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The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with
dimension has led to wide adoption of HMC by the statistics community. Modern autodifferentiating software should
allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encountered
using HMC for inverse problems: poor conditioning and multimodality. Novel results on preconditioning and replica
exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given
for the number of integration steps as well as step size, preconditioner type and fitting, annealing form, and schedule.
These recommendations are analyzed rigorously in the Gaussian case and shown to generalize in a fusion plasma
reconstruction.
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1. INTRODUCTION

The goal of Bayesian inverse problems is to produce and charagtérizg), theposteriordistribution over possible

state variables(, given measurements In principle, samples from the posterior can be used to determine the mean,
guantiles, and other relevant statistics. These samples can be obtained using Markov chain Monte Carlo sampling,
which requires only that the log densityg p(z | y) (assumed absolutely continuous with respect to Lebesgue mea-
sure), be available as a function (up to an additive constant). In practice, extracting samples can take prohibitively
long, so people often resort to point estimates.

The most common Monte Carlo setup is tlamdom walk Metropolis-Hastingd his requires, once burnt-in,

O(N) evaluations oflog p(z | ) for each effective sampl& € RY. A more favorable scaling is obtained using

the Hamiltonian Monte Carlpor HMC, which requires only)(N'/4) evaluations oW .log p(z | ) [1]. Due to the

O(N*/*) scaling, HMC has seen wide acceptance in the statistics community. However, thus far HMC has seen only
minimal usage in the world of inverse problems [2—4]. The barriers to acceptance are real: The gradient evaluations,
V.logp(z|y), required by HMC, translate to derivatives through a forward model. This task is made easier by
recent advancements in autodifferentiating software. The next two barriers are geometrical and appear in somewhat
predictable ways in inverse problems. In particular, the second barrier is ill-conditioned posterior covariance, often
induced by low rank and/or low noise forward models. These introduce a large multiplier@g ¥€*) scaling that

must be dealt with. Another barrier is that of posterior mass separated by regions of extremely low density. When
present, thisnultimodalitycauses such difficulty that the highest priority is crossing these low-density regions.

Our efforts to mitigate ill-conditioned covariance led to reparameterization and linear preconditioning. We con-
tribute rigorous analysis of reparameterization, diagonal, and “full covariance” preconditioning, including an algo-
rithm to select burn-in sizd&keplica Exchange Monte Car{abbreviated REMC, also known parallel tempering,
is used to deal with multimodality. Novel criteria for selecting annealing form and schedule, number of integration
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steps, as well as step size are given. In all cases, a generic Gaussian problem is used to extract concrete recommenda-
tions, which we then test on a spectroscopy-based inversion.

Our perspective is the result of Google’s ongoing work in reconstruction of (fusion) plasma states [5]. In this
industrial research setting, new experimental data arrives daily. Reconstructions must be done, and retioune, for
sandsof experiments. Unexpected artifacts may appear in new measurements that are not well represented by the
current model. Physicists modify models weekly and need to understand changes. Sampling code must work well in
the majority of reconstructions, and optimal tuning in each situation is not possible. For that reason, we emphasize the
use of simple scaling laws and crude algorithmic decisions over intricate methods. With this perspective, we add to the
body of inverse-problems-oriented HMC literature. See [2,4,6] for some applications. See also [7] for reparameteri-
zations of HMC relevant to inverse problems in high dimension. See [8] for a lift-and-project approach applicable to
inverse problems with low noise. An introduction to HMC can be found in [1]. For those with some HMC experience
we recommend [9]. An introduction to Bayesian inverse problems can be found in [10], and an overview of Bayesian
modeling in statistics in [11].

Section 3 is a prerequisite for Sections 4 and 5. All other sections can be read independently.

Section 2 describes how common features of inverse problems can lead to difficult sampling situations. Section 3
reviews HMC. Section 4 discusses preconditioning. Section 5 discusses REMC.

