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We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and
parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product
Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finite-
dimensional noise, where the SPDE coefficients depend on a finite number of second-order random variables. We first
derive a priori error estimates for finite element approximations of a class of linear elliptic SPDEs. Subsequently, we con-
sider finite element approximations of parabolic SPDEs coupled with a ©-weighted temporal discretization scheme. We
establish conditions under which the time-stepping scheme is stable and derive a priori rates of convergence as a func-
tion of spatial, temporal, and stochastic discretization parameters. We later consider steady-state and time-dependent
stochastic diffusion equations and illustrate how the general results provided here can be applied to specific SPDE
models. Finally, we theoretically analyze primal and adjoint-based recovery of stochastic linear output functionals that
depend on the solution of elliptic SPDEs and show that these schemes are superconvergent.
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1. INTRODUCTION

Since the publication of the monograph on spectral stochastic finite element (FE) methods by Ghanem and Spanos [1],
anumber of researchers have developed and applied numerical schemes based on this idea with great success to a broad
range of stochastic partial differential equations (SPDES); see, for example [2—6]. Due to the increasing popularity of
stochastic FE methods, there has been a growing interest in theoretical analysis of this class of humerical schemes
in order to derive a priori rates of convergence and error estimates. Such results can provide valuable insights into
stochastic FE methods and are also of practical importance for computational implementations.

Stochastic diffusion models have been extensively studied from a theoretical and numerical point of view in the
literature since it is a representative SPDE model widely used to study the performance of numerical methods for
SPDEs; see, for example [7—15]. Some convergence rates in tensor product Sobolev spaces for the FE approximations
of such models are provided in [7-9, 11, 15] when considering steady-state stochastic diffusion models and in [13]
when considering time-dependent stochastic diffusion models. The convergence rateMdftbestapproximations
has been studied by Cohen et al. [11] under appropriate assumptions on the Karhawerfdlg expansion of the
random field. When the SPDE solution satisfies appropriate analyticity conditions in the complex plane, exponen-
tial convergence rates have been proved for the same kind of models by Nobile, Tempone, and co-workers [9, 13].
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NOMENCLATURE
D bounded convex physical domain, Vh finite-dimensional subspacg” c V
D C R? n number of spatial degrees of freedom
0D  polygonal boundary of the physical PC polynomial chaos
domain SP= M-dimensional PC spacéP: C S
X spatial coordinates De, PC degree
T integration time;I" < 400 Ng cardinality ofSP=
t temporal coordinate, € [0, T Uh,p approximate solution iwv" ® SPe
Q sample spacé) C R¢ (elliptic case)
w elementary eventp € Q2 0 parameter of the weighted temporal
3 vector of M independent uniform discretization schem®, € [0, 1]
random variables, : Q — RM At time-step
r jointimage ofg, I' ¢ RM tm instant timet™ = mAt
p(&) probability density function Uy, approximate solution iw" ® SP« at
( expectation operator with respectgo time¢™ (parabolic case)
1% Hilbert space of spatial functions J(u) linear functional depending on the
S Hilbert space of random functions solutionw of the primal problem,
w tensor product spac®y =V ® S ueVeSsS
u solution of SPDE model, € W (elliptic  J (un.p, ) approximate linear functional B
case)u € L?(0,T ;W) (parabolic case) w solution of the dual problemy € V ® S
i initial value function (parabolic case) H (coarse) mesh-size for the spatial
A bilinear form in weak formulations discretization of the dual problem
Xe continuity constant oA qs. (low) PC order for the stochastic
e ellipticity constant of4, «, > 0 discretization of the dual problem
T, nondegenerate or quasi-uniform WH,q¢ approximate dual solution in# © Sd&
triangulation ofD JimpWhpe, Wi,q,) approximate improved linear functiona
h mesh-sizeh € [0, 1] Cp Poincaé’s constant

Convergence rates with respect to Sobolev norms have also been studied by Todor and Schwab [15] when considering
sparse Wiener-chaos approximations.

Recently, Bespalov et al. [16] provided a detailed a priori error analysis for stochastic Galerkin mixed approxi-
mations of elliptic SPDEs. Mugler and Starkloff [17] proposed a new approach based on a stochastic Petrov-Galerkin
projection scheme for solving the steady-state stochastic diffusion equation with boundedness assumptions on the
random coefficients weaker than those usually considered in the literature. Qu and Xu [18] presented convergence
analysis of a stochastic Galerkin approach for solving the Stokes equations with random coefficients, whose solution
is discretized using spectral and generalized polynomial chaos (PC) expansions for its spatial and random part, re-
spectively. In particular, the analysis of B&la et al. [7] for stochastic elliptic SPDEs is extended to saddle-point
problems. Error estimates (in classical Bochner spaces) for the spatial FE approximation of the steady-state diffusion
equation with log-normal random coefficients are derived in [19], including KL truncation and quadrature errors.

In the case of parabolic SPDE models, error estimates have been proved by Nobile and Tempone [1831fioir the
discretemodel, i.e., with no temporal discretization. These estimates hold under appropriate analyticity assumptions
in the complex plane. We would like to highlight here that there also exists a vast literature in the setting of infinite-
dimensional noise; see, for example [20—-27]. The focus of the present analysis is on finite-dimensional noise in the
setting of tensor product Sobolev spaces.

In the present work, we consider elliptic and parabolic SPDEs in the setting of finite-dimensional noise. We fo-
cus on the case when the SPDE coefficients depend on a finite number of independent and identically distributed
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(i.i.d) uniform random variables. For example, SPDE coefficients modeled as random fields can be discretized using
a truncated KL expansion [28], leading to the SPDE solution depending on a finite number of uncorrelated random
variables. For the sake of convenience, statistical independence of the random variables is often introduced as an
additional modeling assumption [7, 14]. Our objective is to degiyeiori error estimates in Sobolev norms for Leg-

endre chaos-based FE approximations of a class of elliptic and parabolic linear SPDEs. The analysis presented here
is based on the assumption that the SPDE solution satisfies certain spatial and stochastic regularity conditions. More
specifically, we shall assume that the partial derivatives of the SPDE solution with respect to the spatial and stochastic
coordinates, up to a given order, are square integrable. Note that this is different from the polydisc analyticity assump-
tions used in previous theoretical studies on elliptic SPDEs [9] and the semi-discrete form of parabolic SPDEs [13].
We first derive a priori error estimates for FE approximations of elliptic SPDEs. Following this, we present stability
analysis of a class of weighted temporal discretization schemes applied to parabolic SPDESs. To the best of our knowl-
edge, stability analysis of temporal discretization schemes for parabolic SPDE models has not been presented before
in the literature. Based on the stability analysis results, we pagweori error estimates for FE approximations of
parabolic SPDEs (in conjunction with Legendre chaos expansions and weighted temporal discretization) as a function
of the spatial, temporal, and stochastic discretization parameters. We also show how sharper a priori error estimates
can be derived for elliptic and parabolic SPDE models using duality arguments.

To illustrate how the theoretical results can be applied to specific SPDE models, we consider the steady-state
and time-dependent versions of the stochastic diffusion equation. As a final example, we consider the adjoint-based
approach for superconvergent recovery of linear functionals, originally developed by Pierce and Giles [29] for deter-
ministic PDE models. In a recent study, Butler et al. [30] extended this approach to SPDE models in order to construct
a posteriori error bounds. In the present paper, we consider a special class of linear output functionals depending
on the solution of elliptic SPDEs. We prove that primal and adjoint-based recovery schemes are superconvergent for
stochastic FE approximations using the theoretical results established in the earlier part of this paper.

The remainder of this paper is organized as follows. We set up the mathematical background and notations in
Section 2. In Section 3 we provide error estimates for elliptic SPDESs (see Theorems 1 and 2). We examine in Section
4 the case of parabolic SPDEs and prove error estimates (see Theorems 3, 4, and 5) for a class of weighted temporal
discretization schemes. Stability results for the weighted temporal discretization schemes are provided in Lemmas 2
and 3. In Section 5 we specify the error bound in the case of a steady-state stochastic diffusion equation (see The-
orem 6) and discuss in the parabolic case the influence of the stochastic parameters of the model on the time-step
restriction. In Section 6 we finally carry out an error analysis of a class of linear output functional approximations
leveraging the a priori estimates derived earlier for elliptic SPDEs. Section 7 concludes the paper and outlines some
directions for further work.

2. PRELIMINARIES
2.1 Notations and Definitions

To introduce our notations, we first start with the setting of elliptic SPDEs whose soli{targ) is defined orD x (2,
wherex € D C R? represents the spatial coordinates &nig an open, connected, bounded convex subskf efith
polygonal boundargD. We denote the probability space by the triglet 7, P), whereQ2 C R? is the sample space,
F is theo-algebra associated with andP is a probability measure. The vector 2 — RM represents independent
real random variables with joint probability density function (peif§,). Throughout this paper we shall consider i.i.d
uniform random variables. We denote By=T'; x --- x T'j, the joint image of the random vectérand by(-) the
expectation operator with respectdpthat is,(-) = [.. - p(&)dE.

In practice, random field discretization schemes such as KL expansions [28] are used to approximate the random
fields within the SPDE model by a finite number of random variables. Hence, it can be shown that the SPDE solution
u(x;w) with w € Q is described by a finite number of random variables, i.e., the SPDE solufionw) is given
by a deterministic parametrized PDE with solutiofx ; £(w)). In the analysis that follows in this paper, we do not
account for the error associated with random field discretizations; for a detailed error analysis of KL discretization,
see Babgka et al. [7].
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The SPDE solution will be sought inWW =V ® S whereV andS denote Hilbert spaces of spatial and random
functions, respectively. Typicallyy will be a Sobolev space such && (D) or H'(D) and we shall consider the
random function spacé = L?(T"). When additional assumptions will be required on the stochastic regularity of the
SPDE solution we shall considér= H*(T), i.e., the partial derivatives af(x ; £) with respect tct, up to orderk,
will be assumed to be i’ ® L?(T'). In other words]| - ||,» will denote a tensor product Sobolev norm, for example,

1/2
lulle2(pyeL2(r) = </F/DIU(X;£)29(£)dxd£> :

1/2
[ ( / /D (Ju(x: ) + [Vu(x; £)2) p<a>dxda) ,

and
1/2
|[ull g (DY@ L2 (1) = (/F/DWU(X;E,)Fp(&)dxd&) .

