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Machine learning can provide sustainable solutions to gap-fill groundwater (GW) data needed to
adequately constrain watershed models. However, imputing missing extremes is more challenging
than other parts of a hydrograph. To impute missing subhourly data, including extremes, within
GW time-series data collected at multiple wells in the East River watershed, located in southwest-
ern Colorado, we consider a single-well imputation (SWI) and a multiple-well imputation (MWI)
approach. SWI gap-fills missing GW entries in a well using the same well’s time-series data; MWI
gap-fills a specific well’s missing GW entry using the time series of neighboring wells. SWI takes ad-
vantage of linear interpolation and random forest (RF) approaches, whereas MWI exploits only the
RF approach. We also use an information entropy framework to develop insights into how missing
data patterns impact imputation. We discovered that if gaps were at random intervals, SWI could
accurately impute up to 90% of missing data over an approximately two-year period. Contiguous
gaps constituted more complex scenarios for imputation and required the use of MWI. Information
entropy suggested that if gaps were contiguous, up to 50% of missing GW data could be estimated
accurately over an approximately two-year period. The RF-feature importance suggested that a time
feature (months) and a space feature (neighboring wells) were the most important predictors in the
SWI and MWI. We also noted that neither SWI nor MWI methods could capture the missing ex-
tremes of a hydrograph. To counter this, we developed a new sequential approach and demonstrated
the imputation of missing extremes in a GW time series with high accuracy.

KEY WORDS: groundwater, gap filling, modeling, extremes, information entropy,
sequential imputation

2689-3967/22/$35.00 © 2022 by Begell House, Inc. www.Hbgake.com 1



2 Dwivedi et al.

1. INTRODUCTION

The application of watershed numerical models for predlictivater quantity and water quality
in both space and time requires high-resolution spatiatamgoral data for enhanced predictive
capabilities, given the extreme heterogeneity of hydrakigprocesses (e.g., Arora et al., 2016b,
2019a; Dwivedi and Mohanty, 2016; Li et al., 2017; Likensp20Zachara et al., 2016). Re-
cently, sensor networks and environmental observatoges tevolutionized watershed science
by providing a range of high-resolution spatial and tempdasa (Hubbard et al., 2020; Reich-
stein et al., 2019; Varadharajan et al., 2019). Despiteptttigress, datasets are often incomplete,
containing unspecified or missing entries owing to varie@asons such as equipment failures,
improper system maintenance, power outages, and extre@aeveconditions. Groundwater
(GW) time series is a prominent example of time-series détamissing entries. Such missing
entries are usually estimated to appropriately constramerical models in order to capture
the spatiotemporal variability of watershed processeis pitocess of estimating, or gap-filling,
missing data is commonly referred to as “imputation.”

Despite its importance, there are no standardized metlowdssfimating missing GW val-
ues. The literature includes several approaches for imgutissing entries in a GW time series
based on the availability of annual, monthly, and daily GWadl general, conventional statisti-
cal approaches, such as autoregression or spatial ingigglwork well for imputing GW data
at seasonal time scales (Dax and Zilberbrand, 2018; ManiizZBartz-Beielstein, 2017) because
strong inherent seasonality and comparable interannalbgyaphs of GW time series make it
relatively unchallenging for estimating missing GW ergridowever, these multiple autoregres-
sive approaches are not very efficient for long, contigu@psgOther methods include spectral
analyses, such as singular spectrum analysis and multiechgpectrum analysis, for estimating
or imputing missing GW entries through exploring time aretifrency domains interchangeably
(e.g., Aissia et al., 2017; Kondrashov et al., 2005). Theairgghese spectral techniques tend to
perform less satisfactorily if the GW time series deviatesf a normal/Gaussian distribution
and includes extreme values.

Missing extreme values and long contiguous gaps are caasildechallenges when im-
puting missing GW data. These challenges require levegagiissing GW data information
from other related (but diverse) datasets (e.g., pretipitaevapotranspiration, temperature).
More recently, machine-learning-based approaches hamedyanomentum for imputing the
GW time series because of their flexibility and versatilitydiealing with diverse data. Khedri
et al. (2020) compared several machine-learning (ML) apghes, including artificial neural
networks, fuzzy logic, adaptive neuro-fuzzy inferenceetys neural net group method of data
handling, and support vector machines, for short-term (orteree months) groundwater level
predictions. They considered precipitation, temperatarsl evapotranspiration as input fea-
tures for estimating monthly missing GW data. Muller et(2019) used a suite of machine-
learning-based models (e.g., multilayer perceptron, clational, recurrent, and long short-term
memory neural networks) to predict daily GW levels at sevaranitoring wells in Califor-
nia.

Although the approaches mentioned above are efficient @sbnable for imputing missing
GW levels, these approaches have been primarily used toténgmunual, monthly, and—on a
very few occasions—daily GW data. To date, there is no rolmptitation technique to gap-
fill subdaily to subhourly GW time-series data, even thougytare often used for constraining
high-resolution watershed ecohydrological models. Irafioh techniques to fill subdaily to sub-
hourly data have not been investigated partly because madasor networks have only recently
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started catering to high-resolution GW temporal data (¥aazajan et al., 2019). In addition to
long contiguous gaps and missing extremes, another keyigdhre missing data pattern that is
equally important to consider for accurately imputing rnmgsGW entries. However, it has not
been thoroughly investigated.

