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Machine learning can provide sustainable solutions to gap-fill groundwater (GW) data needed to

adequately constrain watershed models. However, imputing missing extremes is more challenging

than other parts of a hydrograph. To impute missing subhourly data, including extremes, within

GW time-series data collected at multiple wells in the East River watershed, located in southwest-

ern Colorado, we consider a single-well imputation (SWI) and a multiple-well imputation (MWI)

approach. SWI gap-fills missing GW entries in a well using the same well’s time-series data; MWI

gap-fills a specific well’s missing GW entry using the time series of neighboring wells. SWI takes ad-

vantage of linear interpolation and random forest (RF) approaches, whereas MWI exploits only the

RF approach. We also use an information entropy framework to develop insights into how missing

data patterns impact imputation. We discovered that if gaps were at random intervals, SWI could

accurately impute up to 90% of missing data over an approximately two-year period. Contiguous

gaps constituted more complex scenarios for imputation and required the use of MWI. Information

entropy suggested that if gaps were contiguous, up to 50% of missing GW data could be estimated

accurately over an approximately two-year period. The RF-feature importance suggested that a time

feature (months) and a space feature (neighboring wells) were the most important predictors in the

SWI and MWI. We also noted that neither SWI nor MWI methods could capture the missing ex-

tremes of a hydrograph. To counter this, we developed a new sequential approach and demonstrated

the imputation of missing extremes in a GW time series with high accuracy.
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1. INTRODUCTION

The application of watershed numerical models for predicting water quantity and water quality
in both space and time requires high-resolution spatial andtemporal data for enhanced predictive
capabilities, given the extreme heterogeneity of hydrological processes (e.g., Arora et al., 2016b,
2019a; Dwivedi and Mohanty, 2016; Li et al., 2017; Likens, 2001; Zachara et al., 2016). Re-
cently, sensor networks and environmental observatories have revolutionized watershed science
by providing a range of high-resolution spatial and temporal data (Hubbard et al., 2020; Reich-
stein et al., 2019; Varadharajan et al., 2019). Despite thisprogress, datasets are often incomplete,
containing unspecified or missing entries owing to various reasons such as equipment failures,
improper system maintenance, power outages, and extreme weather conditions. Groundwater
(GW) time series is a prominent example of time-series data with missing entries. Such missing
entries are usually estimated to appropriately constrain numerical models in order to capture
the spatiotemporal variability of watershed processes. This process of estimating, or gap-filling,
missing data is commonly referred to as “imputation.”

Despite its importance, there are no standardized methods for estimating missing GW val-
ues. The literature includes several approaches for imputing missing entries in a GW time series
based on the availability of annual, monthly, and daily GW data. In general, conventional statisti-
cal approaches, such as autoregression or spatial interpolation, work well for imputing GW data
at seasonal time scales (Dax and Zilberbrand, 2018; Moritz and Bartz-Beielstein, 2017) because
strong inherent seasonality and comparable interannual hydrographs of GW time series make it
relatively unchallenging for estimating missing GW entries. However, these multiple autoregres-
sive approaches are not very efficient for long, contiguous gaps. Other methods include spectral
analyses, such as singular spectrum analysis and multichannel spectrum analysis, for estimating
or imputing missing GW entries through exploring time and frequency domains interchangeably
(e.g., Aissia et al., 2017; Kondrashov et al., 2005). Then again, these spectral techniques tend to
perform less satisfactorily if the GW time series deviates from a normal/Gaussian distribution
and includes extreme values.

Missing extreme values and long contiguous gaps are considerable challenges when im-
puting missing GW data. These challenges require leveraging missing GW data information
from other related (but diverse) datasets (e.g., precipitation, evapotranspiration, temperature).
More recently, machine-learning-based approaches have gained momentum for imputing the
GW time series because of their flexibility and versatility in dealing with diverse data. Khedri
et al. (2020) compared several machine-learning (ML) approaches, including artificial neural
networks, fuzzy logic, adaptive neuro-fuzzy inference system, neural net group method of data
handling, and support vector machines, for short-term (oneto three months) groundwater level
predictions. They considered precipitation, temperature, and evapotranspiration as input fea-
tures for estimating monthly missing GW data. Müller et al.(2019) used a suite of machine-
learning-based models (e.g., multilayer perceptron, convolutional, recurrent, and long short-term
memory neural networks) to predict daily GW levels at several monitoring wells in Califor-
nia.

Although the approaches mentioned above are efficient and reasonable for imputing missing
GW levels, these approaches have been primarily used to impute annual, monthly, and—on a
very few occasions—daily GW data. To date, there is no robustimputation technique to gap-
fill subdaily to subhourly GW time-series data, even though they are often used for constraining
high-resolution watershed ecohydrological models. Imputation techniques to fill subdaily to sub-
hourly data have not been investigated partly because modern sensor networks have only recently
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started catering to high-resolution GW temporal data (Varadharajan et al., 2019). In addition to
long contiguous gaps and missing extremes, another key point is the missing data pattern that is
equally important to consider for accurately imputing missing GW entries. However, it has not
been thoroughly investigated.