Note that for bounded domairi3, the norms| - || z1(pygr2(ry and|| - ||z (pyeL2(r) are equivalent from Poincais
inequality. More generally, the north- || ;2 (p)g r+(r) is given by

1/2
|u||Lz<D>®Hk<F>=(/F > HDSu«;a)H;(D)p(a)da) : ()

0<|BI<k
where the differential operatd]?'a3 is defined by

B Bl

= i Pu )
£ oebr | gEby
for every multi-index = (B1,...,Bm), B/ =B1+ -+ B

In the case of parabolic SPDEs, we write the solutiom@s ¢ ; &), wheret € [0, 7] denotes timeT < +o0).
The SPDE solution is such thate L2(0,7 ; W) anddu/ot € L*(0,T;W'), that is,

/OT <|U('»5;')|€v+‘

whereW’ denotes the dual spacedf.
In the following sections, we shall outline the strong form of the elliptic and parabolic SPDE models considered
in this paper along with the associated stochastic weak formulations.

2

Ju
5(357')

ds < 400,
W/

2.2 Weak Form of Elliptic SPDEs

The elliptic SPDESs that we consider can be written in the general form

Leu(x;E) = f(x;&) as.inD x Q,

3
Beu(x;&) = g(x;&) a.s.omD x Q, @)

whereL; is a linear parametrized elliptic differential operator in spaceands a parametrized operator indicating
the type of boundary conditions that are imposed, namely Dirichlet, Neumann, or mixed boundary conditions. The
weak formulation corresponding to (3) is given by

Findu € W such that:
A(u,v) = 1l(v), Yv € W. 4)
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We assume that the bilinear formis continuous and elliptic with respect to the nojim||,y, that is,
Jo. > 0 such that'u,v € W, |A(u,v)| < & ||ullwllv]lw, (5)
Joe, > 0such thattu € W, A(u,u) > a ||u|[}y- (6)
We also assume that the following boundedness condition holds
Jy > 0 such thatl(v)| < v ||v||w, Yv € W. (7)

The existence and uniqueness of the solution of (4) is then guaranteed by the Lax-Milgram theorem [31]. Concern-
ing the regularity of the solution some additional problem-dependent assumptions are required. In Appendix A, the
continuity and coercivity conditions (5) and (6) are proved for a class of second-order SPDEs.

2.3 Weak Form of Parabolic SPDEs
We consider parabolic SPDEs written in the general form

ou(x,t; &)

9 + Leu(x,t;&) = f(x,t;&) as.inD x [0,T] x Q,

Beu(x,t;&) = g(x;&)  a.s.omdD x [0,7] x €, (8)
u(x,0;&) = up(x;&) a.s.orD x Q,
where the random coefficients i are assumed to be independent of time. The stochastic weak problem associated
with (8) is thus given by
Findu(-,t;-) € W such that:

(au,v) + A(u,v) = l(v,t), Yo € W,
Ot ) L2 (pyerar) ©)

u(x,0; &) = ug(x; &).

We assume that the continuity and ellipticity conditions (5) and (6) hold for the bilinear form along with the following
boundedness condition:

Fy(t) > 0 such thati(v,t)| <y(t)||v||w, Yv € W. (10)
As an example, let us consider Dirichlet boundary conditions in the SPDE model (8). Hsngien byl(v,t) =
(f(15°)0) p2(pygrery Meaning thaty (¢) = (| (-, ;)2 yer2m).-

To guarantee the existence, uniqueness and regularity of the SPDE solution of (8), problem-dependent assump-

tions are needed. As an illustration, a stochastic diffusion model is discussed later in Section 5 where positivity and
boundedness of the random field as well as the source term are required.

2.4 Finite-Dimensional Subspaces for Spatial and Stochastic Discretization

We shall now introduce the finite-dimensional subspades: V andSP= C S used for the numerical approximation
of (4) and (9). First, let7 be a triangulation of the domaiB® consisting of a finite collection of triangles (resp.
tetrahedra); such thatl; N T; = () for i # j, |J, T; = D, and such that no vertex lies in the interior of an edge (resp.
a face) of another triangle (resp. tetrahedron). We consider a family of triangulafjonsth mesh-sizeéxr € [0, 1],
which are supposed to be nondegenerate, i.e., there exists a canstansuch that

diam(Br) > pdiam(T),
forall T € 9}, andh € [0, 1], whereBr is the largest ball contained i, and such that

max{diam(T), T € ., } < hdiam(D).
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Later in our analysis, we shall also consider quasi-uniform triangulations for which the inequality
min{diam(Br), T € 9}, } > uhdiamD)

holds, for all € [0, 1[, 1 > 0. Note that quasi-uniform triangulations are nondegenerate.
The finite-dimensional subspat® c H} (D) can be defined as follows

n

vh = Spar{cbi(x)}i:l? (11)

whered; : 7, — R denotes a piecewise linear continuous FE basis function linked tidhthede of.7;, and that
vanishes o@D. We shall generalize our analysis to smooth domains and higher-order FE approximations later on.

Using the multi-index notatiox = (1, &9, ... ) with «; € N, the M -dimensional space of polynomial chaos of
degreeps € N can be defined as [43]

M M
s = span{ma) = [ Za(e). lod =Y e < pa} , (12)
=1 =1

whereL,, denotes a one-dimensional Legendre polynomial of degyelote that the cardinality a$?« is equal to
Ng = [(M + pe)!]/ Mpe!.
3. APRIORI ERROR ESTIMATES FOR ELLIPTIC SPDES

Consider the solution of (4) which can be writteniass W = V ® S. Letu,,, € V" @ SP¢ denote the FE
approximation of. given by

Unpe (X38) = D uah(X)La(€)= D > condi(x)Lalf). (13)
lx|<pe lx|<pe =1
The undetermined coefficierytg’h, 1=1,2,...,n,|a| < pg, are computed by solving the weak form
At pg s Vhpe) = WV py )y Y0np, € V" @ SPE. (14)

Our objective is to provide a priori error estimates fflar— wy, . || i1 (p) L2 (r) When considering’ = Hj (D) N
H?(D) andS = H*(I'), i.e., under the assumption that the SPDE solution satisfies some spatial and stochastic regu-
larity conditions; see Theorem 1 for the general case. Under additional problem-dependent assumptions, sharper error
bounds can be obtained in the nofim|| .2 (p) 2 (r) Using a duality argument; see Theorem 2. It is worth mentioning
here that a priori error estimates can also be obtained for Galerkin approximations of stochastic diffusion models
under the assumption that the SPDE solution satisfies some analyticity conditions. More specifically, Nobile, Tem-
pone, and co-workers provide exponential convergence rates [9] when the SPDE solution obeys polydisc analyticity
assumptions in the complex plane, using an approximation result for holomorphic functions by Bagby et al. [32].

Using (4)—(6) and (14) we obtain the following inequality frored lemma:

(0.4 ’
[lu — uh,ngV®L2(F) < OTC [lu— 'Uh,ngV@LQ(F)a Yh,pe € Y @ SPe. (15)
€

In order to proceed further, we need to estimate an upper bourd:fervy, . ||y r2(ry for any interpolanty, ,, €
Vh @ SP«. Consider the splitting — v, ,, = u — vy, +v,, — Vs, Wherev,, is the projection of, ontoV ® S?,
that is,

Up (X3 E) = Y va(X)LalE), (16)

|ox|<pe
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with I
val) = 1) Lo an
[
Using the orthogonality of the PC badis, in L?(I"), we get
|Ju — Uh,pa”%@m(r) = [lu— UP.EH%@LQ(F) + ||vpe — ”hpa”%}@ﬂ(m- (18)

We first focus onpg-error estimation(see Lemma 1) corresponding to the stochastic discretization and then pro-
vide the fullpg-h error estimation(see Theorem 1) which accounts for both the spatial and stochastic discretization
parameters.

Lemma 1. Letu € V @ H*(T) andv,, € V ® SP& defined by (16) withSPs given by (12). Then the following
inequality holds:

lu—vp lverzry < CM)pg" [Jullvemxr), (19)
whereC is a constant independentf that grows linearly with\/.

Proof. This result is proved in Appendix B. O

We are now in a position to derive error estimates| for uy, ,, || 1 (pyor2(r) When considering’ = (Hj (D) N
H?(D)) andS = H*(T).

Theorem 1. Letu € (H} (D) N H?(D)) ® H*(T') be the solution of the weak formulation (4) angl,,, € V" ® SP=
denote the solution of (14). The bilinear formis assumed to be.-continuous andx.-elliptic with respect to the
norm|| - || 1 (pyeL2(r)- Then the following error estimate holds:

o _ .
=t oy 20y < 2 (CONPE Nallis ey + Ol onace) ) (20)

whereC andC* are constants independentgf andh.

Proof. Coming back to the inequality (15) given by&s lemma, and using the splitting (18), we have

2
X 2 2
llu —up pa||H1(’D)®L2(F) (|U Ope i (pyor2ry + [|Vpe — Uh7PL|H1(D)®L2(1"))'
6

Applying thepg -error estimate (19) yields

o —2k
|Ju — uh,pa”%ﬂ(D)@L%F) < o2 (C(M)sz,Q HuH?—Il(D)@H’c(F) + [|vpe — Vhpe ||12Hl(p)®L2(r)>- (21)

€

To estimate the second term in the right-hand side of (21), we exgandndvy, ,,, in an orthogonal Legendre PC
basis, which gives

||vp, — Uh,pg”?{l(z))@m(r) = Z [va — Ua,h”%{l(z)) |\La|\%2(r)~
|ox|<pe
Using the classical interpolation error estimate for piecewise linear basis functions,
l[va = vaullmi(py < C*h|vallm2(p),

whereC* is a constant independent lof we get

|| _”h,paH}qu(D)@L?(r) < Cn? Z ||U¢XH%I2(D)HLOL||%2(F) < C*2h2”u”%12(D)®L2(F) (22)
|| <pe
sinceu(x; &) = Zv“ ). Combining (21) and (22) leads to (20) and concludes the proof. O
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In the a priori error estimate (20), the number of random variablesppears in the consta@tand in the norms
[ull 1 (DY@ a+(ry @NA||u|| g2(pygr2(ry throughl' = T'y x -+ x T'y. If we assume that the norfful| ;1 (pyg mx(r)
of the analytical solution can be bounded independentlygfthen it can be seen from (20) that the stochastic
discretization error (without taking into account the error associated with random field discretization) tends to zero
whenpy — +o0, for any fixed value of\/. From a practical point of view, it can be more convenient to consider the
stochastic convergence rate in terms of the total number of PC basis functighar{d the total number of random
variables (/) instead of the PC ordep{) [9]. From the definition ofVy = N¢ (M, pg), we can estimatpg’C as a
function of M and N¢ and rewrite the error estimate as follows.