The missing data pattern poses a significant challenge mptaward imputing GW data but
also for standardizing a GW imputation strategy (Aguildarale 2020; Aissia et al., 2017; Yoz-
gatligil et al., 2013). For example, a single missing reawad be gap-filled by either estimating
averaged values before and after the timestamp (i.e., Ugitatitime) or spatially correlating
nearby GW records (Aggarwal and Zhai, 2012). However, a Gi¢ Series typically does not
have just a few gaps that are easy to impute but has seveishmisntries or contiguous gaps.
Indeed, imputation accuracy depends upon the missing datian, missing data patterns, and
variability of the time series. A highly variable time sexies more difficult to impute than a
relatively uniform time series. As an example, if a ten-yiiaue series has 50% missing data
versus a one-year time series with only 20% missing dataait be easier to fill gaps in the
ten-year time series if it has a less challenging missing pattern. A long time series with 50%
missing entries may still include adequate informationwtlibe temporal variability of GW
data. However, if missing data is centered around extrethasgdrograph, and the GW time
series does not contain complete information about terhgargbility, then imputing extremes
can be more challenging than other parts of the hydrograpthi$ work, we use information
theory (e.g., Arora et al., 2019b; Cui and Singh, 2015; Ddi\et al., 2018a; Singh, 2010a) to
assess how much information about temporal variabilityoistained in a GW time series and
infer imputation performance (or reliability) beforehai®pecifically, information theory helps
us infer the effects of missing data fraction and missing @atitern on imputation. With this in
mind, we will elaborate the use of information entropy fasessing imputation reliability in the
Discussion section (Section 4).

Here, we explore (a) single-well imputation (SWI), whichpefdlls missing GW data in a
well using the same well’s time-series data, and (b) matipell imputation (MWI), which
gap-fills a specific well using GW data from other wells lockie that well's proximity. The
SWI method takes advantage of linear interpolation (LI) ssnsdom forest (RF) approaches,
whereas the MWI method uses only the RF approach. We choedRRtregressor because it
is computationally efficient for large datasets and can leamany input variables. In addition,
RF informs the relative feature importance of predictoriatales (Du et al., 2020; Pedregosa
et al., 2011). Specifically, our goal is to develop a robustfework to gap-fill subhourly GW
data based on the following missing data patterns: (a) rangiaps, (b) contiguous gaps away
from extremes, and (c) contiguous gaps around extremes.s@/formation theory to inves-
tigate what percentage of missing data can effectively muted. Subsequently, we develop
a strategy to sequentially impute missing data (includixigeenes) from the GW time series
across multiple wells. For developing the sequential irapoh strategy, we hypothesize that
(a) MWI is more effective than SWI, and (b) imputing along gwence (ascending order of
missing data fraction) across wells, and then leveragich gap-filled well data progressively
to impute the next well, enables high imputation accuradye Tationale behind the first part
of the hypothesis is that neighboring wells can provide @aithl information for imputing
missing GW data in a time series. The second part of the hgpitlbenefits from gleaning
information from wells with small gaps, likely to be imputetbre effectively than wells with
large gaps. Finally, this is the first study that (a) assesspatation reliability using informa-
tion entropy, and (b) employs a sequential approach in dodenpute contiguous gaps around
extremes.
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2. METHODOLOGY
2.1 Field Site and Datasets
2.1.1 Site Location and Hydrologic Characteristics

We conducted this study using the GW level data collecteddnitaring wells at the East River
watershed (southwestern Colorado), which is a high elewatrainage basin located between
38.8° to 38.9 N and 106.8 to 106.9 W (Fig. 1). The East River watershed is a study site
of the Watershed Function Scientific Focus Area project ak&ey Lab, funded by the U.S.
Department of Energy (Arora et al., 2020; Hubbard et al.,80There are several intensive
sampling sites in the East River watershed that serve tougive better understanding of how
mountainous watersheds respond to climatic perturbatitims East River floodplain is one of
several such intensive sampling sites, extending over 1bkBEast River and encompassing
multiple meanders (Fig. 1). The floodplain is hydrologigaibnnected to the East River system
through an underlying unconfined alluvial aquifer (Dwivetlal., 2017, 2018b). The East River
predominantly receives flow from snowmelt in late springd#ipril) to early summer (June),
followed by monsoonal rainfall from mid to late summer (ndidhe to mid-October).

2.1.2 Water Level Data

To capture the inherent spatial and temporal variabilitya dfoodplain environment, we mea-
sured water levels at approximately 15 min intervals froméober 1, 2015 to August 24, 2019
in seven monitoring wells using pressure transducers (h@dset HOBO U2). The data were
downloaded from the sensors periodically, corrected fanges in atmospheric pressure, and
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FIG. 1: (a) The study site is located in the East River watershedytadievation catchment in southwestern
Colorado. (b) Seven monitoring wells (WLE1 to WLE7, markedlato 7) are located in the East River
watershed floodplain.
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converted to GW level depth. Further, real-time kinematiRSGmeasurements of the well lo-
cations and elevations were used to infer GW level elevdiiaiflon and Dwivedi, 2020). We
resampled the GW time-series data uniformly at 30 min irgisrfor consistency. The layout of
GW wells is shown in Fig. 1(b). All the wells are located witfd 1.4 m-wide range in elevation,
from 7.7 to 270 m apart from each other, and from 3 to 89 m away the river [Fig. 1(b)]. The
in-well depth to the sensor varies between 0.65 and 1.9 nihd&ptmore details, see Appendix
A; Table Al).