The missing data pattern poses a significant challenge not only toward imputing GW data but
also for standardizing a GW imputation strategy (Aguilera et al., 2020; Aissia et al., 2017; Yoz-
gatligil et al., 2013). For example, a single missing recordcan be gap-filled by either estimating
averaged values before and after the timestamp (i.e., Unix digital time) or spatially correlating
nearby GW records (Aggarwal and Zhai, 2012). However, a GW time series typically does not
have just a few gaps that are easy to impute but has several missing entries or contiguous gaps.
Indeed, imputation accuracy depends upon the missing data fraction, missing data patterns, and
variability of the time series. A highly variable time series is more difficult to impute than a
relatively uniform time series. As an example, if a ten-yeartime series has 50% missing data
versus a one-year time series with only 20% missing data, it may be easier to fill gaps in the
ten-year time series if it has a less challenging missing data pattern. A long time series with 50%
missing entries may still include adequate information about the temporal variability of GW
data. However, if missing data is centered around extremes of a hydrograph, and the GW time
series does not contain complete information about temporal variability, then imputing extremes
can be more challenging than other parts of the hydrograph. In this work, we use information
theory (e.g., Arora et al., 2019b; Cui and Singh, 2015; Dwivedi et al., 2018a; Singh, 2010a) to
assess how much information about temporal variability is contained in a GW time series and
infer imputation performance (or reliability) beforehand. Specifically, information theory helps
us infer the effects of missing data fraction and missing data pattern on imputation. With this in
mind, we will elaborate the use of information entropy for assessing imputation reliability in the
Discussion section (Section 4).

Here, we explore (a) single-well imputation (SWI), which gap-fills missing GW data in a
well using the same well’s time-series data, and (b) multiple-well imputation (MWI), which
gap-fills a specific well using GW data from other wells located in that well’s proximity. The
SWI method takes advantage of linear interpolation (LI) andrandom forest (RF) approaches,
whereas the MWI method uses only the RF approach. We choose the RF regressor because it
is computationally efficient for large datasets and can handle many input variables. In addition,
RF informs the relative feature importance of predictor variables (Du et al., 2020; Pedregosa
et al., 2011). Specifically, our goal is to develop a robust framework to gap-fill subhourly GW
data based on the following missing data patterns: (a) random gaps, (b) contiguous gaps away
from extremes, and (c) contiguous gaps around extremes. We use information theory to inves-
tigate what percentage of missing data can effectively be imputed. Subsequently, we develop
a strategy to sequentially impute missing data (including extremes) from the GW time series
across multiple wells. For developing the sequential imputation strategy, we hypothesize that
(a) MWI is more effective than SWI, and (b) imputing along a sequence (ascending order of
missing data fraction) across wells, and then leveraging each gap-filled well data progressively
to impute the next well, enables high imputation accuracy. The rationale behind the first part
of the hypothesis is that neighboring wells can provide additional information for imputing
missing GW data in a time series. The second part of the hypothesis benefits from gleaning
information from wells with small gaps, likely to be imputedmore effectively than wells with
large gaps. Finally, this is the first study that (a) assessesimputation reliability using informa-
tion entropy, and (b) employs a sequential approach in orderto impute contiguous gaps around
extremes.
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2. METHODOLOGY

2.1 Field Site and Datasets

2.1.1 Site Location and Hydrologic Characteristics

We conducted this study using the GW level data collected in monitoring wells at the East River
watershed (southwestern Colorado), which is a high elevation drainage basin located between
38.8◦ to 38.9◦ N and 106.8◦ to 106.9◦ W (Fig. 1). The East River watershed is a study site
of the Watershed Function Scientific Focus Area project at Berkeley Lab, funded by the U.S.
Department of Energy (Arora et al., 2020; Hubbard et al., 2018). There are several intensive
sampling sites in the East River watershed that serve to giveus a better understanding of how
mountainous watersheds respond to climatic perturbations. The East River floodplain is one of
several such intensive sampling sites, extending over 11 kmof East River and encompassing
multiple meanders (Fig. 1). The floodplain is hydrologically connected to the East River system
through an underlying unconfined alluvial aquifer (Dwivediet al., 2017, 2018b). The East River
predominantly receives flow from snowmelt in late spring (mid-April) to early summer (June),
followed by monsoonal rainfall from mid to late summer (mid-June to mid-October).

2.1.2 Water Level Data

To capture the inherent spatial and temporal variability ofa floodplain environment, we mea-
sured water levels at approximately 15 min intervals from November 1, 2015 to August 24, 2019
in seven monitoring wells using pressure transducers (model Onset HOBO U2). The data were
downloaded from the sensors periodically, corrected for changes in atmospheric pressure, and

FIG. 1: (a) The study site is located in the East River watershed, a high elevation catchment in southwestern
Colorado. (b) Seven monitoring wells (WLE1 to WLE7, marked as 1 to 7) are located in the East River
watershed floodplain.
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converted to GW level depth. Further, real-time kinematic GPS measurements of the well lo-
cations and elevations were used to infer GW level elevation(Dafflon and Dwivedi, 2020). We
resampled the GW time-series data uniformly at 30 min intervals for consistency. The layout of
GW wells is shown in Fig. 1(b). All the wells are located within a 1.4 m-wide range in elevation,
from 7.7 to 270 m apart from each other, and from 3 to 89 m away from the river [Fig. 1(b)]. The
in-well depth to the sensor varies between 0.65 and 1.9 m depth (for more details, see Appendix
A; Table A1).

