplicity,S(x, t; Y )
is used in this section, instead ofSMsFEM(x, t; Y ), to denote the solutions obtained in the multiscale framework.

Instead of solving the two-phase flow system (4) forS (x, t; Y ) directly, ANOVA decomposition represents
S(x, t;Y ) as finite hierarchical correlated functions of input variables in the form

S(x, t;Y ) = S0 +
∑

1≤j1≤n

Sj1(x, t; yj1) +
∑

1≤j1<j2≤n

Sj1,j2(x, t; yj1 , yj2) (16)

+ · · ·+
∑

(j1<j2<···<jn≤n)

Sj1,j2,··· ,jn(x, t; yj1 , · · · , yjn),

whereSjk
(x, t; yjk

) is the first-order term,Sjk,jl
(x, t; yjk

, yjl
) is the second-order term, etc. Each of these terms is

solved by the mixed MsFEM method.
In the standard ANOVA decomposition (16), the constant term is taken to be the mean of functionS(x, t; Y ), i.e.,

S0 =
∫

Γn

S(x, t; Y )dµ(Y ).

This gives that the means of all higher-order terms are zero, i.e.,
∫

Γn

Sj1,··· ,jsdµ(Y ) = 0,

which leads to orthogonality among all the terms, and the variance ofS(x, t; Y ) is the sum of variances of all terms,
i.e., ∫

Γn

Sj1,··· ,jsSk1,··· ,kl
dµ(Y ) = 0, for (j1, · · · , js) 6= (k1, · · · , kl),

σ2(S) =
n∑

j=1

∑

|J|=j

σ2(SJ).

To avoid the computation of high-dimension integration, the Dirac measure is often used instead of the Lebesgue
measure. The Dirac measure is defined asdµ(Y ) = δ(Y − c)dY , wherec is called the anchor point. Ifc satisfies that
S(c) = S0, then the ANOVA representation is the same as Eq. (16), otherwise it becomes an approximation ofS(Y ),
i.e.,

S(x, t; Y ) ≈ S(x, t; c) +
∑

1≤j1≤n

Sj1(x, t; yj1) +
∑

1≤j1<j2≤n

Sj1,j2(x, t; yj1 , yj2) (17)

+ · · ·+
∑

(j1<j2<···<jn≤n)

Sj1,j2,··· ,jn(x, t; yj1 , · · · , yjn),

where
Sj(x, t; yj) = S(x, t; Y )|Y =c\yj

− S(x, t; c),
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Sj,k(x, t; yj , yk) = S(x, t;Y )|Y =c\(yj ,yk) − Sj(x, t; yj)− Sk(x, t; yk)− S(x, t; c).

The accuracy of this anchored-ANOVA depends on the choice of anchor pointc. Discussions about this can be found
in [7]. In this paper, the anchor point is chosen to be the mean of random variableY as discussed in [4]. Because
low-order terms in ANOVA expansion usually have the dominant contribution, the ANOVA expansion is truncated
to only keep the low-order (e.g., second- or third-order) terms for approximation, which can keep relatively good
accuracy and significantly reduce the computational cost.

5.2 Adaptive ANOVA-Based Mixed MsFEM

The ANOVA-based mixed MsFEM reduces the computational complexity in stochastic space by dividing a high-
dimensional stochastic problem into a set of lower-dimensional subproblems, while the mixed MsFEM reduces com-
putation cost in spatial space. The computational cost of solving a low-dimensional system is reduced, but solving a
large number of such subsystems can keep the computation cost still high. For example, if the dimensions of in-
put parameter spacen = 100, and the ANOVA expansion is truncated up to second order, there are a total of

1 +
(

100
1

)
+

(
100
2

)
= 5051 components (terms) in the truncated ANOVA expansion. This computation cost is

still high. To reduce the total number of terms, the adaptive ANOVA method is often applied. The dimensions with
dominant interactions are called active or important dimensions. The idea of adaptive ANOVA is to retain the ac-
tive dimensions and interactions and neglect the contributions from the less-active dimensions and interactions. The
following equation describes the adaptive ANOVA representation:

S(x, t;Y ) ≈ S0 +
∑

j1∈D1

Sj1(x, t; yj1) +
∑

(j1<j2)∈D2

Sj1,j2(x, t; yj1 , yj2)

+ · · ·+
∑

(j1<j2<···<jν)∈Dν

Sj1,j2,··· ,jν(x, t; yj1 , · · · , yjν).

In [4, 6, 7],ν = 2 andD1 = {1, · · · , n}; then,Di, 2 ≤ i ≤ ν are selected according to the statistical properties
of the computed expansion terms. There are two criteria used to find the active dimensions based on the first-order
terms in the ANOVA decomposition.