GW levels at seven wells (WLE1 to WLE7) within the meandefflogdplain are shown in
Fig. 2. All the wells have gaps ranging from several days teis# months. Moreover, during
certain periods, the wells have synchronous missing recfrel., missing at the same time).
The period in which wells have synchronous missing recoedsited from improper system
maintenance, while the other gaps came about for variosensaincluding sensor failure, the
GW table being deeper than the sensor, and at times imprggtens maintenance.

2.2 Imputation Strategy

To impute missing data, we use SWI and MWI. SWI exploits LI &flapproaches (hereafter,
SWI-LI and SWI-RF) to gap-fill missing GW data in a well usirgetsame well’'s time-series
data. MWI takes advantage of the RF approach (hereafter,-R#JIto gap-fill a specific well
using GW data from other wells located in that well’s proxynin SWI-LI, a linear interpolation
assumes that the values are equally spaced and estimagisgmiata points by fitting a linear
function within the range of a discrete set of available getimts (Fig. 3). Below, we provide
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FIG. 2: GW data in wells WLE1 to WLE7 showing gaps at different times
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FIG. 3: Schematic of the imputation strategy to gap-fill missing Gietseries data

a brief overview of RF and a performance metric (i.e., Nashelffe efficiency) for evaluating
the imputation performance.

2.2.1 Random Forest

RF is based on an aggregation of decision trees (Breimai®),188ich are flowchartlike struc-
tures that recursively partition the input feature spate $maller subspaces. Data in each sub-
space are modeled using simple linear fits. For regres@onrsive partitioning of subspaces is
carried out such that the mean-squared error between thettput and the observed output is
minimized. The RF model trains each decision tree on a diffesubset of data points obtained
by sampling the training data with a replacement.

Furthermore, each tree is trained by considering a diftesglnset of randomly selected input
features. The final output of the RF is obtained by aggregdltia results of all decision trees.
For regression problems, aggregation is done by consgihreimean. For completeness, a short
description of the RF regressor is given below.

A binary tree is grown, and at each node, the data are spiittimd daughter nodes based
on a splitting criterion. The predicted value at a node isaherage response variable for all
observations in the node.

Given dataD = {(X;,Y;),i = 1,...,n}, arandom forest modélis defined as follows:

Y = f(X) 1)

whereX = (X1, X»,..., X)) arep predictor variables (e.g., year, month, day, GW levels at
neighboring wells)Y is a continuous response variable (e.g., GW predictions).

In this study, we use the RandomForestRegressor (RF Regydégslbox from Python’s
sklearn package (Pedregosa et al., 2011). Some exampigsRiapproach include Giannakou
et al. (2020), Mital et al. (2020), Stockman et al. (2019} @ppel and Schumann (2020).
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2.2.2 Evaluating Imputation Accuracy: Nash-Sutcliffe Efficiency (NSE)

The overall imputation performance was evaluated by comguhe Nash—Sutcliffe efficiency
(NSE) on test data given by

N o m\2
NeE = 1 Ziallf ) @
>ima (W) —9°)
whereN is the test set sizey is theith observed valuey;” represents the corresponding mod-
eled value, ang? is the mean of all observed values in the test set.

The NSE is widely used for evaluating model performances in hydygldt calculates the
relative magnitude of a model’s residual variance comp#odatie measured data variance. It
indicates how well the observed versus modeled data fit thdide (Moriasi et al., 2007).
The NSE is dimensionless and ranges fromo to 1. An NSE value equal to 1 implies that
the modeled values match the observations perfectliy@&nvalue equal to 0 implies that the
modeled values are only as good as the mean of observatiahg, rregativélSE value implies
that the mean of observations is a better predictor than tiaetad values. PositiMdSE values
are desirable, and higher values imply greater accuradyeofniodel.

2.2.3 Information Entropy

Next, we describe an information entropy framework that ee o develop insights into various
aspects of the imputation process, such as missing dat&matnd gaps around extremes that
affect imputation performance. Imputation performancpestels on the missing data patterns
and variability in the GW time series. Variability in timerses data is characterized by several
measures such as randomness, periodicity, discontirauity,systematic variation. Several de-
scriptive statistical measures can quantify variabilityaiGW time series, such as range, mean,
standard deviation, and coefficient of variation. In casttr&hannon entropy (also known as in-
formation entropy) exploits a probabilistic approach tcasw@e a random variable’s spatial and
temporal variability. Shannon entropy holds an advantage descriptive statistics because en-
tropy measures the uncertainty associated with a randaabl@and is a nonparametric quantity
(Hockett, 1953; Shannon, 1948). The entropy approach hers édensively used in hydrology
for describing spatial and temporal variability in datag(gArora et al., 2016a; Dwivedi and
Mohanty, 2016; Mays et al., 2002; Singh, 1997).