GW levels at seven wells (WLE1 to WLE7) within the meanderingfloodplain are shown in
Fig. 2. All the wells have gaps ranging from several days to several months. Moreover, during
certain periods, the wells have synchronous missing records (i.e., missing at the same time).
The period in which wells have synchronous missing records resulted from improper system
maintenance, while the other gaps came about for various reasons, including sensor failure, the
GW table being deeper than the sensor, and at times improper system maintenance.

2.2 Imputation Strategy

To impute missing data, we use SWI and MWI. SWI exploits LI andRF approaches (hereafter,
SWI-LI and SWI-RF) to gap-fill missing GW data in a well using the same well’s time-series
data. MWI takes advantage of the RF approach (hereafter, MWI-RF) to gap-fill a specific well
using GW data from other wells located in that well’s proximity. In SWI-LI, a linear interpolation
assumes that the values are equally spaced and estimates missing data points by fitting a linear
function within the range of a discrete set of available datapoints (Fig. 3). Below, we provide

FIG. 2: GW data in wells WLE1 to WLE7 showing gaps at different times
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FIG. 3: Schematic of the imputation strategy to gap-fill missing GW time-series data

a brief overview of RF and a performance metric (i.e., Nash–Sutcliffe efficiency) for evaluating
the imputation performance.

2.2.1 Random Forest

RF is based on an aggregation of decision trees (Breiman, 1996), which are flowchartlike struc-
tures that recursively partition the input feature space into smaller subspaces. Data in each sub-
space are modeled using simple linear fits. For regression, recursive partitioning of subspaces is
carried out such that the mean-squared error between the tree output and the observed output is
minimized. The RF model trains each decision tree on a different subset of data points obtained
by sampling the training data with a replacement.

Furthermore, each tree is trained by considering a different subset of randomly selected input
features. The final output of the RF is obtained by aggregating the results of all decision trees.
For regression problems, aggregation is done by considering the mean. For completeness, a short
description of the RF regressor is given below.

A binary tree is grown, and at each node, the data are split into two daughter nodes based
on a splitting criterion. The predicted value at a node is theaverage response variable for all
observations in the node.

Given dataD = {(Xi, Yi), i = 1, . . . , n}, a random forest model̂f is defined as follows:

Ŷ = f̂(X) (1)

whereX = (X1, X2, . . . , Xp) arep predictor variables (e.g., year, month, day, GW levels at
neighboring wells);Y is a continuous response variable (e.g., GW predictions).

In this study, we use the RandomForestRegressor (RF Regressor) toolbox from Python’s
sklearn package (Pedregosa et al., 2011). Some examples using RF approach include Giannakou
et al. (2020), Mital et al. (2020), Stockman et al. (2019), and Oppel and Schumann (2020).

Journal of Machine Learning for Modeling and Computing
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2.2.2 Evaluating Imputation Accuracy: Nash-Sutcliffe Efficiency (NSE)

The overall imputation performance was evaluated by computing the Nash–Sutcliffe efficiency
(NSE) on test data given by

NSE = 1−

∑N

i=1(y
o
i − ymi )

2

∑N

i=1(y
o
i − ȳo)

2 (2)

whereN is the test set size,yoi is theith observed value,ymi represents the corresponding mod-
eled value, and̄yo is the mean of all observed values in the test set.

The NSE is widely used for evaluating model performances in hydrology. It calculates the
relative magnitude of a model’s residual variance comparedto the measured data variance. It
indicates how well the observed versus modeled data fit the 1:1 line (Moriasi et al., 2007).
The NSE is dimensionless and ranges from−∞ to 1. An NSE value equal to 1 implies that
the modeled values match the observations perfectly, anNSE value equal to 0 implies that the
modeled values are only as good as the mean of observations, and a negativeNSE value implies
that the mean of observations is a better predictor than the modeled values. PositiveNSE values
are desirable, and higher values imply greater accuracy of the model.

2.2.3 Information Entropy

Next, we describe an information entropy framework that we use to develop insights into various
aspects of the imputation process, such as missing data patterns and gaps around extremes that
affect imputation performance. Imputation performance depends on the missing data patterns
and variability in the GW time series. Variability in time-series data is characterized by several
measures such as randomness, periodicity, discontinuity,and systematic variation. Several de-
scriptive statistical measures can quantify variability in a GW time series, such as range, mean,
standard deviation, and coefficient of variation. In contrast, Shannon entropy (also known as in-
formation entropy) exploits a probabilistic approach to measure a random variable’s spatial and
temporal variability. Shannon entropy holds an advantage over descriptive statistics because en-
tropy measures the uncertainty associated with a random variable and is a nonparametric quantity
(Hockett, 1953; Shannon, 1948). The entropy approach has been extensively used in hydrology
for describing spatial and temporal variability in data (e.g., Arora et al., 2016a; Dwivedi and
Mohanty, 2016; Mays et al., 2002; Singh, 1997).