Criterion 1: Use the mean of component functionSj as the indicator to decide the active ANOVA terms (See
[4, 6]). Let

η
(1)
j =

E[Sj ]∑
j∈D1

E[Sj ]
, j ∈ D1;

then, the active dimensionsD′
1 can be chosen by

∑

j∈D′1

η
(1)
j ≥ p, (18)

wherep is a proportionality constant with0 < p < 1 and close to 1. In computation,{η(1)
j }’s are sorted first and

summed up to the active dimensionsD′
1 when (18) satisfies.

Criterion 2: Use the variance of component functionSj as the indicator to decide the active ANOVA terms. Define

η
(2)
j =

σ2(Sj)∑
j∈D1

σ2(Sj)
, j ∈ D1.

The active dimensionsD′
1 should satisfy ∑

j∈D′1

η
(2)
j ≥ p, (19)

wherep is a proportionality constant with0 < p < 1 and close to 1. This criterion is similar to the criterion used in
[36], whereσ2(S) instead of

∑
j∈D1

σ2(Sj) is used.
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The active dimensions for second-order ANOVA terms can be found by the above criteria. If the active dimensions
are needed for higher-order terms, similar criterion can be used,

η
(1)
j1,j2

=
E[Sj1,j2 ]∑

(j1,j2)∈D2
E[Sj ]

, η
(2)
j1,j2

=
σ2(Sj1,j2)∑

(j1,j2)∈D2
σ2(Sj)

. (20)

5.3 Novel Adaptive Anova-Based Mixed MsFEM

In the above criteria,D1 is taken to be{1, · · · , n}, i.e., all the dimensions are always considered to be active in the
ANOVA first-order term computation. The selection of active dimensions is then conducted for second-order terms
based on the ratio (e.g.,η

(1)
j , η

(2)
j ) associated with each dimension. The dimensions with small ratios can be neglected

in not only the computation of second-order terms, but also first-order terms. Here a variance-decomposition-based
method is presented to preselect active dimensions and simplify the computation of ANOVA decomposition starting
from the first-order terms.

To preselect the active dimensions, the original high-dimensional system is solved on the sparse-grid collocation
points ofΩ or multilevel MC method. The level of sparse grid is determined by two factors: (1) the affordable com-
putational cost; and (2) the desired approximation accuracy. Then, a polynomial chaos approximation forS(x, t; Y )
is built based on the sparse-grid collocation points. The total variance ofS(x, t; Y ) is carried by the summation of
the square of the coefficients of the basis functions except the zero-order term in the approximation. Since the basis
functions inΩ are tensor products of the basis functions of dimension 1, the basis functions can be viewed to be the
interactions of different random dimensions. In this case, the square of the coefficients presents the corresponding
variance contribution due to the interaction of corresponding dimensions. By following this procedure, the variance
of S(x, t; Y ) can be decomposed with respect to the set of random dimensions. In particular, the variance decomposi-
tion contributed by each random dimension can be obtained through the orthogonal gPC Galerkin projection. So, the
importance of each random dimension can be estimated before ANOVA decomposition, which can be used to guide
the selection of ANOVA terms adaptively. In this case,D1 can be selected to be a subset of{1, · · · , n}. Since the
sparse grid collocation method is applied in a low level, the computational cost is low. If a higher level sparse grid
collocation is affordable, more information about the interactions between dimensions can be obtained, and additional
guidance on selection of active dimensions for higher-order terms is provided.

To be specific about the variance decomposition-based adaptive ANOVA method, let us consider a scalar function

S(x, t; Y ) : D̄ × Rn −→ R. (21)

Let {φk(Y )} be the gPC basis function satisfyingE[φi(Y ) φj(Y )] = δijγi, whereγi = E[φ2
i (Y )] and letPn

N (Y )
be the space of all polynomials ofY ∈ Rn of degree up toN . Then, the orthogonal gPC projection of Eq. (21), for
any fixedx, is

SN (x, t;Y ) = PNS =
N∑

|k|=0

sk(x, t)φk(Y ),

where the expansion coefficients are obtained as

sk(x, t) =
1
γk

E[S(x, t; Y )φk(Y )] =
1
γk

∫
S(x, t; y)φk(y)dFY (y), ∀|k| ≤ N,

whereγk = E[φ2
k] is the normalization constant of the basisφk, andFY (y) is the probability distribution ofY .