For a discrete random variahlé, the equation for Shannon entrofiiis given by

N
H == p(X,)loglp(X..)] 3)
n=1

wheren is the index of a discrete data interval (or bin), varyingnfrd to N; X,, is the out-
come within interval; andp(X,,) is the probability ofX,,. The probabilities are computed by
counting the number of observations that fall into varioatadntervals or bins. The logarithmic
function can be natural (base e), binary (base 2), or comipase(10), resulting in information
entropy with units of napiers (or nats), bits, or decibetspectively (Shannon, 1948). How-
ever, interpretations do not depend upon the choice of &cpbmt base. We use the natural log
function to compute entropy (in nats) in this study.
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2.3 Numerical Experiments for GW Imputation

As previously stated, our goal is to develop a robust framkwm gap-fill subhourly GW data.
Figure 4 shows the missing data pattern of GW levels at thésvi@tated in the East River
floodplain. For the entire duration of the study (i.e., fromm@mber 2015 to August 2019),
wells WLE2, WLES5, and WLE7 are missing a significant portidrdata: approximately 47%,
35%, and 29%, respectively. All other wells have less tha#b bissing data. When analyzing
missing patterns and gaps, the entire duration can be diwde three periods [Fig. 4(b)]. First,
from November 2015 to March 2018 (Period 1), where well WLES lthe highest portion
of missing data (57%), followed by wells WLE7 (37%), and WLEBI%); during this same
period, wells WLE1, WLE3, and WLE4 have less than 0.6% mgsiata, and contiguous gaps
are primarily a few hours [Fig. 4(c)]. Second, from April B)io November 2018 (Period 2),
when all wells have synchronous gaps for a significant blaekts WLE1, WLE3, and WLE 5
are missing almost all data, followed by WLE2 (60%), WLE7¥90WLE4 (45%), and WLE6
(45%) [Fig. 4(d)]. Finally, from November 2018 to August 20(Period 3), WLE1, WLEZ2, and
WLES have less than 20% missing data, and all other wells balyea small fraction of gaps
(< 6%), as shown in Fig. 4(e).

To develop a robust framework to gap-fill subhourly GW datastart by synthetically creat-
ing gaps in the time-series data of wells WLE1 and WLES3. Sgbeatly, we impute these gaps
using SWI and MWI methods and compare imputed data with thggnal data. We use wells
WLE1 and WLE3 because these two wells have an almost compistéime series in Period 1.
We design three numerical experiments considering (a)aarghps, (b) contiguous gaps away
from extremes, and (c) contiguous gaps around extremeseThissing data patterns represent
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FIG. 4: (a) Total percentage of missing data in each monitoring feelihe entire duration. (b) The entire
duration can be divided into three periods based on largégumus, synchronous, and small gaps. For
these periods, (c), (d), and (e) show the total percentagessing data in each monitoring well.
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the simplest to the most complex scenarios in GW time seaés. d he first numerical exper-

iment (E1) involves 10%, 20%, 50%, and 90% missing-at-ramd@aps (Fig. 5). The second

numerical experiment (E2) involves 10%, 20%, and 50% coiotig gaps not centered around
peaks or troughs, i.e., away from extremes (Fig. 6). Thd tiiimerical experiment (E3) involves

10%, 20%, and 50% gaps that are contiguous and located atioeiedtremes of the hydrograph
(Fig. 7). The three numerical experiments are summarizédilihe 1.

2.4 Sequential Imputation of Missing Data across Multiple Wells

To test the first part of our hypothesis, that MWI is more dffecthan SWI, we evaluate both
methods using numerical experiments as described aboeesddond path of the hypothesis
sets the stage for the sequential imputation strategyatisthat following a sequence along the
percentage (lowest to highest) of missing data across weti®nable high imputation accuracy.
To test this, below we provide the following key steps.

1. Divide GW time-series data into different periods sudt thissing data in different wells
have the least possible synchronous gaps.

2. Find fractions of missing data in different wells for eggriod.

3. Sequentially impute missing data in different wells. Beguence will follow the per-
centage of missing data across wells. In other words, firstywil impute the well with
the smallest fraction of missing data using MWI. Next, wel wilpute the well with the
second smallest fraction of missing data.

4. If certain periods include contiguous synchronous gapssa all the wells, then use SWI
for the well with the least missing data. Next, apply step (3)

2760.00 ﬂ\@/\\[\\
2759.00 W A W
B - » “\ 10% gaps —
£, 2760.00
g 2759.00 I 5
< - S \ 20% gaps
£ 2760.00
= \/__//\'\'\“ GA'\N\\\,
2759.00 M ~_—~
- . 50% gaps —
2760.00
O
2759.00) | _ "90%-gaps
o © al a ®
N N N N N
5 S > : o &
) O > >
\% o)\ \@\ q,:)Y* n}\%\

Time

FIG. 5. Missing-at-random synthetic gaps (10%, 20%, 50%, and 9G®&¥laown for WLE3 (Period 1).
Similarly, random gaps for WLE1 were also created. Data aresd and uniformly spaced at 30 min, so
insets are shown to visualize gaps for different scenarios.
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TABLE 1: Numerical experiments for GW imputation