2. SOME FEATURES FOUND IN INVERSE PROBLEMS

In the Bayesian inverse problems setup we are interested in, the unkkigpgarameterizes a physical quantity of
interest. For each uniqu¥, asinglemeasurement” € R is observed. The likelihood is chosen as a (hopefully
very accurate) representation of the data generating processes. Often, little to no ground truth exaXipdes of
available. A different situation is often found in the statistics community, where many indepéndeatobserved

for the one and onlX . For exampleX could be a coefficient of effectiveness of a drug treatmentatite outcome
(recovery or not). The likelihood is often then chosen as a mathematically convenient representation of the distribution
of possibleY” given X [11]. Often, no attempt is made to describe details of the process by Wherherges. Both

of these contrast with the so-called “generative models” popular in the machine learning community. There, the usual
goal is to learn a probabilistic relationship — Y so as to generate neiw[12]. The likelihood there is often taken

as a mathematically convenient and extremely flexible function leéimedparameters.

These differences lead to a different prioritization of challenges for Bayesian inverse problems. The lack of
flexibility in choosing a likelihood means we must deal with the covariance structure imposed by the measurement.
The need for physically realistic representationsXgfcombined with often sparse measurements, means we often
use parameterizations leading to multiple local maximg(ef| y). Contrast this with the “generative models” world.
There, a deep network can often transform a simple posterior to the obsérthds reducing the need to model
correlations [13]. Moreover, since recoveriAgis a hongoal, being stuck in one of many modes is okay, so long as
the resultant distribution ovér is the same.

2.1 Poorly Conditioned Posterior Covariance

Consider the toy problem,
1, . 1
pte) exp - 3a7Cta | ptyla) x expf - 4~ 2. @

whereA ¢ RM*N js theforward matrix mapping the unknown state variabfeto the measurement spaké’. The
prior correlation (), is the discretization of Eq. (5). Collecting terms quadratic,ithe posterior covariance is

C=[Ct+024TA] ", )

Suppose the forward matrid is low rank and so only constraing < N directions inR”Y. For smallc, these
constrained directions will have small posterior variance asymptotic tdhe other directions will have variance
governed byC,,,. The result is poorly conditioned posterior covariance (see Fig. 1). In that example, sampling is
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FIG. 1: Singular values of Gaussian problem. Spectra of relevant matrices in Eq. (1). The low rank forward matrix and/or long
prior correlation length results in poor conditioning. In all cages= 20, N = 40, and the prior shrinkagé = 0.001 We sort

spectra by their corresponding eigenvectors’ (Pearson) correlation with prior eigenvectors. Frequency increases left to right. Left:
the forward matrix4d € R™ >~ _Center: prior covariance for two different values of prior correlation lengtf. Eq. (5). Right:
posterior covariance (2) is poorly conditioned.

about 92 times less efficient than if the posterior was ideally conditioned. Section 3.4 details the relationship between
sampling efficiency and conditioning.

2.2 Multimodal Posteriors

The posterior corresponding to the linear problem from Section 2.1 will always have exactly one local maximum, or
mode In practice, nonlinear parameterizations of state can easily lead to multiple modes. These tend to arise in an
attempt to model details that are not fully constrained by the data.

A multimodal toy model is a Gaussian prior f&F € RY and mixture of Gaussians likelihood corresponding to
M < N measurements:

N M
2 2 2 2 2
p(z) | I e~Th/2, ply| ) | I [e—(mm—l) /(20%) | o= (m+D)?/(20 )] ©)
n=1 m=1

This leads to posterior density

M N
p(a|y) x (H [e(xm—u«r))z/(zv(c)z) +e(xm+u<a>>2/<2v(a>2)}>< 11 e—xiﬂ),
m=1 n=M+1

w(o): =1+ a? v(0)? := 0?/(1+ o).
Wheno < 1, standard HMC will find itself stuck in any of tH2" modes. The probability of escaping one of these
modes is, to leading order, less tham{— (1 + ¢2)/0?} (see Section 3.5).