Integration rules can be used to approximate the integrals in the expansion coefficients of the continuous gPC. Let
{y(1), · · · , y(m)} be the sparse-grid collocation points; then, discrete projection of the solution is

SN (x, t;Y ) =
N∑

|k|=0

ŝk(x, t)φk(Y ),
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where the expansion coefficients areŝk(x, t) = 1/γk

∑m
j=1 S(x, t; y(j))φk(y(j))w(j), and{w(j)} are the colloca-

tion weights. The coefficients{ŝk} are approximations to the exact projection coefficients{sk}. The moments of
S(x, t;Y ) can be approximated by the moments of the approximationSN (x, t;Y ) =

∑N
|k|=0 ŝk(x, t)φk(Y ). The

mean

µ = E[S(x, t; Y )] ≈ E[SN (x, t; Y )] =
N∑

|k|=0

ŝk(x, t)E[φk(Y )] = ŝ0,

by orthogonality of{φk(Y )}. Then, the variance

σ2(S) = E[S(x, t; Y )− µ]2 ≈ E[SN − ŝ0]2 =
N∑

|k|=1

ŝ2
kγk.

The variance can be further written as

σ2(S) =
∑

|k|=1

ŝ2
kγk + · · ·+

∑

|k|=N

ŝ2
kγk, (22)

wherek = (k1, · · · , kn) ∈ Nn
0 is a multiindex with|k| = k1 + · · ·+kn. Heren is the number of random dimensions,

andN is the total degree of multivariate gPC. Denotev = σ2(S), andvi = ŝ2
kγk, where|k| = 1 and i denotes

the index of nonzero dimension. Similarly, letvij = ŝ2
kγk, where|k| = 2, i andj denote the indexes of nonzero

dimensions. The expansion (22) can be rewritten as

v =
∑

1≤i≤n

vi +
∑

1≤i≤j≤n

vij + · · · . (23)

Remark: vi/γi, 1 ≤ i ≤ n is the square of the coefficient of the gPC basis function, which can be easily obtained
through Galerkin projection.γi is precomputed andvi is considered as the variance contribution associated with the
ith dimension. Similarly,vij is also viewed as the variance contribution associated with interaction ofith andjth
dimensions. The other terms can be explained in a similar way.

Based on the variance decomposition (23), the active dimensions can be selected. Define

η
(3)
j =

vj

v
and η

(3)
ij =

vij

v
.

Then, the active dimensions can be selected similarly to Criteria (18) and (19).
Criterion 3: The active dimensionD1 should satisfy

∑

j∈D1

η
(3)
j ≥ p, (24)

wherep is a proportionality constant with0 < p < 1 and close to 1.
The advantage of the proposed method here is that the information on the sensitivities of each random dimension

and their interactions can be efficiently obtained based on the variance decomposition technique by building a gPC
expansion of the function of interestS(x, t; Y ) with relative low computational cost. Then, the adaptivity can start
from the first-order term in ANOVA expansion based on criterion (24). Further information about the interactions
among dimensions can be obtained if more computation cost is affordable, i.e., when the gPC expansion is built in a
higher level of sparse grid points or larger number of multilevel Monte Carlo simulations. In [4, 6], it was assumed
that the active dimension interactions only happen between active dimensions. But, it is possible that the less-active
dimensions may have large interactions with the active or less-active dimensions. The variance decomposition-based
adaptive method we proposed can provide additional information on the active dimension interactions among all
dimensions to avoid losing some active interactions over adaptive process.
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6. NUMERICAL RESULTS

In this section, it is assumed that the random permeability fieldk(x,ω) = exp
(
a(x, ω)

)
is a log-normal stochastic

process. Here, the covariance function ofa(x, ω) has the form

cov[a](x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
. (25)

l1 andl2 are the correlation lengths in the horizontal and vertical dimensions, respectively. The stochastic fielda(x, ω)
can be approximated by a truncated KLE approximation. In practice, the KLE ofa(x, ω) can be written as

a(x, ω) = E[a] + α

N∑

i=1

√
λiyi(ω)bi(x), (26)

whereα is a constant. In our numerical examples,a(x, ω) is sampled in Eq. (26) by generating random variablesyi

from a uniform distribution on[−1, 1]. The uniform distribution on[−1, 1] is used here in order to get compact support
for sparse grids. The study in [16] shows that the log permeability with uniform, Beta and Gaussian distributions on
the mean and standard deviation has close peak values of standard deviation. Therefore, we assumeyi here to be
uniform distribution on[−1, 1], instead of Gaussian distribution.