Numerical experiments | Gaps (% missing data) Missing data patterns
El 10%, 20%, 50%, 90% Random gaps
E2 10%, 20%, 50% Contiguous gaps away from extremgs
E3 10%, 20%, 50% Contiguous gaps around extremes

TABLE 2: Sequentially imputing GW wells for each period

Period Well Neighboring wells Fraction of
sequence used as predictors missing data
WLE4* 0.18
“ WLE1 WLE4 0.58
° WLE6 WLE4, WLE1 9.70
5 WLES WLE4, WLE1, WLE6 33.91
o WLE7 WLE4, WLE1, WLE6, WLES 36.82
WLE2 | WLE4, WLE1, WLE6, WLES, WLE7|  57.38
WLE7* 0.02
™ WLE4 WLE7 0.02
3 WLE6 WLE7, WLE4 3.70
5 WLE1 WLE7, WLE4, WLE6 16.16
o WLES WLE7, WLE4, WLEG, WLE1 18.36
WLE2 | WLE4, WLE1, WLE6, WLES, WLE7|  57.38
WLE6* 415
~ WLE4 WLE6 4.15
g WLE7 WLE6, WLE4 5.61
= WLE2 WLE6, WLE4, WLE7 5.61
o WLE1 WLE6, WLE4, WLE7, WLE2 9.27
WLE5 | WLE6, WLE4, WLE7, WLE2, WLE1 9.27

*SWI (LI and RF, both applicable);

tPeriod 1 and Period 3 were combined before imputing Periad IBvierage maximum
possible information.

To demonstrate the efficacy of the sequential imputatiorghe®mse E3, because this numer-
ical experiment represents the most complex scenario fputation. We impute well WLE3
with contiguous synthetic gaps missing around the hydmigextremes (i.e., experiment E3).
Following the sequential imputation steps, we divide thiiretsW monitoring duration for the
seven wells into three periods, as shown in Fig. 4(b). We Hegpuentially impute the missing
data in different wells for Period 1 and Period 3 (Table 2).obtain better imputation quality,
we sequentially impute Period 3 before Period 2 becauseaps are small€ 10%) in Period
3. For Period 2, first we combine Period 1 and Period 3 becéagenill allow more data for
training RF, then we sequentially impute different welksrsng with well WLE6, and follow
the sequence summarized in Table 2. It is worth mentioniagdtdifferent set of periods (and
sequence) can also be chosen to achieve high accuracy. Elgyweviods and well sequence are
chosen so the MWI can be used with neighboring wells with gepsmall as possible.
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3. RESULTS
3.1 E1: GW Imputation with Random Gaps

We used the SWI method, using LI and RF approaches to impsimgi GW time-series data
for E1 with 10%, 20%, 50%, and 90% random gaps in WLE1 and WL&3Pferiod 1. The
SWI-LI assumed the values as equally spaced and estimatsingnidata points by fitting a
linear function within the range of a discrete set of neangilable data points. In the SWI-
RF, the missing data were modeled using a set of predict@bias. The predictors constituted
the feature space, which in this case included Unix timegtamays, months, and years of the
same well (Fig. 3). The results showed that both SWI-LI and-R~ techniques could impute
missing values for random gaps ranging from 10% to 90% witfh ldccuracy NSE ~ 0.99).
WLE1 and WLE3 showed similar performances for both methaabgaps ranging from 10%
to 90%. Hence, for brevity, we show a 90% imputed missing GWetseries for WLE3 and
compare imputed data with observations using SWI-RF [F8ga) and 8(b)]. As is evident
from Figs. 8(a) and 8(b), the water level in WLE3 startedngsin March and peaked around
mid-April to June; the water level subsequently decreasad @ctober. The results indicate
that both techniques could capture temporal variabilitgrapriately when gaps were random,
even though they were as high as 90%. The RF Regressor alsalegdvfeature importance
while imputing the GW time series with random gaps. Month@4% were the most important
predictor, followed by timestamps (25%), years (10%), asgksd5%).

3.2 E2: GW Imputation with Contiguous Gaps Away from Extremes of the
Hydrograph

We used SWI-LI and SWI-RF methods to impute missing GW timges data with 10%, 20%,
and 50% contiguous gaps away from extremes in WLE1 and WLEBdaod 1. SWI-LI failed
to impute missing values for both wells (WLE1 and WLE3) effiesly, even with 10% con-
tiguous gapsNSE values were negative. SWI-RF also failed to impute missilges with the
desired accuracy and h&iBE values less than zero for all three missing data scenarimsetrer,
SWI-RF slightly outperformed the linear interpolation aqgach.