Corollary 1. Under the same assumptions as in Theorem 1, the error estimate (20) can be written as

e 1+log(M)\" i}
o= el orosae) < 2 <C<M> (o2 s pyonsary + € h||u|Hz<m®Lz<r>> .
(23)
Proof. The number of PC basis function& can be estimated as follows (see [13] and [9]):
M+ I M M M 1
Ne = % - H <1 + pa) < H exp(%) = exp(pa Z ) < exp(pg(l + log(M)))
Mpe! ot J i J =
leading to the inequality
ig 1+ log(M) 24)
Pe log(Ne)
Substituting (24) in (20) gives (23). O

Corollary 1 indicates that if the norfu|| ;1 (pye r+ () can be bounded independently faf, then the stochastic
error tends to zero whel/ — +oo andpg — +oo. Itis to be noted that the boundedness|of| ;1 (p)g u+(ry With
respect taV/ is problem dependent.

We shall now derive a sharper error estimate in the norii 2 () 22(r) Using duality arguments when consid-
ering elliptic SPDEs with Dirichlet boundary conditions. In this case, the weak form writes as
Findu € V ® S such that:

A(u,v) = (f, U)LZ(D)®L2(I‘)7 YoeV®S, (25)
with V = H}(D) N H?(D) andS = H*(T), while the adjoint (or dual) variational problem associated with (25) is
given by
Findw € V ® S such that:

A(v,w) = (9,v) 2 (D)yerL2(r), YWEV®S. (26)

We shall assume that the adjoint solution satisfies the regularity conditions

[l z2(>yer2my < Crllgllzz(pyer2m), @)
[lwl| g1 (pyorr ) < Crllgllzmyer2(m),
forall g € L?(D) @ L*(T), whereC,. andCN'T are constants independentwof

Theorem 2. Letu denote the solution of (25) and let ,, € V" ® SP+ be its FE-based approximate solution. Under
the regularity conditions (27), the following error estimate holds:

2
o _
llu = unpellr2yoremy < ° ((Al(M)|u|H1(D)®H’°(F) + Ao (M)l 2Dy 2(r)) PE "

+ (B D)l s oy e ey + Ba (M) [ull 2oy h) (28)

whereA,, Az, By, andB; are constants independentpf andh.
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Proof. Let w be the solution of (26) witly = u — u, ;,, . We have
[Ju — Uh.,paHQL?(D)@L?(F) = (U — Unp,,u— uh,pa)P(D)@L?(F) = AU — Upp, w) = Al — Upp, , W — Whp,),
sinceA(u — upp, , Wh p, ) = 0 for all wy, ,, € V' @ SP=. Thus, we get:
= unpe 2 my0r2wy < ocllu—unpellm @or:mllw = whp, i @)z m)-
An upper bound for the terffu — up p, || 1 (D) 22(r) Can be obtained using (20). Concerning the second term, we
can use the error estimate that holds for interpolants (using a tensor product of linear FE basis functions and Legendre

PC basis functions) iw" ® SP=, that is,

inf |lu— Uh,ngHl(’D)@)L?(F) < C(M)pgk HuHHl(’D)@H’f(F) +C*h HU||H2(D)®L2(F)-
vh’pi eVh@SPe

Hence, it follows that
2 o2 —k %
[ — unp, ||L2(D)®L2(r) < C(M) D ||U||H1(D)®Hk(r) + C*h||ull2(pyeL2(T)

e
X <C(M) ng 1wl 1 (pyg EF (ry + C*h |w||H2(D)®L2(r))-

From (27), we have

||wHH2(D)®L2(F) < Cllu— Uh,paHLZ(D)@L?(F)a

H’WHHl(D)@Hk(F) < Crllu— uh,paHLz(D)@LQ(F)v

which yields

l[u = unpellL2(D)@r2(r)

oN

S O(i <C(M) pgk HUHHI(D)@H’“(F) + C*h |u||H2(D)®L2(F)> X (C(M)érpgk + C*Crh)

4]

(ol )

=— (C(M)25r|u||Hl(D)®Hk(r) p{% + C*?Cy||ul| g2y r2(r) B

+C(M)C” (Cr||u\|H1(D)®Hk(r) + érHuHH?(D)@L?(F)) hpgk)-

Using the inequalit)hpgk < (1/2)(h% + pg%) and reordering terms, we obtain the final error estimate (28) with
A1(M) = C(M)QCNjr + [C(M)C*C, /2], Ay(M) = C(M)C*C, /2, Bi(M) = C(M)C*C,/2, and By(M) =
C*2C, + [C(M)C*C,/2]. This concludes the proof. O

4. A PRIORI ERROR ESTIMATES FOR PARABOLIC SPDES

4.1 Time-Stepping Scheme

We now focus on numerical solution of the weak form (9) where Dirichlet boundary conditions are considered in the
parabolic SPDE model (8). We considef-aveighted temporal discretization scheme witk [0, 1] which results in
the following weak problem:

Volume 4, Number 5, 2014



432 Audouze & Nair

Find Up'py € VI @ SPe, 0 < m < Ny, such that:
m+1 m
uh1 _h m+0 m+0
(W’Uh’p&) + A(upa P Ve ) = (o Uhope ) L2 (D)@ L2 (D)
L2(D)®L*(T) (29)
(U?L,pa — U0, Vhpe ) 12 (D)o L>(T) = 0,

forall vy, ,, € Vh @ Spe, whereu;{fpE andf,’;jpE denote the approximate solution and source term computed at time
t™ = mAt, for0 <m < N, andAt = T/N;. In (29) ;" +? and f;° are defined as

h,pe
UT,;S =0 qu;: + (1 —8)up,,, (30)
and
Filpe = 0 fipe + (1=0) fill,,. (31)

The case$ = 0,0 = 1/2, andd = 1 correspond to the forward Euler, Crank-Nicolson, and backward Euler schemes,
respectively. Our aim is to estimate an upper bound for the error metric

W | IOV D BT (PRI EY ey (32)

goos

whereu anduh"fp£ denote the solutions of (9) and (29), respectively.

4.2 Stability Analysis

In this section, we prove stability results for the temporal discretization scheme (29) using ideas from the analysis of
Suli [33]. We first show that (29) is unconditionally stable fbe [1/2, 1] (see Lemma 2) and then we prove that (29)

is conditionally stable fof € [0, 1/2][ under some restrictions (see Lemma 3).

Lemma 2. Letuy’, € V' ® SPe be the solution of (29) witl € [1/2, 1], whereA is «.-continuous andk.-elliptic

onV ® S with respect to the nor - || 1 (pye 2 (r)- The spatial triangulation @ c R? is nondegenerate. Then the
following inequality holds:

N¢—1
At m
k_Hlla‘XN ||’u’]fi,p5_||%2(D)®L2(F) S ||U?L,pa‘|%2(D)®L2(F) + 0(7 Z Hfh,;eH%?(D)@L?(F)’ (33)
T € m=0
wheref;"*% is given by (31).
Proof. This result is proved in Appendix C.1. O

Lemma 3. Consider the same assumptions as in Lemma 2 with a quasi-uniform spatial discretizafiorof
0 € [0,1/2], the following stability condition

Ni—1
0
pmax Huz,p&H%Z(D)@p(r) < ||u(l)1,,p£||2L2(D)®L2(F) + Atce E ||f;n;; ||%2(D)®L2(F)) (34)
N, —

holds under the assumptions

2 Am202 24\ 1/2
At < 20, (C5 + 1) — 4e2C%, 0<e< a.(1+C%) ’ (35)
h? = (O3 +1)(1 —20)a2(C)%(1 + €) 203,
whereC; is defined by (C.4) and. is given byc. = (1 —20) (1 + (1/€)) At + (1/4€?).
Proof. A proof of this result can be found in Appendix C.2. O

We shall discuss the stability analysis results in the context of the stochastic diffusion equation later in Section 5.3.
In particular, we shall discuss the role played by the correlation length and standard deviation of the random field on
the time-step restriction.
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4.3 A Priori Error Estimates

Theorem 3. Letu € L?(0,T ;W) be the solution of the weak form (9) with Dirichlet boundary conditions, where

W = (H}(D) N H*(D)) ® H*(I') andou/dt € L?(0,T ;W'). We assume that the source tefrand its temporal
derivatives are smooth enough and that the initial valubelongs at least té/2(D) @ H*(T'). The bilinear formA

is assumed to be.-continuous andx.-elliptic with respect to the norj - || g1 (pyer2(r)- Let up',, € Vh @ Spe

denote the solution of the-scheme (29) witl® < [1/2, 1], where the finite-dimensional spades andS?e are given

by (11) and (12), respectively. The spatial triangulation is supposed to be nondegenerate. Then the following error
estimate holds:

Cmaxfu( 7 5) = il oyerar) < Crh+ Co At + Capg (36)

yeeey

where the constant§, Cy,C3 > 0 are independent of and At, and only depend on the analytical solution as
follows:

01:Cocc< max

_ ||u
m=1,2,...,N;

X,
/2
02 == 7K2(U7T)a
Ke
c(M

Cs = M( max ||u
Ke m=1,2,...,N;

2
(™ )lmzyerzr) + |volla2 (D)oL r) + ﬁfﬁ (U,T)>,

€

m 2
Ct™ ) (pyemk ) + ol g1 (DyeHE () + \/?K:a(u, T)>7

€

The constant§’ (M) andC* are independent gf; andh, and the constant&’;, K>, andK5 are given by

T 9 1/2
0
Kl(uaT) = / j(rfsa) ds ) (37)
o |0t H2(D)®L2(T)
T 5 9 1/2
0
Ko(u,T) = / g(,s,) ds , (38)
o |0t L2(D)®L2(T)
7 9 1/2
Kalu 1) = [ || Srcesi) as) . (39)
o |0t HY (D)@ H*(T)
Proof. We first split the approximation error as
Chpe = U5t ) =y, = u(t" ) = Pu( ™) + Pu( ™) — g, (40)
n;"n’pi E';:nyps_

whereP : V ® S — V" ® SP= is the elliptic projection defined by the Galerkin conditions:
A(Pu(-,t5),0np ) = Al t;-), Unpe )y Y0 pe € VI @ SPE.