2.3 Model Problem: Reconstruction from Spectroscopy

Our model problem is the inference of amplitude, temperature, and velocity of an ion species from an emission spec-
trum. Photons are emitted from an N-point discretization of the squdr€l]| x [—1, 1], and line-integrated emission
is measured. Some details are given, so as to emphasize the ability of HMC to handle non-Gaussian posteriors. Other
sections daoot require understanding of these details.

For a set of (around 200) frequencieswe parameterize emissivity as a transformatipr, of ana priori
Gaussian random variabl§ € RY, X ~ N(0,C,,). At each frequency, an integration matrixZ € RM*N
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projects the emissivityp~ (X) onto M measurements. This model$ distinct viewchordsin the[—1, 1] x [—1,1]
square (Fig. 2):
Yy =Zo(X) + 1.

The noisen, € RM is, conditional onX, Gaussian, and independent for every frequency and chord. It takes the form
Nv,m ™~ N(Q GZ + Gf;[z(pV(X)]vzn)

The factoro gives rise to the usual additive independent naigegives us noise proportional to the signal, represent-
ing model error. This leads to the likelihood

M
oyl = TT S22 0 — T (@)l
st 2no(z)2, 4
o(z)}, == 0* + 02Ty (2)]2,.

The mappingyp~ is composed of two stages. Firs, is divided into independent amplitude, temperature, and
velocity componentsX = (X4, X7, Xy). These are mapped to amplitude temperatureZ, and velocity).
The mapping is eitheslab, meaning constant on chord-aligned rectangleshet], meaning constant on circles of
rotation, about a shifted center (Fig. 2).

To make amplitude and temperature positive, we ussdftplusfunction,S(u) := log[1 + exp{u}]:
A= CAS(XA), T := cTS(XT), V= cp Xy.

Above, (c, cr, cy) are scaling factors, anl := (X4, X7, Xy) is a transformation of{ to impart radial corre-
lation and a shifted center. That is, the amplitude, temperature, and velocity componghtsawe radial values
approximating a zero mean Gaussian random field with correlation

N r—r']?
Lpr(r,r’) :=exp ~ o + 6. (5)
Above, b > 0is ashrinkageparameter preventing small eigenvalues from creating numerical difficulties. The coor-
dinater is the radius about a center shifted byaapriori 2D normal.

The second step a@f., is the dimensionless discrete emissivity spectrum,

A _(,v—l - {/—1)2
EVA,T,V) = , 6
SATY) = e T ©
wherev = vo/(1-V) is the Doppler-shifted center frequency, ané-= /7 /v is the Doppler-broadened bandwidth.
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FIG. 2: Left: example shell model values for arbitrary plasma state variable (amplitude, temperature, or density). They are radially
smooth and circularly symmetric about a shifted center. Center: example slab model values are constant along rectangles aligned
with the measurement chords. Right: 20 rays through a disk shaped body, representing chords of measurement.
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In its shell parameterization, the spectroscopy problem can suffer from ill-conditioned posterior covariance. The
Gaussian toy problem (1) is a linearization, achieved by assuming amplitugehe only unknown, ignoring the
softplus, and setting, = Oandc4 = 1.

Multimodality can also occur. Suppose the measured emissiyitilas two spectral peaks at andv,, as a
result of carbon Il and an additional, unexpected pollutant. As a result, we are trying to fit two peaks with a model
capable of producing only one. This results in five different posterior modes (Fig. 3). Changing velocity determines
the Doppler shift, and therefore the mode a sample is closest to. In a neighborhood of each mode, the log-posterior is
concave. In this way our spectroscopy problem is similar to the toy model (3) with the number of velocity variables,
M, equal toN/3.

3. REVIEW OF BAYESIAN INFERENCE USING MCMC

Common to all Bayesian inversion is the goal of inferring a probabilistic description of an unobserved quantity
X € RY, given the observell € RM. This posterior, p(x | y), is proportional to the product of theior p(x) and
the likelihood p(y | z). That is,p(x | y) « p(z)p(y|z). The goal of this inference can be point estimates, such as
E{X |Y =y}, or a quantification of uncertainty, such as }/&r| Y = y}.