SWI-LI SWI-RF
52761'0 A--NSE = 0,99 52761'0 B --NSE=0.9
- =2760.5
" (%]
g 2
$2760.0 ©2760.0
£2759.5 §27595
2 =
2759.0 2759.0
4’»" o'\fb Q'\:\ q\:\ «”% 4\’% o\’b 0\:\ q\,’\ ﬁ\ﬁb
SN PR S RNY ST I SR SR
O NP AP ARPES O N AP
Time Time

—— Original Time Series
—— Imputed Time Series

FIG. 8: SWI-LI and SWI-RF methods imputed randomly missing GW dath hgh accuracyNSE 0.99),
even when gaps were as high as 90%
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Subsequently, we imputed 10%, 20%, and 50% contiguous gaps in WLE3 using MWI-RF,
in which the feature space included timestamps, days, months, years, and water levels in WLEL1.
Figure 9 shows observed and imputed time series of WLE3 with 10%, 20%, and 50% contiguous
gaps away from extremes. Figure 9 demonstrates that MWI-RF was able to capture temporal
variability adequately for all three scenarios (10%, 20%, and 50% gaps). MWI-RF achieved
NSE values 0.94, 0.93, and 0.70 for 10%, 20%, and 50% contiguous gaps, respectively. MWI-
RF performance slightly improved when we removed data around peaks with 50% gaps while
computingNSE values because E2 focuses on gaps away from extremes. We observe here that
MWI-RF outperforms SWI-RF, corroborating the first part of the overarching hypothesis. It was
also noted that neighboring wells were the most important feature, accounting for 57%, 57%,
and 44% of variability for 10%, 20%, and 50% contiguous gaps, respectively (Fig. 10). For
10% and 20% contiguous gaps, timestamps were the second-most important feature. However,
months were the second-most important feature for 50% contiguous gaps. Years were the third-
most important feature, accounting for 6% to 10% variability for 10% to 50% contiguous gaps
(Fig. 9). Note that imputed data in WLE1 showed similar results as WLE3 and for brevity are
not shown. Incorporating days and hours in the feature space slightly impKSEedalues.

10% contiguous gaps away from extremes 20% contiguous gaps away from extremes
27005 AL NSE = 0.94 27605 A NSE =093
£2760.0 £2760.0
%] [92]
v [
32759.5 32759.5
g g
© 2759.
£2759.0 £2759.0
758. 2758.5
2758:5 >N A AR o o A A®
N O O 2 3 \)0 ,o(‘ QQ >
ST AR SR NS AEEL AN
~ ° N A ~ ° N A
Time Time

50% contiguous gaps away from extremes
2760-51 A NSE =0.70

— Original Time Series
— Imputed Time Series

)

AW

Waterlevels [m
N N N
~ ~ ~
w w [e)]
© © o
o u o

2758.5 A A
\\x"’ {\«? S N
NS S AR AR
~ NG Dy
Time

FIG. 9: MWI-RF was able to impute 10%, 20%, and 50% contiguous but missing-at-random GW data in
WLE3 with high accuracy, withNSE values ranging from 0.70 to 0.94. Because this scenario focuses on
contiguous gaps away from extremes, we compWMeH values after removing the encircled portion as
shown.
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FIG. 10: RF relative feature importance for (a) contiguous gaps dway extremes, (b) around a trough,
and (c) around a peak suggests that neighboring wells armadkseimportant feature, followed by months
and timestamps together and years for imputing missing G\/. e relative importance of neighboring
wells grows as gaps in a time series increase.

3.3 E3: GW Imputation with Contiguous Gaps around Extremes of the
Hydrograph

The numerical experiment E3 reflected the most challengiagario for GW imputation. Here,
contiguous gaps were located around the extremes (i.&ks @eal troughs) of the hydrograph.
SWI-LI and SWI-RF approaches were not able to impute mis&gdata satisfactorily.

MWI-RF was used to impute 10%, 20%, and 50% contiguous gapsimg around peaks
and troughs of the hydrograph in WLE3, in which RF featurecepgacluded timestamps, days,
months, years, and water levels in WLE3. Figure 11 showsrebdexind imputed data for 10%,
20%, and 50% contiguous gaps around the extremes for well3VAE Fig. 11 indicates, MWI-
RF was able to capture hydrologic variability reasonablyl wrcept around the hydrograph
extremesNSE values were positive and ranged from 0.32 to 0.88 for 10% &84 Gontiguous
gaps.

As shownin Fig. 10, MWI-RF feature importance suggestetighaerally neighboring wells
were the most important feature, followed by months, timuegts, and years. The relative feature
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FIG. 11: MWI-RF was able to impute 10%, 20%, and 50% contiguous GW dedand troughs (top
panel) and peaks (bottom panel) of the hydrograph with resse accuracy, wittNSE values ranging
from negative to 0.87. However, MWI-RF failed to capturelgeand troughs.

importance of neighboring wells typically increased whepgwere more prominent, account-
ing for 40% to 60% variability for 10% to 50% missing data.

3.4 Sequential Imputation of Missing GW Data

As can be seen from the preceding sections, MWI outperforii #hich corroborates the
first part of our overarching hypothesis. Although MWI-RRuttbnot capture the hydrograph
extremes, it captured the hydrologic variability reasdyalkell for other parts of the hydrograph.
To capture these extremes and test the second part of oaroligrg hypothesis, we sequentially
imputed WLE3 for 10%, 20%, and 50% of contiguous synthetjzsgae., E3).