krw(S) = S2, µw = 0.1, kro(S) = (1−S)2, andµo = 1 are taken in simulations. The permeability fielda(x, Y )
is given on a fine grid. The water is injected at the lower-left corner, and the producer is at the upper-right corner. To
validate ANOVA-based mixed MsFEM (ANOVA-MsFEM) on coarse grid, the results of solving stochastic two-phase
flow (4) by ANOVA-MsFEM are compared with the results obtained by the following methods:

• MC method associated with mixed FEM on fine grid (MC-FEM);

• ANOVA-based mixed FEM on fine grid (ANOVA-FEM);

When mixed MsFEM is used, the fine grid is coarsened to form a uniform coarse grid. The pressure equation on
the coarse grid is solved using the mixed MsFEM and then reconstructs the fine-scale velocity field as a superposition
of the multiscale basis functions. The reconstructed field is used to solve the saturation equation by the finite volume
method in the fine grid. The two-phase flow system is solved by the classical IMPES (implicit pressure explicit
saturation). The MsFEM solver used in the numerical experiments is developed in [20]. The boundary condition is
g = 0 and the source termf is a vector with 1 in injector, –1 in producer, and0 at other locations. The initial condition
and the boundary condition of the saturation are both zero. For the reference mixed FEM solution, we use the lowest
Raviart-Thomas element. In the numerical experiments, we use the MATLAB code by Jorg Aarnes from SINTEF for
the mixed MsFEM solver.

MC results are obtained from104 MC simulations. The high-dimensional system in the numerical examples
are decomposed by ANOVA into a set of low-dimensional subsystems up to second-order terms. These stochastic
systems are solved based on level-two Smolyak sparse-grid collocation points. Various production characteristics are
compared. The saturationS is computed at0.2 PVI and0.6 PVI and the water-cut curvew(t), defining the fraction of
water in the produced fluid as a function of PVI, i.e.,

w(t) =
qw(t)

qw(t) + qo(t)
,

wherew(t) is the water cut,qw andqo are flow rates of water and oil at the producer at time t. The breakthrough time
Tw defined asw−1(10−5) at the producer and the cumulative oil production at0.6 PVI are monitored, i.e.,

Qo = − 1∫
D

ϕdx

∫ 0.6 PVI

0

(∫

D

min(qo(x, τ), 0)dx

)
dτ,

whereQo is the cumulative oil production, andϕ represents the porosity. In our numerical examples,ϕ is set to
constant1. All the results computed by MC-FEM are considered to be the reference solutions, and errors are measured
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which are defined ase(S) = |‖E[S]‖L1 −‖E[Sref ]‖L1 |/‖E[Sref ]‖L1 , e(w) = ‖E[w]−E[wref ]‖L2/‖E[wref ]‖L2 ,
e(Tw) = |E[Tw] − E[(Tw)ref ]| ande(Qo) = |E[Qo] − E[(Qo)ref ]|, whereE[·] stands for mean solutions. The
standard deviation errors are defined in a similar manner.

There are different kinds of errors when the listed three methods are used to solve the governing equations.
etotal denotes the total error, which is the expectation of absolute error between MC-FEM and ANOVA-MsFEM.
The estoch is defined as the error from dimension reduction and numerical approximation by stochastic collocation
method or multilevel Monte Carlo in stochastic domain, i.e., the error between MC-FEM and ANOVA-FEM, and the
ems is defined to be the error from mixed MsFEM discretization in spatio-temporal domains. For water-cut function
w, for instance, the definitions of these errors are listed as follows:etotal = ‖E[wMC-FEM(t)] − E[wANOVA-MsFEM(t)]‖L2 ,
estoch = ‖E[wMC-FEM(t)] − E[wANOVA-FEM(t)]‖L2 , andems = ‖E[wANOVA-FEM(t)] − E[wANOVA-MsFEM(t)]‖L2 . Errors for the
other functions are defined in the similar manner.

6.1 Random Permeability Field

In this example,l1 = 0.2, l2 = 0.05, andσ2 = 1 are taken in Eq. (25), andE[a] = 1 andα = 0.05 in Eq. (26). The
permeability fielda(x, Y ) is given on a80 × 80 fine grid. The fine grid is coarsened to form a uniform8 × 8 coarse
grid, so that each block in the coarse grid contains a10 × 10 cell partition from the fine grid. KLE is truncated to be
N = 20 terms, so that the number of random dimensions of this stochastic system is20.