The existence and uniquenessidi(-, ¢ ; -) is a consequence of the Lax-Milgram theorem (see [31]). Hence we need
to estimate

pomax leqy [l myeremy < | max iy, (L myersr) + | max 180, l|2 oL ) (41)

=1,...,

Since we have
AN, Vhpe) =0, Yopp, € V'@ SP5,
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we can use the error estimate (20) that we proved earlier in Theorem 1 for elliptic SPDEs,
IMipel2myerz@) < [Ny o1 (@)eL2(r)

Xe — m * m
“<C(M)pak|u(~,t s )M (oyorr@) + C hlu(:,t ;')|H2(D)®L2(r)>~ (42)

IN

We focus now on estimating an upper bound|féf;’,, ||r2(p)er2(r)- From (40) and (30) we substitute

Uppy = (5™ 5) = (R, + E0lp,)
and
uph® =0 (w1 ) — (4 D )+ (1= 0) (w75 = (i, + i)
into theB-scheme (29). Using (31), we note tfiqtpg are the solution of

ahm+1 "
(Fegee o) AR V) = (O V) 2Dy (@3)
L2(D)®L2(T)
with "
ppye = W) S i) O ey Mhpe Ty
h,pg At 3t At
and 5 5 )
u u u
tmrO )y =0 — (T )+ (1 —0) — (-, t™;).
SO = 0 (T )+ (1-0) S (™)
We then apply the stability result (33) to (43), which yields
At !
X Hah,ngLz Doz < & T2 myorzm) + — Z 1% ?;EBHQL?(D)@L?(F) (44)
7” Xe m=0

with
u(-tm ) — (™) du

0
lon ol ez <

At ot LY(D)8L2(T)
(1)
m—+1
+ ’ e T . (45)
At L2(D)®L2(T)
(IT)

We first consider the estimation ¢f). Noting that

w( M) — (™) Ou, u(-, ") —u( ™) du,
( )At : ) at(t+9):e<( )At : ) 6t(t+1’)>

u('atm+1;') _u('7tm;') Ou m,
+ -0 L - at)

and using Taylor's formulas with integral remainders

t'm.+1 9
Ou ") + (tm'H — Q

LY (e ou. :
u(-,t i) = u(-,t ,)+Atat(, . S)atQ(’

s;-)ds

ou e 0%u
M) = -t At — (- ¢mt+L.. / m _ N (g
w5 =l ) = At () + | = s) g (si)ds,
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we have
0 et 9u et 0%u
=gl [ =9 FF s Sl L e G esias .
At tm ot? L2(D)®L2( ) ot? L2(D)®L2(T)
Applying the Minkowsky inequality, we get
o [ 0%u 1-0 "
(I)S—/ tm—s|H(-7s;~) ds+—/ [ttt — H ,85°) ds.
At Jim o vmerm A e or 12(D)@L2(T)
Since|t™ — s| < At and|t™ T — 5| < At, it follows that
gm+1 9%u Rusat 22w 2 1/2
(1) g/ CAT ds < VAT (/ ST d% — VAt on(u) (46)
tm ot L2(D)®L2(T) tm ot (D)®L2(T")

using the Cauchy-Schwarz inequality.
Concerning the second terfiil ), we use the fact that

m—+1 m
Ny, — Ny
A ( PE P

h
At Uh,Pa) =0, Yop,p, € V" @ SPE.

Using the error estimate (20) again leads to

(1) < %<C(M) pe*

U(', tm+1 : ) _ u(., tm : ) H

Ke At HY(D)®H*(T)
LY (e
+ C*h u(, ) —ul ’)H ) (47)
At H2(D)@L2(T)
We have
.tm+1., _ I AL A 1
u(, ’)A U(a ) )H H/ :KHwHHl(D)@Hk(F),
t Hl(D)@Hk(F) 8t HY(D)@H*(T) t

and

0B o = 3 / IDEw( £)]2 0 (E)dE,

0<|B|<k

whereDE is given by (2). Applying Minkowsky and Cauchy-Schwarz’s inequalities, we get

tm+1 8u 2 1/2

IDEw(-; &)l (p) < VAL (/ ‘DS 8t( 55°) d5> ,
tm HL(D)

which yields
+1 gmtt 9 1/2
L) )H <=l [] Pisin||  dspeyae
HY(D)@HH(I) 0<|pl<k /T Jtm H(D)
L () (48)
= —— Bm(u).
VAL
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Similarly, we get the following inequality

LgmEL Y o gme gt 2 1/2
S )At e )’ H2(D)®L2(T) = \/% </r /t %("S;.) H?(D)dsp(a)d‘E)
= = Yl) (49)
From (47)—(49), it follows that
(1) € =% (OO Bu(w) " +C" ¥l ) (50)

To complete the estimation in (44), we invoke the Galerkin orthogonality condition related to the initial value, which
gives
(Ug,p£ - anvh,pg)LQ(D)@)LQ(F)a VUh.,pa eV'® 8P, (51)

Noting thatu?l,pE —ug=—(p,, + E’(’)%Pa)’ and takinguy, ,, = &) . in (51), we get

X _ .
1682220 < itk l2ysrocr) < 5 (CONDDEE ol ey + € ol orssae) - (62

Combining (41), (42), (44), (45), (46), (50), (52) and reordering terms, we have

C*x,
ma N, HerngLz(D)@Lz(F) < x. h|: max (.,tm ,')HH2(D)®L2(F) + |IUOHH2(D)®L2(F)

R _ [|u
m=1,2,... m=1,2,....N¢

m=0 m=0
4 GDse (7 )] + ol
*e Pg m:%%?f’Nt U\, » )IHY (D)@ H*(T) Uo||HY(D)@H*(T)
2 Ni¢—1 1/2
(B
@(;(ﬁ (w)

In the preceding inequality, the upper bound still dependAothrough the summations ovéf; terms,N; = T'/ At.
To proceed further and obtain an upper bound independett,ofre use the following relation:

N;—1 N¢—1 gl 2

ou
>t = Y [ [ 15|l dselee
m=0 m=0 /T Jt" H?(D)
T 2
:/ @(787) dS: (K1<U,T))2,
o |0t H2(D)®L2(T)
and similarly
N;—1 T 2 2
0“u
> (o) = [ || 5 i) ds = (Ko, 7)),
m=0 0 L2(D)®L2(T)
N;—1 T 2
0
B = [ Gtess0) ds = (Ko 7))
o 0 HY(D)@HH(T)
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The assumption that the source tefnand its temporal derivatives are smooth enough and that the initial uglue
belongs at least té/*(D) ® H*(T') ensures tha{uo|| g2 (pyer2(r) @nd||uol |1 (pye mxry are finite quantities and
thatou/ot € L*(0,T; H*(D) ® H*(T')) andd?u/dt* € L*(0,T; L?(D) ® L?(T)). This means that the constants
Ky, K5, andK3 are well defined. This leads to the final a priori error estimate (36) and concludes the proof]

Theorem 4. Under the same assumptions as in Theorem 3, assume in addition that the dual solution of the steady-state
model satisfies the regularity conditions (27). Then the following a priori error estimate holds:

max u( 7 5) =iy, |2 myerzry < CuLh? + Co At 4 Cypg (53)

||u
m=1 N,

with
2

0.4
“ T (Bl By, G @ygis ) + By | 1

. (™5 ) ez (Dye L2 ()

|l
t

/2
+ Bl HUOHHl(D)@Hk(F) + B2 ||UOHH2(D)®L2(F) + 2 OT(BlKg(u,T) + BgKl(u, T))),

[ 2
02 = 7K2(U7T)7
Ke

2
[0 4
Cy = —< (A1 max ||u(-, t™; ')HHI('D)@H}c(F) + A; max
m=1,...,N; m=

L
o letHU(» s 2 (Dyor2 ()

/2
+ A1 ||UOHH1(D)®H’“(F) + A2 HUO| ‘H2(D)®L2(F) =+ 2 0(7 (AlKg(u, T) -+ AgKl (U7 T))) 5
where constant&’; (u, T'), Ko(u,T), K3(u,T) are defined by (37)—(39) and constandts A,, By, Bs are given in
Theorem 2.

Proof. This result is obtained by following the proof of Theorem 3 and by using the elliptic error estimate satisfied
by the solution of the steady-state model given by Theorem 2. O

Corollary 2. Under the same assumptions as in Theorem 3 and using the same notations, the a priori error estimate
as a function of\ and N¢ can be written as

Y g Lt log(M)"
max lu(,t™ ) —uplp Nl2pyerz@r) < Crh+ Cy At 4 Cs <1Og<N£) . (54)

Theorem 5. Under the same assumptions as in Theorem 3 with a quasi-uniform spatial discretization, consider the
0-scheme (29) witl® € [0, 1/2[. Under the following restrictions on the time-step,

At _ 20 (C2 + 1) — 4€2C2, 0w e [+ Ch) 1/2 (55)
h? = (C3+1)(1—20)a2(Cr)*(14¢)’ - 2C% ’
whereC} is defined by (C.4), the a priori error estimates (36) or (54) hold with
C*(Xc m
Gy = o\, max [ t™ 5 ) 2Dy L2y + ol g2 D)oLz ) +2vee Ki(u,T) ),
Coy = V2ce Ka(u,T),
C(M)x, m
Cs = (oci) ( max u(,t™ ) (pyemr @) + tollmr (Dygmr ) + 2\/ZK3(u,T)).
e m=1,...,N;

The constant. is given byc. = (1 — 20)(1 + 1/e)At + 1/4€? and K (u, T), Ka(u,T), K3(u, T) are defined by
(37)—(39).
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Remark4.1 When considering spatial domains with smooth bound#py faster convergence rates can be obtained
using higher-order FE approximations. Consides H*(T'), V = H} (D) N H'**(D) with [ > 1 and letV" be the
subspace spanned by piecewise polynomials of degree af nitwtn it holds:

m K —k m M m.
IMhpe llL2(@)@r2r) < (X<C(M)ng [[u(t™ 5 N (pyemr @) + C A fu-, ¢ a'>|Hl+1(’D)®L2(1")>a

whereC* is a constant independent bf As a consequence, the error estimate (36) becomes

e (a5 =l llamysrew) < Cuhl + 0o At + Cspg", (56)

where( is now defined as

aq‘oc, m 2 ~
Cy = o(ec <m_1111’%'>'<’Nt [uC, t™ s ) e+ pyor2 ) + voll g+ (D)o L2y + \/oTeKl(u’T))’
with "
T 2
Ry, 7) = </ AT ds)
0 HAHY(D)®L*(T)

Remark4.2. The error estimates (36), (54), or (56) hold for second-order parabolic SPDEs defined in Appendix A
(see Egs. (A.1) and (A.2)) since the bilinear form is continuous and elliptic with respect to the| @i pye 2 (1)-

5. APPLICATION TO STOCHASTIC DIFFUSION MODELS

In this section, we shall apply the general error estimates derived earlier to the steady-state and time-dependent
stochastic diffusion equations. We shall show howdhariori error estimates derived earlier can be sharpened for

both cases. Finally, we shall consider a one-dimensional parabolic SPDE model to gain insights into the relationships
between the time-step restriction and the input random field parameters.