For a discrete random variableX , the equation for Shannon entropyH is given by

H = −
N∑

n=1

p(Xn) log[p(Xn)] (3)

wheren is the index of a discrete data interval (or bin), varying from 1 toN ; Xn is the out-
come within intervaln; andp(Xn) is the probability ofXn. The probabilities are computed by
counting the number of observations that fall into various data intervals or bins. The logarithmic
function can be natural (base e), binary (base 2), or common (base 10), resulting in information
entropy with units of napiers (or nats), bits, or decibels, respectively (Shannon, 1948). How-
ever, interpretations do not depend upon the choice of a particular base. We use the natural log
function to compute entropy (in nats) in this study.

Volume 3, Issue 2, 2022
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2.3 Numerical Experiments for GW Imputation

As previously stated, our goal is to develop a robust framework to gap-fill subhourly GW data.
Figure 4 shows the missing data pattern of GW levels at the wells located in the East River
floodplain. For the entire duration of the study (i.e., from November 2015 to August 2019),
wells WLE2, WLE5, and WLE7 are missing a significant portion of data: approximately 47%,
35%, and 29%, respectively. All other wells have less than 15% missing data. When analyzing
missing patterns and gaps, the entire duration can be divided into three periods [Fig. 4(b)]. First,
from November 2015 to March 2018 (Period 1), where well WLE2 has the highest portion
of missing data (57%), followed by wells WLE7 (37%), and WLE5(34%); during this same
period, wells WLE1, WLE3, and WLE4 have less than 0.6% missing data, and contiguous gaps
are primarily a few hours [Fig. 4(c)]. Second, from April 2018 to November 2018 (Period 2),
when all wells have synchronous gaps for a significant block:wells WLE1, WLE3, and WLE 5
are missing almost all data, followed by WLE2 (60%), WLE7 (60%), WLE4 (45%), and WLE6
(45%) [Fig. 4(d)]. Finally, from November 2018 to August 2019 (Period 3), WLE1, WLE2, and
WLE5 have less than 20% missing data, and all other wells haveonly a small fraction of gaps
(< 6%), as shown in Fig. 4(e).

To develop a robust framework to gap-fill subhourly GW data, we start by synthetically creat-
ing gaps in the time-series data of wells WLE1 and WLE3. Subsequently, we impute these gaps
using SWI and MWI methods and compare imputed data with the original data. We use wells
WLE1 and WLE3 because these two wells have an almost completeGW time series in Period 1.
We design three numerical experiments considering (a) random gaps, (b) contiguous gaps away
from extremes, and (c) contiguous gaps around extremes. These missing data patterns represent

FIG. 4: (a) Total percentage of missing data in each monitoring wellfor the entire duration. (b) The entire
duration can be divided into three periods based on large contiguous, synchronous, and small gaps. For
these periods, (c), (d), and (e) show the total percentage ofmissing data in each monitoring well.

Journal of Machine Learning for Modeling and Computing
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the simplest to the most complex scenarios in GW time series data. The first numerical exper-
iment (E1) involves 10%, 20%, 50%, and 90% missing-at-random gaps (Fig. 5). The second
numerical experiment (E2) involves 10%, 20%, and 50% contiguous gaps not centered around
peaks or troughs, i.e., away from extremes (Fig. 6). The third numerical experiment (E3) involves
10%, 20%, and 50% gaps that are contiguous and located aroundthe extremes of the hydrograph
(Fig. 7). The three numerical experiments are summarized inTable 1.

2.4 Sequential Imputation of Missing Data across Multiple Wells

To test the first part of our hypothesis, that MWI is more effective than SWI, we evaluate both
methods using numerical experiments as described above. The second path of the hypothesis
sets the stage for the sequential imputation strategy. It states that following a sequence along the
percentage (lowest to highest) of missing data across wellscan enable high imputation accuracy.
To test this, below we provide the following key steps.

1. Divide GW time-series data into different periods such that missing data in different wells
have the least possible synchronous gaps.

2. Find fractions of missing data in different wells for eachperiod.

3. Sequentially impute missing data in different wells. Thesequence will follow the per-
centage of missing data across wells. In other words, first, we will impute the well with
the smallest fraction of missing data using MWI. Next, we will impute the well with the
second smallest fraction of missing data.

4. If certain periods include contiguous synchronous gaps across all the wells, then use SWI
for the well with the least missing data. Next, apply step (3).

FIG. 5: Missing-at-random synthetic gaps (10%, 20%, 50%, and 90%) are shown for WLE3 (Period 1).
Similarly, random gaps for WLE1 were also created. Data are dense and uniformly spaced at 30 min, so
insets are shown to visualize gaps for different scenarios.