Markov chains have been used since 1953 as a means to generate sequences ofSadigles. from target
distributions [14]. These samples can be viewed by themselves or used to approximate expétfdtidhg ~

ST F(X).

3.1 Statistical Efficiency

Samples from the Markov chain have two major deficiencies. First, only in thedimitoo can we say thak'* ~ 7.
Often a chain is initialized with a draw from the prior, and an initiakrn-in period is used to allow the chain to
“forget” this initial position and move toward thigpical setof the posterior [15]. Second, draws are correlated.
Roughly speaking, we say that identically distributed samplgs, ..., X* } haveeffective sample siZ&ESS)S if

the variance off —* Zszl Xk is Var{Xl}/S, in other words, if, for purposes of computing the mean, they are “as
effective” asS i.i.d. samples. Usuallyy < K. The most straightforward computation of ESS assumed e}

are identically distributed but correlated draws from the target, with meand variance/?. Then, for dimensions
n=1..., N, ESSis built from theé—lag autocorrelatiop,,

1 1+t
ES L K L ]E{(Xn B l‘Ln)(Xn B Hn)}
S = 125 o Pt == > .
+ Zt:l Pt Va
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FIG. 3: Multiple modes: observed two-peak measurements, along with hypothetisirior predictivesamplesY ~ p(y | X)

whereX ~ p(z|y)) demonstrating different posterior modes. Mode 1: if the temperature prior allows for large values and/or the
modeled noise is large enough, a local maximum is a hot plasma with bulk velocity near zero, giving rise to a single wide spectra
that covers both peaks. Mode 2 or 3: the next two modes arise if the temperagupeiasi small enough, with velocity values

either positive or negative. These correspond to modeled spectral peaks that cover one of the measured peaks. Mode 4 or 5: if the
velocity prior is permissive and the amplitude prior discourages tiny values, we have two more local maxima. These have velocity
values so large that the modeled peak is shifted far to the left or right, outside the measured range of frequencies.
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We are are usually most interested in the worst-performing dimension and therefgrde®8 }. Due to insufficient
burn-in, or being stuck in local modes, the assumption fatare draws from the target is often not satisfied. For
that reason, our version of ESS will be lower if the mean differs between multiple chains (see Appendix A of [16]).
A more direct method of checking deviation between chains ipthential scale reductigror R [16].

3.2 Computational Efficiency

In our experience, obtaining Markov chain Monte Carlo (MCMC) samples on production models is a computationally
intensive task that can take prohibitively long. Graphical processing units (GPUs) provide a significant speedup, as
they excel at parallel (SIMD) operations. This allows concurrent running of multiple Markov chains [17]. The slow-
down as more chains are added is sublinear, until GPU memory is exhausted. We therefore only consider algorithms
that take advantage of GPU parallelism. In particular, our replica-exchange implementation uses the same number of
leapfrog steps for each replica (see Section 5.3.4).

The majority of HMC computation time is spent in the numerical (leapfrog) integration of Hamilton’s equations.
Accordingly, we track the number of leapfrog steps per effective sample, (8BS} actually) as a performance
metric. This allows platform-independent comparisons.

A secondary performance consideration is time spent compiling and optimizing the computational graph [18,19].
This takes a fixed amount of time proportional to the graph complexity. In our model problem, where ill conditioning
and/or multimodality was present, graph optimization was a small fraction of total runtime. In well-conditioned HMC
sampling problems, avoiding many graph optimizations may be important.

3.3 Description of HMC

The Hamiltonian Monte Carlo (HMC) method was introduced in 1987 as “Hybrid Monte Carlo” for use in lat-
tice field theory simulations [20]. Since then, it has been recognized as an efficient alternative to the random walk
Metropolis-Hastings method, well suited for higher-dimensional problems. Implementations are available for a vari-
ety of languages [17,21,22]. A comprehensive introduction to HMC can be found in [1].