Saturations at different times and water-cut results are shown in Figs. 1–3. The quantitative errors are reported
in Tables 1 and 2. For saturation functionS at different times, ANOVA-FEM behaves better than ANOVA-MsFEM
compared with the reference ones. The relative large variance of the saturation function is in the flow front as shown
in Figs. 1 and 2. The variance behaves differently on horizontal and vertical directions too, since the correlation
lengths are different in these two directions. When time increases from 0.2 PVI to 0.6 PVI, the accuracy of the
solutions is decreasing. For both ANOVA-FEM and ANOVA-MsFEM, the relative errors increase. This could due
to the uncertainty accumulation in time. At 0.2 PVI, ANOVA-MsFEM is as good as ANOVA-FEM in mean value,
with the same magnitude of standard deviation. When time increases, ANOVA-MsFEM results are not comparable
to ANOVA-FEM. The same situation can be discovered by looking at the standard deviations at 0.2 PVI and 0.6
PVI, respectively in Figs. 1 and 2. The standard deviations have the similar pattern at 0.2 PVI, while at 0.6 PVI,
the standard deviation from ANOVA-MsFEM is quite different from the above two cases. Water-cut results are the
same as saturation at 0.6 PVI in the sense of the behavior of these two methods. The standard deviation of water
cut has a large value around water breakthrough time for all three cases in Fig. 3. From Table 2, the absolute errors
of water breakthrough timeTw and cumulative oil productionQo, it is clear that ANOVA-MsFEM provides good
approximations to these function values, while ANOVA-FEM behaves better than ANOVA-MsFEM. However, the
computation of the mixed FEM is much more expensive than the mixed MsFEM.

There are errors introduced by ANOVA-MsFEM as shown from the above analysis. It is also critical to investigate
the dominant error in the simulation process. Fully understanding the structure of errors will shed the light needed to
develop new methods targeting the dominant error. The error introduced by MsFEM,ems, has the same magnitude
as the total oneetotal in Table 3. In summary, the error introduced by the multiscale method is the dominant one
compared with the error introduced by ANOVA representation and stochastic collocation methods. Seeking better
multiscale methods for better approximations is one of our future research directions.

6.2 Random Permeability Field with Channelized Structure

For our second numerical example,l1 = 0.2, l2 = 0.05, andσ2 = 1 are taken in Eq. (25), the same as in the first
example. In Eq. (26),α = 1, andE[a] is chosen to have the channelized feature and shows the dominant feature of
the permeabilitya(x, ω). N = 20 terms are chosen in the truncated KLE, i.e.,a(x, ω) = E[a] +

∑20
i=1

√
λiYiΦi.

Consequently,

k(x,ω) = exp(a(x, ω)) = exp(E[a]) exp

(
20∑

i=1

√
λiYiΦi

)
:= k1(x)k2(x, ω).
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FIG. 1: Mean (left) and standard deviation (right) of saturationS at 0.2 PVI. Left column: mean; right column:
standard deviation. Top row: MC-FEM; middle row: ANOVA-FEM; bottom row: ANOVA-MsFEM.

For each realization, the permeabilityk(x, ω) is defined on a60× 60 fine grid. Figure 4 depicts the logarithm of
k1(x) (left) and an arbitrary realization of logarithm ofk2(x, ω) (right). The channelized structuredk1(x) is taken
from part of the layer in SPE10 data. From the permeability, it is observed thatk1(x) represents a main feature of the
random permeabilityk(x, ω). Here, the mixed MsFEM is performed on a6× 6 uniform coarse grid.

The variance in this example is larger than the previous example. The results in Tables 4 and 5 are larger in
magnitude than in Tables 1 and 2. However, the trends are similar to the first example. The ANOVA-FEM generally
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FIG. 2: Mean (left) and standard deviation (right) of saturationS at 0.6 PVI. Left column: mean; right column:
standard deviation. Top row: MC-FEM; middle row: ANOVA-FEM; bottom row: ANOVA-MsFEM.

provides better accuracy than ANOVA-MsFEM. The accuracy is decreasing as time increases. But the standard devi-
ation of saturations computed by ANOVA-MsFEM is more accurate than the result computed by ANOVA-FEM. The
natural inference is that ANOVA-FEM is more accurate than ANOVA-MsFEM, because the mixed MsFEM results
are approximations of FEM solutions with less computation cost. In addition, since ANOVA applied here is only up
to second-order terms, the process of approximating a nonlinear operator by finite linear operations introduces extra
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FIG. 3: Comparison of mean (left) and standard deviation (right) of water-cutw.