Volume 3, Issue 2, 2022
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FIG. 6: Contiguous, but away from the hydrograph extremes, synthetic gaps (10%, 20%, and 50%) are
shown for WLE3. Similarly, contiguous, but away from the hydrograph extremes, synthetic gaps for WLE1
were also created.

FIG. 7: Contiguous synthetic gaps (10%, 20%, and 50%) missing around peaks and troughs of the hydro-
graph are shown for WLE3. Similarly, synthetic contiguous gaps missing around peaks and troughs of the
hydrograph were created for WLE1.

Journal of Machine Learning for Modeling and Computing
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TABLE 1: Numerical experiments for GW imputation

Numerical experiments Gaps (% missing data) Missing data patterns
E1 10%, 20%, 50%, 90% Random gaps

E2 10%, 20%, 50% Contiguous gaps away from extremes

E3 10%, 20%, 50% Contiguous gaps around extremes

TABLE 2: Sequentially imputing GW wells for each period

Period Well Neighboring wells Fraction of
sequence used as predictors missing data

P
e

rio
d

1

WLE4* 0.18
WLE1 WLE4 0.58
WLE6 WLE4, WLE1 9.70
WLE5 WLE4, WLE1, WLE6 33.91
WLE7 WLE4, WLE1, WLE6, WLE5 36.82
WLE2 WLE4, WLE1, WLE6, WLE5, WLE7 57.38

P
e

rio
d

3

WLE7* 0.02
WLE4 WLE7 0.02
WLE6 WLE7, WLE4 3.70
WLE1 WLE7, WLE4, WLE6 16.16
WLE5 WLE7, WLE4, WLE6, WLE1 18.36
WLE2 WLE4, WLE1, WLE6, WLE5, WLE7 57.38

P
e

rio
d

2†

WLE6* 4.15
WLE4 WLE6 4.15
WLE7 WLE6, WLE4 5.61
WLE2 WLE6, WLE4, WLE7 5.61
WLE1 WLE6, WLE4, WLE7, WLE2 9.27
WLE5 WLE6, WLE4, WLE7, WLE2, WLE1 9.27

*SWI (LI and RF, both applicable);
†Period 1 and Period 3 were combined before imputing Period 2 to leverage maximum
possible information.

To demonstrate the efficacy of the sequential imputation, wechoose E3, because this numer-
ical experiment represents the most complex scenario for imputation. We impute well WLE3
with contiguous synthetic gaps missing around the hydrograph extremes (i.e., experiment E3).
Following the sequential imputation steps, we divide the entire GW monitoring duration for the
seven wells into three periods, as shown in Fig. 4(b). We thensequentially impute the missing
data in different wells for Period 1 and Period 3 (Table 2). Toobtain better imputation quality,
we sequentially impute Period 3 before Period 2 because the gaps are small (< 10%) in Period
3. For Period 2, first we combine Period 1 and Period 3 because that will allow more data for
training RF, then we sequentially impute different wells, starting with well WLE6, and follow
the sequence summarized in Table 2. It is worth mentioning that a different set of periods (and
sequence) can also be chosen to achieve high accuracy. However, periods and well sequence are
chosen so the MWI can be used with neighboring wells with gapsas small as possible.

Volume 3, Issue 2, 2022
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3. RESULTS

3.1 E1: GW Imputation with Random Gaps

We used the SWI method, using LI and RF approaches to impute missing GW time-series data
for E1 with 10%, 20%, 50%, and 90% random gaps in WLE1 and WLE3 for Period 1. The
SWI-LI assumed the values as equally spaced and estimated missing data points by fitting a
linear function within the range of a discrete set of nearby available data points. In the SWI-
RF, the missing data were modeled using a set of predictor variables. The predictors constituted
the feature space, which in this case included Unix timestamps, days, months, and years of the
same well (Fig. 3). The results showed that both SWI-LI and SWI-RF techniques could impute
missing values for random gaps ranging from 10% to 90% with high accuracy (NSE ∼ 0.99).
WLE1 and WLE3 showed similar performances for both methods and gaps ranging from 10%
to 90%. Hence, for brevity, we show a 90% imputed missing GW time series for WLE3 and
compare imputed data with observations using SWI-RF [Figs.8(a) and 8(b)]. As is evident
from Figs. 8(a) and 8(b), the water level in WLE3 started rising in March and peaked around
mid-April to June; the water level subsequently decreased until October. The results indicate
that both techniques could capture temporal variability appropriately when gaps were random,
even though they were as high as 90%. The RF Regressor also revealed feature importance
while imputing the GW time series with random gaps. Months (60%) were the most important
predictor, followed by timestamps (25%), years (10%), and days (5%).