5.1 Stochastic Diffusion Model

In this section we consider the following stochastic diffusion model [10, 13]

du(x,t; &)

5 —div(k(x; &) Vu(x, ;&) = f(x,t;&) as.inD x[0,7] x Q,

u(x,t;8&) = g(x) a.s. oD x [0,7T] x Q, (57)
u(x,0;&) =up(x;&) a.s.onD x Q,

wherek is a random diffusivity field which is strictly positive and bounded, i.e.,
0<k <k(x;&) <k as.inD xQ. (58)

The source ternf is assumed to satisfy

T
/ / / 1,5 £)0(E) dEdxdt < +oo, (59)
rJpDJo

which implies [, fOT |f(x,t;&)]?dxdt < 40 a.s. inQ. We also assume that the random fielid measurable with

respect to ther-algebral3(D) @ F whereB(D) denotes ther-algebra associated with, and that the source terif

is measurable with respect to thealgebral3(D x [0,7]) ® F. Models such as (57) are typically used for chemical
transport and fluid flow in heterogeneous random media, heat transfer, oil reservoir, and water resources modeling.
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The steady-state version of (57) has been extensively studied in the literature; see, for example [7, 11, 14, 15]. The
existence and uniqueness of the solution of (57)40, T'; H} (D)) ® L?(I") is guaranteed by the assumptions (58)

and (59); see [13, 34]. The random diffusivity can be discretized using a Karhurese-Eapansion scheme [28] and
written in terms of a finite number of random variables as

M
k(x5 E) = k(%) + Y £k’ (x), (60)
=1

whereé,; are uncorrelated uniform random variables|(i, 1]) and(«*);>; forms an orthogonal basis &f (D). We
next consider the following assumption [11] satisfied by the functiGrend«’:

X A
D K Lo (D) € — Ko (61)
= 1+A

ith 10
with ;..

= mink’(x) > 0 andA > 0. Note that assumption (61) implies assumption (58) with the lower bound
xeD

k1 = &),;,/(1+7), and ensures that the serlg§ .., &' (x) is absolutely and uniformly convergent éhx © (see
[11] for more details).
5.2 A Priori Error Estimates: Elliptic Case

In this section we consider the steady-state version of (57). We assume that (58) and (61) hold and that the source
term satisfies

[ [ irecseiPote) dedx < +oc. (62)
rJpD
Note that the assumption (62) impliesp || f(-; &)||.2(p) < +o0. The weak formulation is given by
gel
Findu € H}(D) ® L?(T") such that:

A(u,v) ::/F/DK(X;E,)Vu(x;E,)Vv(x;E,)p(E,)dE,dx

= // f(x;&)v(x; €)p(E) d&dx, Vv € Hy (D) @ L*(T). (63)

As an illustration of Theorem 1 we shall provide an a priori error estimatgdor uy p. || g1 (D)o L2 (1)-

Theorem 6. Consider a random source teffire L?(D) @ H*(T'). Letu be the solution of (63) witku € (Hg (D) N
H*(D)) ® H*(I') anduy, ,, € V" @ SP« denote the FE approximate solution. Then

o _ .
v = unp ||H (D)y2L2 ) < - (C(M)Drpgk +C Crh||f||L2(D)®L2(F))» (64)
€

where the constard, depends o and] |D§‘ ¥ || < 1, while the constanD,. depends on the Poinéss

IB| < k.

KHLOO(DXF
constanCp, ki, (b;)j=1,...x With b; = (||&7|| = (p))/k1, and on|| D f| | L2 (D)L (T

Proof. First, we show that, ¢ H'(D) ® H*(I'). Following the ideas of Cohen et al. (see [11], Theorem 4.1 therein),
it can be shown that

Sup||D§u(~;E,)HHé(D) < Eg, VB, (65)
ger
where the constarii; is defined as

Eg = Co,g + Co|B|bP + Z B;biCop—e; +---
7B #0
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with Co,p = (Cp/k1)supger || DE £ (- ‘E)Hm(p)' bf = HJ L bff, and where:; denotes the Kronecker sequence

with the valuel at thej-th position and) elsewhere. Sinc¢ € L?(D)® H*(T'), Eg < +oc for every|B| < k, which
means that: € Hi (D) ® H*(T) or equivalentlyu € H'(D) ® H*(T') from Poincaé’s inequality. Then, from (65)
we have

il = > [ IDEC: Ol mpEde < 1+C3) 3 [ IDEuC )y o(e)ie
0<|B|<k 0<|B|<k

<(1+Cp) > Ej=(D (66)
0<|B|<k

Next, using the following regularity estimate from the analysis of B&hiet al. [7],

lu(-; &) a2y < Collf (-5 8)lL2(p), VEET,

we have
lullzr2(pye 2y < CrllfllL2(p)or2(r).- (67)
Combining (66), (67), and the estimate (20), we obtain the inequality (64). O

Remark5.1 Estimatingpg’“ in (64) as in Corollary 1, it can be seen that the stochastic discretization error tends
to zero whenM — +oo andpg — —+oo. This trend is what one would expect when using KL expansions for
discretization of the SPDE coefficients. However, to proceed further with the analysis derived in the present paper
when considering SPDEs with KL expansions, the error arising from random field discretization would need to be
taken into account (as done, for example, in [7]).

Remark5.2. For spatial domains with smooth bound@, faster convergence rates can be obtained using higher-
order FE basis functions. When considering FE piecewise polynomials of degree & thestrror corresponding to
the steady-state stochastic diffusion model scalé@(@gk + h') in Theorem 6.

5.3 Remarks on Time-Step Restriction

We discuss here the time-step restriction (55) when considering-theme (29) witt® € [0, 1/2[ for solving the
time-dependent diffusion model (57). First, from (58) and using Pog'Earequality, we have

k1
WHUHH%’D)@L?(F) < A(u,u) < Kol pygr2(rys

meaning thatx, = k;/(1+ C3) and . = ko. To proceed further, we shall expreks and k, in terms of the
random field parameters. To illustrate, we consifler [0, 1] C R with the covariance function defined @$z, y) =
o?exp (—|z — y|/L.), whereo and L. denote the standard deviation and the correlation length, respectively. The
functions(k?);>1 in (60) are given by (z) = /A;c'(x), where{\;, ¢’} are the eigenvalues and eigenfunctions of
the Fredholm equation

/ny y)dy = \ic' (). (68)
From the definition of”', the analytical solution of (68) is explicitly given by [1, 2]
cos(w;(z — 0.5))
V0.5 + sin(w;) /2w;
sin(w;(z — 0.5))
V0.5 — sin(w;) /2w;

i even

c(x) =

i odd,
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9 2L,
()- )
1+ (wq;Lc)Q
wherew; are positive roots ofl — L.w tan(w/2))(L.w + tan(w/2)). It is to be noted that the decay rateXf

increases as. becomes smaller (see [1]). Sinceare bounded functiong, € [—1, 1] and from (60), (69), it follows
that

Ai = (69)

||| Lo (D)

X = ko Ll K(z; &) = [|K°]| L () + 0V/2Le Z S iF @il (70)
We are now in a position to discuss the influence of the random field paramitensdo) on the allowable time-step
At for the case whefl € [0,1/2[. From (70), it can be seen that increases whet becomes larger. As a result of
this, the allowable interval for the time-stéy shrinks [see Eqg. (55)]. Conversely, decreases wheh, takes larger
values [see Eq. (70)]. Therefore the upper bound (55) on the time-step is less restrictive, meaning that larger values
of At can be considered. The latter statement is coherent with the fact thatiwlggres to+oo, the random fielck
tends to the averaged deterministic fiefg meaning that\t is not restricted by the random field parameters anymore.

6. ANOTE ON A PRIORI ERROR ESTIMATES FOR FUNCTIONAL APPROXIMATIONS
6.1 Preliminaries

In many problems of practical interest, one is concerned by evaluating a quantity of interest given by a functional
J(u), whereu is the solution of a SPDE model. A question which arises naturally concerns the estimation of the error
|J (u)—J (unp )|, Whereuy, ,, is a stochastic PC Galerkin approximationofn this context, there exists a wide body

of literature on a posteriori error estimation for deterministic PDE models. For example, computable a posteriori error
estimates for FE approximations of deterministic elliptic PDEs are derived in [35, 36]. Pierce and Giles [29] presented
an approach for improved approximation of functionals depending on linear or nonlinear deterministic PDE solutions
using adjoint methods. A detailed overview of adjoint methods for a posteriori error analysis of FE approximations
of deterministic functionals is provided in [37]. A posteriori error estimates for stochastic FE methods based on an
adjoint formulation and mesh refinement procedures are studied in [38]. Computable a posteriori error estimates based
on a stochastic Galerkin projection scheme for the adjoint problem are provided in [30].