We used MWI-RF to impute these contiguous gaps missing arthenhydrograph extremes
in well WLE3, where feature space included timestamps, dagsths, years, and water levels
in the other six neighboring wells. To leverage data fronghkoring wells, we first sequentially
imputed the missing data for these six wells following theutation strategy laid out in Table 2.
Figure 12 shows the observed and imputed 10%, 20%, and 50%ntfyjaous, but missing
around extremes, gaps at well WLES for Period 1. We obsemesiquential imputation was
able to adequately capture these contiguous gaps arouksigmeadtroughs of WLENSE values
improved significantly as compared to the nonsequentiad easl ranged from 0.66 to 0.94.
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FIG. 12: The sequential imputation strategy demonstrates that R®was able to impute 10%, 20%,
and 50% contiguous GW data around troughs (top panel) arié fleattom panel) of the hydrograph with
high accuracy, witilNSE values ranging from 0.66 to 0.94

Figure 13 shows a comparison REE values for 10%, 20% and 50% contiguous gaps around
extremesNSE values are higher for each case, except for 20% gaps arouadght However,
the NSE value was already high for this case, so it did not matterefgbquential imputation
could not improve this performance.

4. DISCUSSION

4.1 GW Imputation with Random Gaps

SWI could impute missing data only for numerical experimgm{ which, with random gaps
ranging from 10% to 90%, can be considered as the simplesingislata scenario. SWI-LI
and SWI-RF methods both resulted in almost a perfect maten with 90% synthetic gaps
for the time-series data of WLE1 and WLES3. To understand teehanism behind such an
effective imputation of randomly missing data, we computedinformation entropy of WLE1
and WLES. Figure 14(a) shows how entropy changed with thebaumf observations of WLE3
time-series data. In particular, we computed the mean aattlatd deviation of entropy by

randomly selecting the number of observations (e.g., 5%4)10

As described in Section 2.2.3, entropy is a measure of \iityalso the entropy value will
increase when the number of observations increases (406¢ba,b). However, the entropy will
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FIG. 13: NSE values are consistently higher for sequential imputatimtnonsequential imputation for
contiguous gaps around extremes
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FIG. 14: Information entropy as a function of the number of obseoratican reveal how many data points
are needed to capture complete temporal variability of a (W series

reach a maximum value when the number of observations headgircaptured the data’s in-
herent temporal variability (Arora et al., 2019b; Cui anddsi, 2015). Accordingly, it is clear
from Fig. 14(a) that the entropy increases initially, wittwaler spread (i.e., band) around it
(i.e., higher standard deviation). The entropy reachesxman value when the number of ob-
servations is approximately 10%. With a higher number ofoleions, the spread in entropy
value decreases. Essentially, this means that 10% of rdpdmtected GW data inherits the
entire temporal variability contained in the complete GWidiseries data of WLE1 and WLE3
for Period 1. Therefore, RF could learn the variability of Glta from a mere fraction of 10%
and impute 90% missing data effectively. In addition, RFeaded that months were the most
important predictors for random gaps (E1). Although days haurs slightly improvedNSE
values, daily and subhourly fluctuations were relativelponi Therefore, a simple interpolation
technique could also impute 90% of randomly missing GW diectvely.
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4.2 GW Imputation with Contiguous Gaps

We imputed missing GW data for numerical experiments E2 éhth&t represented contiguous
missing data patterns (10%, 20%, and 50%), both located &eayhydrograph extremes and
centered around extremes. The MWI-RF method was able totampissing GW data reason-
ably well for both E2 and E3. However, SWI-LI and SWI-RF coulot impute missing data
for E2 and E3. As previously noted in Section 3.1, months waportant predictors for imput-
ing random gaps (i.e., in E1). Therefore, SWI-LI and SWI-Réuld not be effective if a GW
time series included missing data spanning multiple dagshaonths. More information would
be needed to impute missing data in contiguous gap scenagasrdingly, the MWI-RF de-
rived additional information from neighboring well(s) andhieved high accuracy in imputing
missing data for both wells WLE1 and WLE3 for 10%, 20%, and 5f2%bs. Furthermore, neigh-
boring wells provided critical information for imputati@s their relative feature importance was
relatively high for all scenarios (10%, 20%, and 50% gap$)dth E2 and E3 (Fig. 10).

To further explore MWI-RF performance, we computed the rimfation entropy of WLE1
and WLE3 with contiguous gaps of variable window sizes. Figi4(b) shows how entropy
changes with the number of observations of WLE3 time-sat&a. As Fig. 14(b) indicates,
entropy values change if the number of observations aréHass50%. To capture the temporal
variability of the GW time series in WLE1 and WLE3, we wouldedeat least 50% GW time-
series data for WLE1 and WLES3 for effectively imputing miggientries in Period 1.

Although the MWI-RF was able to impute contiguous gaps witlhhaccuracy for both
E2 (contiguous gaps away from extremes) and E3 (contiguaps ground extremes), it was
not able to capture extremes of the hydrograph for E3. To nstated the poor performance of
the MWI-RF for E3, we need to recognize the underlying phifgsy of ML approaches. Two
aspects are important for imputing any data using ML appgresic(a) temporal variability in
time-series data, and (b) availability of training datadarML model to capture data’s critical
characteristics (Alpaydin, 2014; Dwivedi et al., 2013; Kiay 2010; Shen, 2018). Although
information entropy suggested that contiguous data wittougD% gaps contained the entirety
of temporal variability for Period 1, it does not distinguisetween E2 and E3. E3 has another
level of complexity above E2. Specifically, E3 does not pdevsufficient training data for the
MWI-RF to learn peaks and troughs of the hydrograph. If we &adore extended GW time
series, unlike our numerical experiments, then MWI-RF dawde sufficient training data to
“learn” critical characteristics.