3.2 E2: GW Imputation with Contiguous Gaps Away from Extremes of the
Hydrograph

We used SWI-LI and SWI-RF methods to impute missing GW time-series data with 10%, 20%,
and 50% contiguous gaps away from extremes in WLE1 and WLE3 for Period 1. SWI-LI failed
to impute missing values for both wells (WLE1 and WLE3) effectively, even with 10% con-
tiguous gaps;NSE values were negative. SWI-RF also failed to impute missing values with the
desired accuracy and hadNSE values less than zero for all three missing data scenarios. However,
SWI-RF slightly outperformed the linear interpolation approach.

FIG. 8: SWI-LI and SWI-RF methods imputed randomly missing GW data with high accuracy (NSE 0.99),
even when gaps were as high as 90%

Journal of Machine Learning for Modeling and Computing
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Subsequently, we imputed 10%, 20%, and 50% contiguous gaps in WLE3 using MWI-RF,
in which the feature space included timestamps, days, months, years, and water levels in WLE1.
Figure 9 shows observed and imputed time series of WLE3 with 10%, 20%, and 50% contiguous
gaps away from extremes. Figure 9 demonstrates that MWI-RF was able to capture temporal
variability adequately for all three scenarios (10%, 20%, and 50% gaps). MWI-RF achieved
NSE values 0.94, 0.93, and 0.70 for 10%, 20%, and 50% contiguous gaps, respectively. MWI-
RF performance slightly improved when we removed data around peaks with 50% gaps while
computingNSE values because E2 focuses on gaps away from extremes. We observe here that
MWI-RF outperforms SWI-RF, corroborating the first part of the overarching hypothesis. It was
also noted that neighboring wells were the most important feature, accounting for 57%, 57%,
and 44% of variability for 10%, 20%, and 50% contiguous gaps, respectively (Fig. 10). For
10% and 20% contiguous gaps, timestamps were the second-most important feature. However,
months were the second-most important feature for 50% contiguous gaps. Years were the third-
most important feature, accounting for 6% to 10% variability for 10% to 50% contiguous gaps
(Fig. 9). Note that imputed data in WLE1 showed similar results as WLE3 and for brevity are
not shown. Incorporating days and hours in the feature space slightly improvedNSE values.

FIG. 9: MWI-RF was able to impute 10%, 20%, and 50% contiguous but missing-at-random GW data in
WLE3 with high accuracy, withNSE values ranging from 0.70 to 0.94. Because this scenario focuses on
contiguous gaps away from extremes, we computedNSE values after removing the encircled portion as

Volume 3, Issue 2, 2022
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FIG. 10: RF relative feature importance for (a) contiguous gaps awayfrom extremes, (b) around a trough,
and (c) around a peak suggests that neighboring wells are themost important feature, followed by months
and timestamps together and years for imputing missing GW data. The relative importance of neighboring
wells grows as gaps in a time series increase.

3.3 E3: GW Imputation with Contiguous Gaps around Extremes of the
Hydrograph

The numerical experiment E3 reflected the most challenging scenario for GW imputation. Here,
contiguous gaps were located around the extremes (i.e., peaks and troughs) of the hydrograph.
SWI-LI and SWI-RF approaches were not able to impute missingGW data satisfactorily.

MWI-RF was used to impute 10%, 20%, and 50% contiguous gaps missing around peaks
and troughs of the hydrograph in WLE3, in which RF feature space included timestamps, days,
months, years, and water levels in WLE3. Figure 11 shows observed and imputed data for 10%,
20%, and 50% contiguous gaps around the extremes for well WLE3. As Fig. 11 indicates, MWI-
RF was able to capture hydrologic variability reasonably well except around the hydrograph
extremes.NSE values were positive and ranged from 0.32 to 0.88 for 10% and 50% contiguous
gaps.

As shown in Fig. 10, MWI-RF feature importance suggested that generally neighboring wells
were the most important feature, followed by months, timestamps, and years. The relative feature
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FIG. 11: MWI-RF was able to impute 10%, 20%, and 50% contiguous GW dataaround troughs (top
panel) and peaks (bottom panel) of the hydrograph with reasonable accuracy, withNSE values ranging
from negative to 0.87. However, MWI-RF failed to capture peaks and troughs.

importance of neighboring wells typically increased when gaps were more prominent, account-
ing for 40% to 60% variability for 10% to 50% missing data.

3.4 Sequential Imputation of Missing GW Data

As can be seen from the preceding sections, MWI outperforms SWI, which corroborates the
first part of our overarching hypothesis. Although MWI-RF could not capture the hydrograph
extremes, it captured the hydrologic variability reasonably well for other parts of the hydrograph.
To capture these extremes and test the second part of our overarching hypothesis, we sequentially
imputed WLE3 for 10%, 20%, and 50% of contiguous synthetic gaps (i.e., E3).