TABLE 1: Relative errors of saturationS at 0.2, 0.6 PVI and water-cutw
ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error
e(S) at 0.2 PVI 3.422170e-09 2.184847e-03 3.422172e-09 6.116023e-03
e(S) at 0.6 PVI 3.135168e-07 2.745868e-03 3.616744e-03 5.136930e-03

e(w) 8.544170e-05 2.620252e-02 1.571879e-02 1.050685e-01

TABLE 2: Absolute errors of water breakthrough timeTw and cumulative
oil-productionQo

ANOVA-FEM ANOVA-MsFEM
Mean error Std error Mean error Std error

e(Tw) 7.408498e-07 2.345094e-11 2.290520e-06 2.629305e-11
e(Qo) 1.592182e-07 6.972235e-09 1.662888e-03 4.961346e-10

TABLE 3: Different errors of water-cutw, water break-
through timeTw, and cumulative oil-productionQo

etotal estoch ems

w 1.527618e-02 1.147299e-03 1.412888e-02
Tw 2.290520e-06 7.408498e-07 3.031370e-06
Qo 1.662888e-03 1.592182e-07 1.662729e-03
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FIG. 4: The logarithm ofk1(x) (left) and an arbitrary realization of logarithm ofk2(x, ω) (right).
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TABLE 4: Relative errors of saturationS at 0.2, 0.6 PVI, and water-cutw
ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error
e(S) at 0.2 PVI 9.472140e-03 3.138906e-01 7.615875e-03 2.625666e-01
e(S) at 0.6 PVI 4.296857e-03 3.612245e-01 9.758884e-03 2.605877e-01

e(w) 1.515789e-02 5.825024e-01 2.001007e-02 3.293715e-01

TABLE 5: Absolute errors of water breakthrough timeTw and cumulative
oil-productionQo

ANOVA-FEM ANOVA-MsFEM
Mean error Std error Mean error Std error

e(Tw) 6.797262e-02 4.350505e-03 6.884711e-02 4.416420e-03
e(Qo) 3.126008e-04 2.948469e-05 1.858780e-03 6.022319e-06

errors. If ANOVA is expanded to high-order terms, the results will converge to the true value, and ANOVA-FEM
should be more accurate than ANOVA-MsFEM.

ANOVA approximations have better results for the mean solutions than the standard deviation. The uncertainty
of saturationsS are coming from where the flow front is (Figs. 5 and 6). The large standard deviation of water-cutw
is again around water breakthrough time (Fig. 7), while the magnitude of standard deviation in this example is larger
than the previous example (Fig. 3), as the variance of the parameter is larger. This example illustrates the error due to
MsFEM approximation is still the dominant error in the computation as shown in Table 6.

6.3 Adaptive ANOVA Case Studies

This simulation focuses on the analysis of the adaptive ANOVA based on the new variance decomposition criterion
proposed in Section 5.3. Before showing the numerical results, several observations and supportive numerical results
are stated as follows. The adaptive Criteria 1 and 2 are to some extent comparable [6]. Some numerical examples
demonstrate that the active dimensions are similar for both criteria. But for special functions, for example water-cut
w, Criterion 2 based on variance usually gives a lower number of active dimensions. To obtain a better approximation
through any kind of adaptive ANOVA method, the criterion has to be applied to the results of the interested functions.

In this numerical test case,l1 = 0.25, l2 = 0.1, andσ2 = 1 are taken in Eq. (25), andE[a] = 0 andα = 1 are
used in Eq. (26). The KLE approximation is truncated to beN = 50 terms. Since the correlation lengths in horizontal
and vertical directions are larger than the previous examples, the covariance function is smoother and the eigenvalues
decay faster. The fine grid is80× 80 and the coarse grid is8× 8. Table 7 shows that whenp = 0.9, for saturationS at
0.2 PVI, Criteria 1 and 2 give almost the same active dimensions. The second-order adaptive ANOVA is applied here.
In fact, the active dimensions are the same whenp = 0.85, and0.9. And, the active dimensions are the dimensions
corresponding to the largest21 or 22 eigenvalues, while if water-cut functionw is considered, Criteria 1 and 2 give17
and10 active dimensions, respectively.

Now, reconsidering the example withl1 = 0.2, l2 = 0.05, andσ2 = 1 in Eq. (25), andE[a] = 0 andα = 1 in
Eq. (26), with20 random dimensions. In this case, the20 eigenvalues have similar magnitude to some extent. Since
Criteria 1 and 2 are comparable, and our adaptive criterion is based on variance decomposition; comparison is made
only to Criterion 2, which is also based on variance.

The saturationS at 0.2 PVI is taken into account. To apply variance decomposition based analysis, level-one
Smolyak sparse-grid collocation points are used to build variance decomposition (23). Forty-one level-one sparse-
grid points are used here. Variance decomposition can be obtained up to first-order in (23), i.e.,v =

∑
1≤i≤20 vi.