4.3 Sequential Imputation of GW with Contiguous Gaps around Extremes

The sequential imputation strategy leverages informdtiom neighboring wells even if they
have missing data. We have seen in preceding sections th&@Wi method can impute up
to 90% missing data—if gaps are random—with high accuraug, MWI-RF can effectively
impute up to 50% of missing data for approximately a two-y@aiod. Table 2 provides the
missing data fractions of different GW wells for three disti periods. For Period 1, we note
that all the wells except WEL2 had 37% either random gaps or contiguous gaps missing away
from extremes. The inferences drawn from information gutrGections 4.1 and 4.2) indicate
that imputation quality would be high. Although WLE2 had gatightly more than 5098\SE
values were significantly higher in the sequential versasitbnsequential case, suggesting that
GW data from five other wells compensated for relatively dargaps in WLE2 using MWI-
RF. However, the sequential imputation would perform éttthese gaps were less than 50%.
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We make similar observations for Period 2 and Period 3 @&ps< 20%). Following this,
we see that the MWI-RF captured peaks and troughs reasonatlyvhen we sequentially
imputed WLE3.NSE values were significantly higher for the sequential imgatathan for the
nonsequential case, when we imputed WLES3 for period 1, udvd-RF with only well WLE3
(Fig. 13). Part of the reason for loNSE values was that nonsequential imputation could not
inform peaks and troughs to adequately train MWI-RF. Ovetia¢ high imputation quality in
sequential imputation suggests that an extended GW tinesgbat allows MWI-RF to “learn”
critical characteristics is likely to perform effectively

5. SUMMARY AND CONCLUSIONS

Monitoring and predictions of GW levels are critical for naging water resources and con-
straining watershed numerical models. However, the GW-8erées data usually have missing
records, owing to various unavoidable reasons such as nadilfming monitoring transducers
and physical disturbances. Several techniques in thatitex impute missing GW data, rang-
ing from simple interpolation to statistical modeling tovadced ML methods. Although these
techniques can impute GW reasonably well, their applioatizan differ and be contingent upon
“missing data” patterns. In this study, we explored techagto gap-fill subhourly GW data,
including missing extremes, based on the following misgiatp patterns: (a) random gaps,
(b) contiguous gaps away from extremes, and (c) contiguaps ground extremes. We used
the SWI-LI, SWI-RF, and MWI-RF to impute missing GW data. Wscaused an information
entropy framework to understand imputation performanaefiaon missing data patterns and
percent-missing data. The results showed that SWI-LI anttB®methods imputed up to 90%
missing data—if gaps were random—with high accurad$g ~ 0.99). Information entropy
revealed that efficient imputation resulted because ad asmabD% of data could also capture the
complete temporal variability of a GW time series datasairddver, months were found to be
the most important features as, indicated by the SWI-Ra@d by timestamps.

Contiguous gaps required MWI-RF for effective imputatiarhile SWI-LI and SWI-RF
performed poorly even when gaps were as small as 10%. The RIfevealed that neighboring
wells, followed by months, timestamps, and years, were mapob features for imputing GW
time-series data with contiguous gaps. The MWI-RF and m#fifon entropy indicated that
up to 50% of missing data could be estimated reasonably weH @an approximately two-year
period with high accuracy. Although the MWI-RF imputed ugb@®6 contiguous gaps with high
accuracy using a single neighboring well, it failed to captgaps located around extremes. To
capture these extremes, we developed a sequential inputdtategy to estimate the missing
data in GW time series across multiple wells. We succegsfidmonstrated the strategy using
seven wells in the East River floodplain.

We note that our approach is highly transferable across aibel may apply to a suite of
other environmental variables such as temperature, sastore, and precipitation. Further,
whereas we used RF to demonstrate our GW imputation stratdiggr ML-based methods
(such as support vector machines and artificial neural mé&syshould also work. An informa-
tion entropy approach to identifying how much missing petage can be imputed effectively is
variable-agnostic and can be applied to any other envirotetheariables. Overall, we showed
that machine-learning methods could provide sustainadllgtisns to gap-fill environmental
datasets because our approach is transferable and aplioad suite of other environmental
variables.
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APPENDIX A.

TABLE ALl: Description of wells used for imputing missing data

Well Well names | Other well names Absolute Average
names | (in database) (in database) well elevations(m) | GW depths (m)
WLE1 UPwW UP1W 2760.64 0.64
WLE2 UPM up2 2760.74 1
WLE3 UPE UP3E 2760.1 15
WLE4 DOW DO1W 2759.43 1.89
WLES DOE DO2E 2759.23 1.2
WLE6 MBA1 M1B1 2760.18 1
WLE7 MBA2 M1B2 2759.96 1.59
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