In this section, we shall consider adjoint-based corrections to functionals computed using the approach originally
developed by Pierce and Giles [29] and extended to SPDEs by Butler et al. [30]. Our main objective is to demonstrate
that this recovery scheme ssiperconvergerttased on the a priori error estimates derived in the earlier sections for
elliptic SPDEs. Our analysis follows the work of Giles andli$37] dealing with deterministic PDEs (see Theo-
rem 7.1 therein). For clarity of exposition, let us first recall grgnal anddual SPDE (strong) formulations which
are, respectively, given by

Leu(x; &) = f(x;&)a.s.inD x Q, (71)

Lew(x; &) =g(x;&)a.s.inD x Q, (72)

whereL; will be assumed to be a randomly parametrized second-order self-adjoint differential operafoy and
L?(D) ® L*(T") are given random source terms. For the simplicity of presentation, (71) and (72) are supplemented
with homogeneous Dirichlet boundary conditions. The weak form corresponding to the primal problem is written as
Findu € V ® S such that:

A(u,v) = (f,v)L2(Dyor2(r), V0 EV®S, (73)

with V = H}(D)N H?(D) andS = H*(T'). As assumed earlier, the bilinear fornis «.-continuous andk..-elliptic
with respect to the norml - || 1 (py 2(r)- The weak form associated with the dual problem is given by
Findw € V ® S such that: B

A(U7 w) = (g, U)LZ(D)®L2(F), YoeV®S, (74)

whereS = H!(T'). Strictly speaking, the Sobolev indéxcan be different fromk, depending on the stochastic
regularity of the source term
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We now focus on the definition of the functiona{u) which clearly depends on the application under considera-
tion. In the present analysis, we shall consider stochastic functionals of the form

J(u) = (g(-5&),ul(-; &) L2(p), (75)

whereu is the solution of the SPDE model (71) afnds the source term of (72). Stochastic pointwise functionals have
been studied in [39] when considering linear random algebraic equations, for which an error analysis with respect to
the norm|| - || .~ (r is provided. However, the convergence result derived therein is obtairesshyning particular
form of primal/dual approximation errors in tHe* norm.

In the present work, our aim is to leverage the a priori error estimates derived earlier for elliptic SPDEs. To begin
with, consider error analysis for the approximation of (75) with respect to the fjorffy ). Using the Cauchy-
Schwarz inequality, it can be shown that

[[J(u) = J (unpe )2y < Sup g (5 E)lL2(m) v — unpe | L2 (D)o L2 () -

The a priori error estimates (given by Theorem 1 or Theorem 2) can be used in the preceding inequality to obtain
convergence rates for functionals approximated using the solution of the primal SPDE. However, the a priori error
estimates derived earlier for elliptic SPDEs cannot be used further in this framework when considering improved
functionals based on the solution of an adjoint/dual problem. In this approach, instead of consideripg) as an
approximation of the exact functiond{«), improved functionals are defined by means of an adjoint correction term;
see Section 6.3. It is to be noted that similar issues also occur for pointwise functionals depending on a deterministic
PDE solution. As discussed in Giles anidi$37], pointwise functionals cannot be accommodated within the frame-
work of Hilbertian error analysis. To circumvent this technical problem, one might carry out the error analysis in a
reflexive Banach setting, or, alternatively, define another type of functional based on a local averdgdatiesving

the ideas in [37]. Since our a priori error estimates for elliptic SPDEs are derived in an Hilbertian framework, we
choose the second option to proceed further. In other words, instead of directly working with the stochastic functional
(75), we shall consider a linear output functional given by a local average of (75) in a ball defindd oeer

1
J(u) = ———(g,u) 2 2(R(E 15 76
(u) IB(E, 7“)|(g )L (D)®L2(B(&,r)) (76)

whereB(&,r) c T denotes a ball of radiuscentered at a given random vectgrwith |B(E, )| = fB(é,r) p(&)dE.

In the following sections, we shall provide error estimates for primal and adjoint-based corrected approximations of
the preceding functional.

6.2 A Priori Error Estimates for Primal Solution Based Functional Approximations

We shall first provide a priori error estimates for the approximation, ,,, ) based on the solution of the primal
problem before examining the error associated with the adjoint-based corrected approximation. In what follows, the
approximation space for the primal problem is givenilly= SP«, whereh is the spatial discretization mesh spacing
parameter ang; is the PC approximation order. By definition dfand using the Cauchy-Schwarz inequality, we
have

1
J(u —Juhy < — g £ r u Up, L L Er
| ( ) ( pg)l |B(£,, )||| |‘12(D)®112(6(£, ))H p£|| 2(D)® 2(l’)’(“_,, ))
= = gllL2 (D)L (1) ||U uh, L2(D)®L2(T)- 7

Applying Theorem 1 for estimating the primal error approximation, we get the following error estimate:
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1

K
| J(u) = J(unpe )| < ae‘8(£7r)‘H9Hlﬁ<D)®LQUU
X (C(M) pe " |l i oy rnry + C*h ||U|H2(D)®L2(r)>~ (78)

Under additional regularity assumptions for the dual problem (72), i.e.,

Jw||z2 )y r2 ) < Crllgllzzmyerz @), [wllar ey < Crllgll2 ey (79)
a sharper functional error estimate can be obtained using a a slightly different version of Theorem 2 for estimating
|l = unp, || L2(Dyo L2 (1) given below:

o _
o= wnpellizrsra < 5 (UL +Cald)n?),

€

wheres = min{k + [, 2k, 21} andC}, C5 are constants independent/ofndpg given by

~  C(M)C*C, C(M)C*C,
cr(0) = (17, + CEEE il psrrery + S ot
C(M)C*C, . C(M)C*C,
ca() = S s pormry + (€6 + CE0TE e oy
Hence we get the following a priori error estimate:
I = Tyl < Ly (crton v+ caton 12) (30)
u) — J(up, < ——F 2 2 D .
h,pg x, |B(£,r)| gllL2(D)®L2(T) 1 £ 2

Itis worth noting that superconvergence of functional approximations automatically holds when considering determin-
istic Galerkin FE methods for computing the primal and dual solutions (see [29] where deterministic linear functionals
depending on the solution of deterministic PDE models are studied). In the present analysis, where linear output func-
tionals that depend on the solution of SPDE models are considered, we also obtain (under regularity assumptions for
the adjoint problem) a superconvergence result [see Eq. (80)], as expected when using Galerkin projection schemes.

6.3 A Priori Error Estimates for Adjoint-Based Corrected Functional Approximations

We first introduce the finite-dimensional approximation subspaces that are needed in our derivafi$hig®: for

the primal problem (71) and” @ S% for the dual problem (72). At this stage, there is no restriction on the definition
of the mesh-sizesh( H) and the PC orderg¥, g¢) used for solving the primal and dual problems. The Galerkin
approximation of the dual formulation,

A(UH#Ia ) vaq.a) = (97 UH#&)LQ(D)@LQ(F)’ VUH#Ia € v ® S, (81)
whereV andS?: are given by (11) and (12), respectively, can be formally written in an operator form as
Lewr,ge = 9H,qe = 9+ ZHqe (82)

wherezy 4, belongs to the orthogonal complementf ® S% . We are now in a position to write the following
splitting:

1
= |B(&,r)| ((g’“”wPi)L?(D)@L?(B(im)) — (9.0 Uhpe — W 2Dy ras(En)
+ (9H.qe — 9 Unpe — u)LQ(D)®L2(B(£,r))>' (83)
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Using the approximate dual problem (82), the second term in the previous splitting is written as

(9.9¢,u — uhapa)L2(D)®L2(6(§,,r)) = / (Lewge,u— uh,pa)LQ(D)p(i)d&

B(&,r)

= WH e, Le(u— unyp 2y P(E)dE
/B(é,r)( H,qe e h[a))L(D) (€£)

= (WH,q,, [ — ﬁauh,pa)Lz(D)®L2(s(é,r))-
This suggests the definition of the improved functional,

Simp(Un,py s Wi, ) = J(Up, ) Y (Wrge, f = Letinpe) 12 (D)o L2 (B(2.r)) (84)

+ -~
IB(&,r

where the adjoint correction teriy | B(&, r)| (Wh,qe, f=Letnpe ) p2(pyore(s(E,m) 1S @ computable quantity depend-
ing on the dual solution and the primal residual. The adjoint correction can be interpreted as a computable a posteriori
error estimate [30] or as a correction term for improving the primal solution-based approximation [39].

We shall now provide an a priori error estimate for the improved adjoint corrected functional given by (84).

Theorem 7. Let J and.J;,,,, denote the exact and improved functionals given by (76) and (84), respectively. Then it
holds

1 &

T(w) = Jimp(Unpg » Wi g )| < ———— &
| ( ) P( hyP& Hqg)' |B(£’T)|“g

<C(M) ng [/l g1 Dy ey + C*h ||U|H2(D)®L2(r)>

x (0<M> 4! lollan pys ey + C7H ||w|H2<D>®L2<F>), (85)

whereu, ,, € V' ® 8P« andwpy 4, € V¥ @ S%. The constant§’ andC* are independent of;, gz, h, andH.
Proof. By construction, we have
1

J(u) = Jimp(Uhpe » WH,qe ) + —5——(9H,qc. — 9»Uh,ps — U £,
(w) p(Uhpe WH,q: ) |B(£’T)|(9an 9y Uh.pe = W) L2(D)g L2 (B(E.r)
1
== Jimp(uh,pg‘;IUH,q;_) + m(w}[)qa — w,EE(Uh,pEV — u))LZ(D)(@LQ(B(é,T))’ (86)

using the self-adjointness d@:. For the sake of illustration, consider the case wiignis given by a randomly
parametrized second-order differential operator defined by (A.1). Applying integration by parf@,averget

d
0 0
(Wi g — W, Lg(Unp, —U)) 12 2(B(E ) = (ai-(uh, —u), — (wg, —w))
o re v = 2 TOwy P Ox; - L2(D)2 L2 (B(Er))

ij=1 :

d
0
+ Z (biaxi(uhﬁva - u)vaJIa B w>
=1

L*(D)®L2(B(&,r))
+ (c(unpe — ), wh,q — w)Lz(D)®L2(B(§,,r))'
Using the same arguments as in Appendix A, we obtain
|(wH7Qa —w, Le(unp, — u))LQ(D)@)LZ(B(é,T))‘

< o llu —unpelliyoyore e 10— waacllngoyo L2 ien)

IN

e |[u—unpe |l (DyoL2(0) [ — WH g || 51 (D)2 L2(T) (87)
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whereax is the continuity constant of the bilinear formgiven here byx, = AT**+ max |bs|V/d Cp 4+ C%,. Using

(86) and applying Theorem 1 to estimalie — u p. || i1 (D)o L2(r) @nd||w — wa ¢, || 51 (D)o L2 () N the right-hand
side of (87), we get the final result. O

Remark6.1 Inthe limiting case whe (&, 7) = I', we haveB(&, )| = 1 and.J is given byJ (u) = (g, u)r2(pye 2(r)-
From the splitting

J(u) = (9, unpe ) L2(D)yor2(r) — (9H.qe» Unhpe — W L2(D)oL2(T) + (IH.qe — 95 Uhpe — W) L2(D)0L2(T)>

it can be seen that the adjoint correcti@ny, ;. , v — unp, ) L2(p)or2(r) Will be nonzero only if we consider refined
approximate subspaces for solving the dual problem,fles; h and/orgs > pg. Indeed, if we consideH > h and

qe < pe so thatV @ S% c V" @ SPe, the adjoint correction vanishes due to Galerkin orthogonality—this can be
shown as follows:

(Ghpe> U = Unpe ) L2 (D)oL2(r) = (LeWhpe, U — Unpe ) 12(D)oL2 (1) = AU — Unp, , Whp, ) = 0.