We used MWI-RF to impute these contiguous gaps missing around the hydrograph extremes
in well WLE3, where feature space included timestamps, days, months, years, and water levels
in the other six neighboring wells. To leverage data from neighboring wells, we first sequentially
imputed the missing data for these six wells following the imputation strategy laid out in Table 2.
Figure 12 shows the observed and imputed 10%, 20%, and 50% of contiguous, but missing
around extremes, gaps at well WLE3 for Period 1. We observe that sequential imputation was
able to adequately capture these contiguous gaps around peaks and troughs of WLE3.NSE values
improved significantly as compared to the nonsequential case and ranged from 0.66 to 0.94.
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FIG. 12: The sequential imputation strategy demonstrates that MWI-RF was able to impute 10%, 20%,
and 50% contiguous GW data around troughs (top panel) and peaks (bottom panel) of the hydrograph with
high accuracy, withNSE values ranging from 0.66 to 0.94

Figure 13 shows a comparison ofNSE values for 10%, 20% and 50% contiguous gaps around
extremes.NSE values are higher for each case, except for 20% gaps around a trough. However,
the NSE value was already high for this case, so it did not matter if the sequential imputation
could not improve this performance.

4. DISCUSSION

4.1 GW Imputation with Random Gaps

SWI could impute missing data only for numerical experimentE1, which, with random gaps
ranging from 10% to 90%, can be considered as the simplest missing data scenario. SWI-LI
and SWI-RF methods both resulted in almost a perfect match, even with 90% synthetic gaps
for the time-series data of WLE1 and WLE3. To understand the mechanism behind such an
effective imputation of randomly missing data, we computedthe information entropy of WLE1
and WLE3. Figure 14(a) shows how entropy changed with the number of observations of WLE3
time-series data. In particular, we computed the mean and standard deviation of entropy by
randomly selecting the number of observations (e.g., 5%, 10%).

As described in Section 2.2.3, entropy is a measure of variability, so the entropy value will
increase when the number of observations increases (Singh,2010a,b). However, the entropy will
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FIG. 13: NSE values are consistently higher for sequential imputation than nonsequential imputation for
contiguous gaps around extremes

FIG. 14: Information entropy as a function of the number of observations can reveal how many data points
are needed to capture complete temporal variability of a GW time series

reach a maximum value when the number of observations has already captured the data’s in-
herent temporal variability (Arora et al., 2019b; Cui and Singh, 2015). Accordingly, it is clear
from Fig. 14(a) that the entropy increases initially, with awider spread (i.e., band) around it
(i.e., higher standard deviation). The entropy reaches a maximum value when the number of ob-
servations is approximately 10%. With a higher number of observations, the spread in entropy
value decreases. Essentially, this means that 10% of randomly selected GW data inherits the
entire temporal variability contained in the complete GW time-series data of WLE1 and WLE3
for Period 1. Therefore, RF could learn the variability of GWdata from a mere fraction of 10%
and impute 90% missing data effectively. In addition, RF revealed that months were the most
important predictors for random gaps (E1). Although days and hours slightly improvedNSE
values, daily and subhourly fluctuations were relatively minor. Therefore, a simple interpolation
technique could also impute 90% of randomly missing GW data effectively.
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4.2 GW Imputation with Contiguous Gaps

We imputed missing GW data for numerical experiments E2 and E3 that represented contiguous
missing data patterns (10%, 20%, and 50%), both located awayfrom hydrograph extremes and
centered around extremes. The MWI-RF method was able to impute missing GW data reason-
ably well for both E2 and E3. However, SWI-LI and SWI-RF couldnot impute missing data
for E2 and E3. As previously noted in Section 3.1, months wereimportant predictors for imput-
ing random gaps (i.e., in E1). Therefore, SWI-LI and SWI-RF would not be effective if a GW
time series included missing data spanning multiple days and months. More information would
be needed to impute missing data in contiguous gap scenarios. Accordingly, the MWI-RF de-
rived additional information from neighboring well(s) andachieved high accuracy in imputing
missing data for both wells WLE1 and WLE3 for 10%, 20%, and 50%gaps. Furthermore, neigh-
boring wells provided critical information for imputationas their relative feature importance was
relatively high for all scenarios (10%, 20%, and 50% gaps) inboth E2 and E3 (Fig. 10).

To further explore MWI-RF performance, we computed the information entropy of WLE1
and WLE3 with contiguous gaps of variable window sizes. Figure 14(b) shows how entropy
changes with the number of observations of WLE3 time-seriesdata. As Fig. 14(b) indicates,
entropy values change if the number of observations are lessthan 50%. To capture the temporal
variability of the GW time series in WLE1 and WLE3, we would need at least 50% GW time-
series data for WLE1 and WLE3 for effectively imputing missing entries in Period 1.

Although the MWI-RF was able to impute contiguous gaps with high accuracy for both
E2 (contiguous gaps away from extremes) and E3 (contiguous gaps around extremes), it was
not able to capture extremes of the hydrograph for E3. To understand the poor performance of
the MWI-RF for E3, we need to recognize the underlying philosophy of ML approaches. Two
aspects are important for imputing any data using ML approaches: (a) temporal variability in
time-series data, and (b) availability of training data foran ML model to capture data’s critical
characteristics (Alpaydin, 2014; Dwivedi et al., 2013; Haykin, 2010; Shen, 2018). Although
information entropy suggested that contiguous data with upto 50% gaps contained the entirety
of temporal variability for Period 1, it does not distinguish between E2 and E3. E3 has another
level of complexity above E2. Specifically, E3 does not provide sufficient training data for the
MWI-RF to learn peaks and troughs of the hydrograph. If we hada more extended GW time
series, unlike our numerical experiments, then MWI-RF could use sufficient training data to
“learn” critical characteristics.