Each random dimension corresponds to onevi. Similar variance decomposition analysis through gPC expansion
can be done to the MC results based on104 number of MC samples. The variance computed by large-number MC
samples are treated as the true value as before. At the same time, the anchored-ANOVA discussed in previous sections
provides the variance contribution by each individual random dimension. To compare these three sets of variance, a
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FIG. 5: Mean (left) and standard deviation (right) of saturationS at 0.2 PVI. Left column: mean; right column:
standard deviation. Top row: MC-FEM; middle row: ANOVA-FEM; bottom row: ANOVA-MsFEM.

network graph plot is adopted to show the sensitivity analysis results in Fig. 8. As shown in Fig. 8, the20 dimensions
are labeled, with the radius proportional to the magnitude of variance contribution by each random dimension with
respect to saturationS at0.2 PVI, respectively.

Both adaptive ANOVA based on Criterion2 and variance decomposition-based adaptive ANOVA results are dif-
ferent from the true ones with regard to matching the radius. To further explore the behavior of the two methods, two
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FIG. 6: Mean (left) and standard deviation (right) of saturationS at 0.6 PVI. Left column: mean; right column:
standard deviation. Top row: MC-FEM; middle row: ANOVA-FEM; bottom row: ANOVA-MsFEM.

different comparisons are made. The advantage of our proposed variance decomposition-based adaptive method is
that the active dimensions can be found before ANOVA approximation by only a small amount of computation, while
the adaptive ANOVA can only find the active dimensions after finishing the computation of all first-order terms.

To make a “fair” comparison, it was assumed that adaptive ANOVA is expanded to first-order terms in these two
methods. In the first case, the active dimensions are chosen by Criterion 2, and the mean and variance of saturation
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FIG. 7: Comparison of mean (left) and variance (right) of water-cutw.

TABLE 6: Different errors of water-cutw, water break-
through timeTw, and cumulative oil-productionQo

etotal estoch ems

w 9.937488e-02 7.527776e-02 1.200735e-01
Tw 6.884711e-02 6.797262e-02 1.368197e-01
Qo 1.858780e-03 3.126008e-04 1.546179e-03

TABLE 7: Comparison of adaptive ANOVA for saturationS at 0.2 PVI
p # of Active dim Relative error of mean Relative error of std

Criterion 1 0.90 21 9.314872e-02 5.618844e-02
Criterion 2 0.90 22 8.425106e-02 4.924464e-02
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FIG. 8: Network graph of active random dimensions with respect to saturationS at0.2 PVI. The radius is proportional
to the magnitude of variance. The larger radius refers to larger variance, which is considered as more active dimension.
Magenta: MC results; green: adaptive ANOVA approximation (Criterion 2); black: variance decomposition-based
adaptive ANOVA (Criterion 3).
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S at 0.2 PVI are formed by zero-order terms and first-order terms of active dimensions. In the second case, variance
decomposition is conducted to choose active dimensions (Criterion 3), then the adaptive ANOVA includes zero-order
and first-order terms of active dimensions are considered. The results are in Table 8. Whenp = 0.90, Criterion 3 gives
one active dimension less than Criterion 2. These dimensions are not exactly the same. For Criterion 2, dimensions
11, 14, 16, 19 are not included, and for Criterion 3, dimensions14, 15, 16, 19, 20 are not included. Criterion 3 gives
results as good as Criterion 2 as shown in Table 8. The advantages of our proposed method will be more obvious,
when the dimension of the problem is higher. In that case, more computations for the first-order terms can be saved.

Further, an “unfair” comparison can be made. For Criterion 2, all the first-order terms are kept and second-order
terms with active dimensions are computed. And for Criterion 3, use only the first terms of pre-fixed active dimensions
and compute second-order terms based on these active dimensions. Since there are less first-order terms included in
Criterion 3, the relative error of std results are not as good as the ones calculated using Criterion 2. But the relative
error of mean gives better approximation. Table 9 shows the difference between these two methods.

In fact, if level-two sparse grid collocation points are used, the variance function can be approximated by higher-
order terms in Eq. (23). For example,841 collocation points are taken in the random space and compute second-order
in Eq. (23). Then the information between random dimensions can be obtained before ANOVA decomposition. In
Fig. 9, the radius of circles corresponding to each dimension depicts the variance contribution associating with certain
dimensions, and the width of the lines between any pair of dimensions depicts the correlation between that pair. The
widths of the lines are normalized for display. We can select the active interactions between random dimensions by
certain criteria. For example, in Fig. 10, the largest 50 correlations are shown. The thicker the line, the larger the