In summary, an adjoint-based correction is possible in the limiting case only if refined approximation subspaces are
used for solving the dual problem. From a computational point of view, this strategy will be inefficient since the
algorithmic complexity of the dual and the primal problems tend to be equivalent in practical implementations. For
the case when the output functional is given by (76), the Galerkin orthogonality condition does not apply since a local
integral over a ball in the random space is used for the adjoint correction term. Hence, the approach based on the
improved functional (84) is computationally efficient for computing functionals of the form (76) since a coarse mesh
size ( > h) and alow PC ordergf < pg) can be used for solving the dual problem.

7. CONCLUDING REMARKS

In this paper, we present some a priori error estimates for FE approximation of a class of elliptic and parabolic linear
SPDEs in the setting of finite-dimensional noise. In the elliptic case, we derive a priori error estimates that hold
under some spatial and stochastic regularity assumptions for the analytical SPDE solution. We also derive a sharper
estimate for the convergence rate under additional elliptic regularity assumptions. For the case of parabolic SPDE
models, we present a detailed stability analysis of a class of weighted time-stepping schemes. This stability analysis
is subsequently used to account for the effect of the temporal discretization error on the convergence rate of stochastic
finite element approximations. The results obtained are applied to the steady-state and time-dependent stochastic
diffusion equations.

Finally, we consider primal and adjoint-based corrected approximations of linear stochastic functionals that de-
pend on the solution of elliptic SPDEs. We focus on a special case involving local averages of stochastic functionals to
gain insights into the convergence rate. The present analysis shows that for stochastic finite element methods based on
Galerkin projection, the primal and adjoint-based correction procedures provide superconvergent estimates of a class
of linear functionals that depend on the solution of elliptic SPDE models, provided appropriate regularity conditions
are satisfied.

The present analysis was limited to Legendre PC expansions and further work is required to extend the analysis
to generalized PC expansions (e.g., Hermite, Laguerre, and Jacobi polynomials). Recently, Ernst et al. [40] provided
a theoretical analysis of conditions under which generalized PC expansions will converge to the correct limit. It is
necessary to extend this work further in order to derive rates of convergence for different types of PC expansions.
Numerical studies are also required to compare the theoretical error estimates obtained in the present analysis with
empirically obtained convergence rates. Another related topic which remains to be investigated further involves sta-
bility analysis of weighted temporal discretization schemes when the SPDE solution is assumed to satisfy polydisc
analyticity assumptions in the complex plane.
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APPENDIX A. CONTINUITY AND COERCIVITY CONDITIONS FOR A CLASS OF SECOND-ORDER

SPDES

We consider a class of SPDE models (3) wiignis a second-order differential operator of the form

d d
0 0 0
Lg = —3:1 o <aij(x ; 5)8%) + ;:1 b?"(X;‘i)aTci +e(x; &), (A1)
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with homogeneous boundary conditions
u(x; &) =0a.s.ondD x (, (A.2)

andf € L?(D x ). We assume that the mateixx ; £) : D x Q — R4 with entriesa;; (x ; £) is symmetric positive
definite a.s. inD x Q with its eigenvalued,;(x ; £) such that

0 < AN < A(x;E) <A™ < tooas. inD x Qi=1,...,d

In addition, let the functiongb; );—

1,..d andcin (A.1) satisfy

d
c(x; &) — %Z %bi(x;a) >0 as.inD x§,
i=1 v

bi(x;8) <b; < +oo as.inDxQ,i=1,...,d,
ce(x;&E) <é<+oo a.s.inD x .
Then the stochastic weak formulation can be written as follows.
Findu € H}(D) ® L*(T") such that:
d d
ou Ov ou
A(u,v) = Z (aija, 8) + Z (bia,v> + (cu, v) L2(pyo L2 (1)
ig=1 Tj OTi/) p2(pyeL(r) =1 Li L*(D)®L*(T)

= (f,v)r2(pyer2(ry, Yv € H; (D) ® L*(T).

Since we consider bounded spatial domains, the nofm(py and|| - ||z (py are equivalent from Poincas
inequality. Hence the continuity and coercivity dfcan be proved with respect to the nofim|| ;1 (pyg 2 (r)- Since

the mappingy, uy € (L*(D))? ® L*(T') — (auy, uz)2(p)er2(r) defines an inner produttwe have

[(@Vu, Vo) r2pyerz )| < A VullLemyerzm IVl 2 myera ) = A ullgg (o)L )|V Hi (D)0 L2 (1) -

For the second term, using the Cauchy-Schwarz inequality and notin® isdiounded, we get

d ou d ou
bl‘,’U) S ‘maX |I;z| HU||L2'D®L2F
;( Oxi ) apygrery |~ =t ; Oill ppyerey
TIPS /
< max |b|Vd [vllL2Dyer2(r
i=1,...d ; ox; L2(D)®L2(T) (D)®L(T)

IN

énlaxd |Ei|\/<§CD \|U||H5(D)®L2(F)HUHHg(D)@Lz(F),

whereCp denotes Poincéts constant which only depends on the spatial dimensemd the diameter @b. Applying
Poincagé’s inequality again for the third term iA, we obtain

|A(u,v)| < <7\Znax+£}3f?§d|bi|\/acb +CC%> lull g2 (D)o L2 1V B2 (D)@ L2 (1)

'The vectorial inner product defined ¢h*(D))% ® L*(T) is given by(us, uz) 2 (pye 2y = dorey ((w1)s, (uz)i)LQ(D)MQ(F).
For compactness, we use the notat{an) ;2 pyg 2 (r) instead of(-, -) .2(pyyag r2(ry OF Similarly || Vul| 2 (pyg L2 () instead of
[IVul|(r2(py)ier2r) N the paper.
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We focus now on proving the coercivity af. We write

ou

Z

= (aVu VU)LQ(D QL2 F)+// (cu —|—Zb 1 0u? > (E,)dz,

0b;
= (aVu, Vu) 12 (pygr2(r) + // ( > u?dx p(&)dE,

applying integration by parts to the second term within brackets. The coercivity condition (6) then holds since we have

A(u,u) = (aVu, Vu)r2(pygrz(r) + Z ( 77«6) + (cu, u) 12 (pyor2(1)
L*(D)®L3(I)

(aVu, Vu) 2 (pygr2(ry = Apn ||UH%13 (D)®L2(T)
ande — (1/2) Zle(abi/am,») > 0a.s.inD x Q. The boundedness condition (7) directly follows from

L) < [Ifll2yerzml|vllLemyerz @y < CpllfllLeyerz @)Vl i (D)o L2(r)-

The bilinear formA then satisfies the assumptions (5), (6), and (7) with respect to the|holim: (pye £2(1)-

APPENDIX B. PROOF OF LEMMA 1

In this section we prove Lemma 1 by induction on the number of random variabl@he proof follows [41] where
error estimates are given for Legendre polynomial approximations (such error estimates are stated in [42] without a
proof; see Theorem 3.1 therein). For the sake of clarity we con3ider L%(D), however, the proof can be easily
extended to general Sobolev spaces.

Let us start by considering the case whein= 1. We assume that(x ;-) € H*(I") with k = 2m (for brevity the
casek = 2m + 1 is not presented here as it is based on the same arguments). From

Tpe (1) = vp, (x;&) = Zv“

we have

lJu— vPaHiz(D)@L?(F) = Z ||voc\|2L2(D)||LocH%2(r)
x>pg+1

wherev,, is given by (17), i.e.,

Jru(x: E)La(E)p(E)dE

V(X)) =
> el
Using the Legendre operat@r= —(d/d&)[(1 — &£2)(d/dE)] such thatC L, = o(x + 1) L, We get

1 1 1
||L0<||2L2(1“) oo+ 1) HLoc||2L2(1") oo+ 1)

/F u(x: £) LLo(E)p(E)dE = / Lau(x; £) Lo (£)p(2)dE

Va(x) =
since/ is self-adjoint. Iteratingn times this result, we obtain

% - u(x;

v (X) =

and then

o e et
[vall72(p) el @@t D77 Jp U u(x; &) La(E)p(E)dE ) dx,
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leading to
1
lu=vpcllieyoramy = D o w ), (/ L7u(x; €)La(£)d ) dx [|Lal ey
& a>pe+1 ||L°‘HL2(F)( (oc+1
2
—im Jr L™ u(x; ) La(8)p(E)dE,
S ( T ax I Eal22qr
oa>pe+1 ellL2(r)

2
LMu(x; &)Ly (E)p(E)dE,
xllr2(r

,4m/z

x>0

= pptm / L7k By .

We then use the property (see Lemma 1.3 in [41]) that the opef&tais continuous fromH!+2™(T") into H'(T").
Taking! = 0, there exists a constant> 0 such that

H‘Cm(pHLQ(I‘) < AH(PHH%L(I‘)v V(p S HQm(F).
Therefore, we have
lu = vpel132(my@rery < APy ™™ /D (s ) rem )y dx = N2pz 2 ||ul| 20y g arv 1)
which coincides with the error estimate (19), with= A.