4.3 Sequential Imputation of GW with Contiguous Gaps around Extremes

The sequential imputation strategy leverages informationfrom neighboring wells even if they
have missing data. We have seen in preceding sections that the SWI method can impute up
to 90% missing data—if gaps are random—with high accuracy, and MWI-RF can effectively
impute up to 50% of missing data for approximately a two-yearperiod. Table 2 provides the
missing data fractions of different GW wells for three distinct periods. For Period 1, we note
that all the wells except WEL2 had< 37% either random gaps or contiguous gaps missing away
from extremes. The inferences drawn from information entropy (Sections 4.1 and 4.2) indicate
that imputation quality would be high. Although WLE2 had gaps slightly more than 50%,NSE
values were significantly higher in the sequential versus the nonsequential case, suggesting that
GW data from five other wells compensated for relatively larger gaps in WLE2 using MWI-
RF. However, the sequential imputation would perform better if these gaps were less than 50%.
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We make similar observations for Period 2 and Period 3 (i.e.,gaps< 20%). Following this,
we see that the MWI-RF captured peaks and troughs reasonablywell when we sequentially
imputed WLE3.NSE values were significantly higher for the sequential imputation than for the
nonsequential case, when we imputed WLE3 for period 1, usingMWI-RF with only well WLE3
(Fig. 13). Part of the reason for lowNSE values was that nonsequential imputation could not
inform peaks and troughs to adequately train MWI-RF. Overall, the high imputation quality in
sequential imputation suggests that an extended GW time series that allows MWI-RF to “learn”
critical characteristics is likely to perform effectively.

5. SUMMARY AND CONCLUSIONS

Monitoring and predictions of GW levels are critical for managing water resources and con-
straining watershed numerical models. However, the GW time-series data usually have missing
records, owing to various unavoidable reasons such as malfunctioning monitoring transducers
and physical disturbances. Several techniques in the literature impute missing GW data, rang-
ing from simple interpolation to statistical modeling to advanced ML methods. Although these
techniques can impute GW reasonably well, their applications can differ and be contingent upon
“missing data” patterns. In this study, we explored techniques to gap-fill subhourly GW data,
including missing extremes, based on the following missingdata patterns: (a) random gaps,
(b) contiguous gaps away from extremes, and (c) contiguous gaps around extremes. We used
the SWI-LI, SWI-RF, and MWI-RF to impute missing GW data. We also used an information
entropy framework to understand imputation performance based on missing data patterns and
percent-missing data. The results showed that SWI-LI and SWI-RF methods imputed up to 90%
missing data—if gaps were random—with high accuracy (NSE ∼ 0.99). Information entropy
revealed that efficient imputation resulted because as small as 10% of data could also capture the
complete temporal variability of a GW time series dataset. Moreover, months were found to be
the most important features as, indicated by the SWI-RF, followed by timestamps.

Contiguous gaps required MWI-RF for effective imputation,while SWI-LI and SWI-RF
performed poorly even when gaps were as small as 10%. The MWI-RF revealed that neighboring
wells, followed by months, timestamps, and years, were important features for imputing GW
time-series data with contiguous gaps. The MWI-RF and information entropy indicated that
up to 50% of missing data could be estimated reasonably well over an approximately two-year
period with high accuracy. Although the MWI-RF imputed up to50% contiguous gaps with high
accuracy using a single neighboring well, it failed to capture gaps located around extremes. To
capture these extremes, we developed a sequential imputation strategy to estimate the missing
data in GW time series across multiple wells. We successfully demonstrated the strategy using
seven wells in the East River floodplain.

We note that our approach is highly transferable across sites and may apply to a suite of
other environmental variables such as temperature, soil moisture, and precipitation. Further,
whereas we used RF to demonstrate our GW imputation strategy, other ML-based methods
(such as support vector machines and artificial neural networks) should also work. An informa-
tion entropy approach to identifying how much missing percentage can be imputed effectively is
variable-agnostic and can be applied to any other environmental variables. Overall, we showed
that machine-learning methods could provide sustainable solutions to gap-fill environmental
datasets because our approach is transferable and applicable to a suite of other environmental
variables.
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APPENDIX A.

TABLE A1: Description of wells used for imputing missing data

Well Well names Other well names Absolute Average
names (in database) (in database) well elevations (m) GW depths (m)
WLE1 UPW UP1W 2760.64 0.64
WLE2 UPM UP2 2760.74 1
WLE3 UPE UP3E 2760.1 1.5
WLE4 DOW DO1W 2759.43 1.89
WLE5 DOE DO2E 2759.23 1.2
WLE6 MBA1 M1B1 2760.18 1
WLE7 MBA2 M1B2 2759.96 1.59
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