TABLE 8: A “fair” comparison of adaptive ANOVAs up to first-order terms for satura-
tion S at 0.2 PVI

p # of Active dims Relative error of mean Relative error of std
Criterion 2 0.90 16 4.489370e-02 3.101351e-01
Criterion 3 0.90 15 4.519126e-02 3.079101e-01

TABLE 9: An “unfair” comparison of adaptive ANOVAs up to second-order terms for
saturationS at 0.2 PVI

p # of Active dims Relative error of mean Relative error of std
Criterion 2 0.90 16 3.054183e-02 3.959672e-02
Criterion 3 0.90 15 2.065996e-02 7.027969e-02

1

2

3

45
6

7

8

9

10

11

12

13
14

15
16

17

18

19

20

FIG. 9: Network graph of active dimensions and the interaction between pairs.
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FIG. 10: Network graph of active dimensions and the largest 50 interactions between pairs.

correlation is. By applying similar criterion as listed in (20), the active interactions between pairs of dimensions
can be found. Further, to avoid deleting dimensions which have small variances associated with them, but large
correlation/interaction with other dimensions, high-level sparse-grid collocation points or larger number multilevel
Monte Carlo samples are needed. However, this requires more computational cost.

7. CONCLUSION

In this paper, an ANOVA-based and an adaptive ANOVA-based mixed MsFEM with a novel adaptive criterion are
developed for the stochastic two-phase flow problem with random permeability fields. The properties of the methods
have been further studied with numerical examples on different random permeability fields. The structure and sources
of the errors have been investigated. The numerical experiments show that the dominant errors are introduced by the
mixed multiscale methods compared with the ANOVA decomposition errors. This motivates us to further develop
multiscale methods with better accuracy to improve the developed approach in our future research. In particular, a
systematic enrichment technique developed in [37] is planned for implementation.

Note that the full ANOVA decomposition will contain more and more subproblems in the stochastic space, when
the dimensions increase. This fact can make the total computations as expensive as solving a high-dimensional prob-
lem directly when the number of random dimension exceeds a certain point. The carefully designed adaptive ANOVA
method could be a remedy. A new adaptive ANOVA-based mixed MsFEM with a novel variance-decomposition-
based adaptive criterion has been proposed and compared with the existing two adaptive criteria. Our proposed adap-
tive ANOVA method can determine the active dimensions and interactions among dimensions before computing the
ANOVA decomposition to greatly reduce the computational cost. The numerical results show that this novel adaptive
method can achieve similar accuracy as other adaptive strategies but with much lower computational cost. The ad-
vantage in saving computational time will be more obvious when the number of random dimensions of the problem
becomes higher.

ACKNOWLEDGMENTS

This work was accomplished and funded by both the Applied Mathematics Program within the DOE’s Office of
Advanced Scientific Computing Research as part of the Collaboratory on Mathematics for Mesoscopic Modeling of

Volume 4, Number 6, 2014



476 Wei et al.

Materials and the Pacific Northwest National Laboratory’s Carbon Sequestration Initiative, which is part of the Labo-
ratory Directed Research and Development Program. A portion of the computations was performed using PNNL Insti-
tutional Computing cluster systems. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL01830.

REFERENCES

1. Cao, Y., Chen, Z., and Gunzburger, M., An ANOVA analysis for a class of partial differential equations with uncertain bound-
ary conditions,Int. J. Numer. Anal. Model., 6(2):256–273, 2009.

2. Fisher, R.,Statistical Methods for Reserach Workers, Oliver and Boyd, Edinburgh, Scotland, 1925.

3. Foo, J. Y. and Karniadakis, G. E., Multi-element probabilistic collocation in high dimensions,J. Comput. Phys., 229:1536–
1557, 2009.

4. Ma, X. and Zabaras, N., An adaptive high-dimensional stochastic model representation technique for the solution of stochastic
partial differential equations,J. Comput. Phys., 229:3884–3915, 2010.

5. Ma, X. and Zabaras, N., A stochastic mixed finite element heterogenours multiscale method for flow in porous media,J.
Comput. Phys., 230:4696–4722, 2011.

6. Yang, X., Choi, M., Lin, G., and Karniadakis, G. E., Adaptive ANOVA decomposition of stochastic incompresible and com-
pressible flows,J. Comput. Phys., 231:1587–1614, 2011.

7. Zhang, Z., Choi, M., and Karniadakis, G. E., Anchor points matter in anova decomposition, InSpectral and High Order
Methods for Partial Diferential Equations Lecture Notes in Computational Science and Engineering, Vol. 76, Springer, Berlin,
pp. 347–355, 2011.

8. Tatang, M. and McRae, G., Direct treatment of uncertainty in models of reaction and transport, Technical Report, MIT Tech.
Rep., 1994.
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