The next step involves proving the result faf > 2 random variables. Let us first define the projector (acting on
the jth random variable)

Pe
= Z ’U(X(X;Elv sy E‘jfly (ij+17 ey EM)LOC(Esj)v

with

(U(XQEJ,-~-75]'—1,',E.j+1,-~-a5M),Loc)L2 T.
ULX<X;£1;"'a&jflaaj+1)"-7EvM): ||L H2 (7)
*HL2(Ty)

It can be seen that the projeciytﬁal o-- ~o7r§gf corresponds to the projection onto thedimensional chaos subspace
with orderpg . As an example, consider the case wién= 2, p; = 2. We have

ol

= ZW Uoc X3 E,l ) oc(E»Q)

Pg  DPe - ; I ]
- Z Z”oc(s x)Lg(&1)Lx(&2) Withvgpg(x) = (Va(x3), Lp)r2(r, )
a=0 3=0 HLBHLQ(FI)

Forps = 2, we havel o (&2) = {1, &2, (383 — 1)/2} andLg (&1) = {1, &1, (37 — 1)/2}, meaning that the projector

wz“;; o wgg coincides with the projection onto the subspace spanned by the two-dimensional second-order PC basis,

i.e., spal, &1, &0, E1&p, (363 —1)/2, (383 — 1)/2}.
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Returning back to the error estimation, we consider for clavity= 2 in the remaining part of the proof, that is,
I' =T x I's5. Let us estimate

l[u = vp |2 (Dyor2ry = lJu — (W;“Q o 7755) ()|z2(Dye L2 (r)-

We have

lu = (m&2 0 7m2) (W)llz2 ooy < llu—miullxmyora) +lIm5iu — (78 o 752) ()2 yoray

< Apg |[ul| 2Dy ™ (r)@L2 (D) + ||7T | fJu— Wp&UHLz (D)®L2(T)
\,_/
<1
< Apgk|\“HLZ(D)@HI«(R)@L?(FQ) + Apgk||U|\L2(D)®L2(F1)®Hk(r2)~ (B.1)
To proceed further, we use the following result (see Lemma 2.1 in [41]). Férald and0 < r < k,
[ull 2Dy Hr (1) @ HE 7 (0s) < Ul 22Dy HE (D) x12)- (B.2)

Indeed, we have:

2

|ullZ2(Dyo rr (1)@ o (1) / Z 8£l u(-;5-, &2) p2(&2)dEs
T2 =0 L2(D)®H"(I'1)
i+’ 2
aal/aal &1, &2) ] P1(&1)p2(E2)dEr1dEs
T2 l oYl = L2(D)
p(&)dE
[ S AR e E P
< g u( &1, &2 p(&)dE = ||u||72 .
'y xT2 [+1'=0 a‘ié aEvZQ ) L2(D) ) | | LAHDIOH Ty xT2)
Substituting (B.2) in (B.1) withr = k& andr = 0, finally gives
l[u—=vpe |2 (Dyor2ry = v — (WSQ Oﬂgf) (Wllz2pyerL2r) < QApngu”L?(D)@H’C(F)v

that is, the error estimate (19) with = 2A. The general case follows by induction which giveés= C(M) = MA.
It is to be noted that the constafitgrows linearly with/.

APPENDIX C. STABILITY ANALYSIS OF 0-WEIGHTED TEMPORAL DISCRETIZATION SCHEME
APPENDIX C.1 Proof of Lemma 2
Writing

um+1 m
h,pg h,pe m+40 m+0 , m+0 m+60 _ m+0
( At 1 Uhpe + A(uh pe  Uhope ) ( hope * Wh,pe )L2(D)®L2(F)’
L2(D)®L?(T)

using the equality

m+1 m+1
W — At 1 Unps — uy, P Upp, + up,; P,

hpe At 2 '
and using thex.-ellipticity of A onV" @ SP= C V @ S, we have

m+1 2

1 Uh,pe — uhp
Atle=Z= 3 P m+1 _ . m m+1 m
( 2) At L2(D)®LA(T) + gag i ~ Uhpe Uhpe T U )12 @@LAD)
+ Xe ||UZL,;_£6||H1(D ®L2(T) = Hfh ||L2(D ®L2 F)H“h P ||L2(D ®L2(T)- (C.1)
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For everywy, ,, = Z wea,n(X)La(&) € V' @ SP=, we have

|| <pe
Hwhma”L?(D QL2(T) — Z l[we, hHL2(D)||er||L2(F) Z W, h||H1 D)||Lo<||L2(r) = [|wn, ;DaHHl (D)®L2(T)"
|| <pe |x|<pg
Hence, we can use the inequallﬂyszijHlW wL2(r) = > |upth e ||L2(D or2(r)- APPlying the inequality2ab <

(a%/€) + €b? (a,b > 0, € > 0) with € = &, > 0 and using the fact th& — 1/2 > 0, it follows that

1 0
(I 1B oy = s B oyorae ) + e I s oporer)
77 0 0
< I hfpt H%Q(D)@)L?(F) + cerUZf; |2L2(D)®L2(F)> :
Reordering terms, we get
1 m m+0
||uh ey HLZ (D)®L2(T) — Huh,p£||%2(D)®L2(F) + oe At Huh,;—): ||2L2(D)®L2(F > ||fh,pa HL2 (D)®L2(T)>
leading to
+1 0
[up! hp ||L2(D ®L2(r) = [[up! pg||L2 D)oLz T Hfh 4 ||L2 D)QL2(T)-
We then deduce the stability result (33) by induction.
APPENDIX C.2 Proof of Lemma 3
Coming back to (C.1), we have
1 1 m m+0
AL (|| Up, p e HL?(D ®L2(T) Huh,ngQL?(D)@L?(F)) + e H“h,,—; ||?{1(D)®L2(F)
ZH_I _ u;ln 2
< o (- ) [| e g e O s 150 e (€2
L2(D)®L2(T")
In order to estimatg (up bt = u, )/ AT 2 py 2y We Substituter, ,, = (up' ! —wuj?, )/At in (29) which
yields
m—+1 m 2 m+1 m m+1
Yhpe ~ Yhpe < Hfm+e||L2(D)®L2(F) ‘ h,pg — Thpg _ A e Uh,pe —uy Pg
— h, h, ’
At L2(D)@LA(T) e At L2(D)@L2(T) e At
and hence
+1 m 2 +1 m
UZTP;_ - uh’Pg < Hfm+9||L2(D)®L2(F) ‘U;Zpg - uh’PE
>~ h,
At L2(D)@LA(T) o At (D)@ LA(T)
m—+1 m
m Un, Un,
+ o‘CH”h,;;e”Hl(D)c@LZ(F) pgAt i (C.3)
H'(D)®L2(T)

using the inequality (5). To proceed further, we invoke the following discrete inverse inequality that holds for quasi-
uniform meshes iiR? (see [31], Theorem 4.5.11):

llwnll oy < (CF/h) [lwnllz2py, Yo, € V", (C.4)
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whereC? is a constant independent of Hence it follows that
lwnpe |l )@y < (CF/h) lwnp, |2 D)@, Ywnp, € V" @ 8P«

Applying the previous inequality t(um“ — up',, )/Atin (C.3), we deduce

m+1
Un,pe up, Pe

At

< 12l ez +
L?2(D)®L?(T)

2 o)
Squaring the previous inequality and applyiag+ b)? < (1 + €)a® 4 [1 4 (1/€)]b? (a,b > 0, € > 0), we get:

m—+1
x.C
<o ) 5 B ovanscry + (14 3) I soporaany- (€9
L2(D)®L2(T)

Unpe ~ uhﬁva
At

Next, substituting (C.5) in (C.2), we obtain

1

IAL (\qu’fijllimmy(r) - ||U’Zq;p;_‘|%2(D)®L2(F))

1 (chz* ? m—+0
+ [ x. — At 5—6 (1+e¢) h [[u hpE||H1(D®L2()

1
< At (2 - 6) < > 1 Fe e @yerawy + e lezyerem lluy gl 2 myeraa).  (C6)

2

. . . 1 . .
Using the inequalitRab < ya® + ;bZ (a,b >0,y > 0) with y = 4€2, we obtain

1
||fh,p& llL2(Dyor2(r) ||Uh7pE lL2pyer2(r) < 2€° ||Uh,pa HL2(’D)®L2(F) +35 &2 ||fh7pE HL2(D)®L2(F)- (C.7)
For estimating|u’,jf:a \|L2(D)®L2(F) we use the following Poincals inequality
lwallz2(p) < Cpllwall gz oy, Ywn € V" C Hg (D), (C.8)

from which it follows that )

C%
||wh||L2(D) CZ + 1||whHH1(’D)a Ywy, € V'
and
02 2 h De,
||wh,Pa||L2(D)®L2 (T) < 02 + 1|| 7P£||H1(’D)®L2(F)? vwh,pa eV ®SPE.

Hence we obtain the inequality

2
0 02
|| Zf;,: HHI(D)@L?(F) + 32 ||f;:n;; [Z2(pyeL2(r)

a3
11 2 yorzm) I Ml e < 2¢%
'D

that we substitute in (C.6) to get

s (I 1B myorary = I B opore)
At(1—20)(1+€)a2(Cr)?  2e2C3 o
+ | xe — oh2 02 1 ||u hp,_”Hl(D Y®L2(T)
At m m
< 5 =20 (14 1) I Brmvenscry + 5e e Baomorsey 9)
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To ensure stability in (C.9), we require the following sufficient conditQn— At — A > 0 with

 (1-20)(14 e)aZ(C;)? _2e*C%
B= 57,2 >Oand7\_c%+l>0.
Next, assuming that, — A > 0, that is,
%e(C2 + 1)\ /2
< — =z 7
O0<e< ( 26’% ,
it follows that
oe — A 2h* (xe(C3 + 1) — 2e2C3)

0< At < B :(012)+1)(1_29)oc2(ci*)2(1+e).

Assuming that the preceding inequalities hold, we finally get

m m 1 1 m
it 2 myerzw) < Nl 1T erzr) + At <(1 —20) (1 + €>At + 4€2> Hfh,;;eHzL?(D)@Lz(I‘)

from which we deduce the final result (34) by induction.
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