To sampleX € R¥, distributed according to a smooth (with respect to Lebesgue measure) densityiMC
augments state space with a fictitious momeniuaR " . This defines the joint density

2
mw(x, &) x exp{—H(x,&)}, where H(z,§):=—logm(x)+ @,

and||&| is the Euclidean norm. In the physics setting, lttemiltonian H is total energy, whereaslog 7(z), ||&]|?/2
are potential and kinetic energies. It is not uncommon to model the kinetic eg&rgyl—1& /2, whered € RV*N
is themass matrixHowever, as shown in Section 4 of [1], this is equivalent to the linear preconditidhing LX
(whereA—! = LLT) in conjunction with the Euclidean norm. Kinetic energy can be non-Gaussian, e.g., depend on
position [23] (see also [15]).

Sampling proceeds by (a numerical approximation to) the following iteration from peing’):

1. Draw & ~ N(0, Iy).

2. Let (x(t),&(t)) be the timet solution to the Hamilton’s equations of motion: = &, & = Vlog m(z), with
initial condition (27, ).

3. Set(x/ T, £71Y) = (x(t), &(t)) for integration timer.

Each integration path lives on a single level set of the Hamiltonian. The resampling ste (0, Iy ) is necessary
to jump between level sets and is thus necessary for ergodicity [24].
In practice, Hamilton’s equations must be solved numerically é&teps with step sizk. Denote this solution
by ¥*. The integration error means we can no longer just accept the move in step 3, which is replaced by a Metropolis
correction:
(27F1 &7+ = W) with probability a(z?, &7 — ¥),

)
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and
(xj+1, aj+1) = (xj7 E,j), with probability 1 — a(xj, &g 1115)7

for acceptance probability
a(z? & — Uh) = min(1,exp{ H (2’ &) — H(\I/Z)}) (7

Since Hamilton’s equations preserve the Hamiltonian, if numerical integration was péffeét,£’) = H(¥*) and
every step would be accepted. In practice, finite step size leads to some rejections and wasted effort. We also note
that for the Metropolis correction to be symmetric, the final momentum should be negated before evaludiiig)
makes no difference since our Hamiltonian is symmetric in momentum.
The numerical integration is usually done withteps of th&Strmer-Verletor leapfrog integrator This symplec-
tic integrator ensures that the Hamiltonian does not diverge, providedufficiently small (see [25], Theorem 8.1).

3.4 HMC Step Size Scaling Laws

Here we review existing scaling laws for HMC step size. These results always inform our choice of HMC step size
and integration time. They are directly used in Section 4.

The step sizé, along with the number of leapfrog stefysare two important parameters to choose. Usuallg,
chosen to achieve some desired acceptance rate, iarst to the desired integration time divided /layif # is too
large, the average acceptance probabiliphdeept, will tend to zero. On the other hand,/ifis too small, then too
many stepg will be required, and computational effort will be wasted. In [26,2¥7]c RY = RX x -..RX with
densitym(z1,...,on/x) = f(w1)--- f(zn/x) is studied in the limitV" — oo. This so-calledi.i.d. limit yields the
result thath should be tuned unt.6 < P[Accept < 0.9.

In the Gaussian case, we can extract more precise conclusions, resulting in useful analysis and algorithms that
can be used, even in non-Gaussian problems. Consider a #rget\/(0, C), whereC' has eigenvalues? > A3 >

- > A% > 0. If we want the integration trajectories to travel a distance comparable to the largesAsoatke

must haveh! = O(A;). On the other hand, to avoid instability we must have 2\ . This leads to a naive scaling
¢ = O(A1/An). The ratioh; /Ay is the commonspectral condition number of any matrik such thatC' = LL7.

The problem with the spectral condition number is that it takes into account only the largest and smallest scales.
The largest scale does set the required integration lengtlallldimensions contribute to integration error. A condi-
tion number taking these considerations into account was introduced in [28]:

N\ 1/4
«(L) = <Z(M)> Ll s ®)

n=1

Above, || - ||2 is thespectralnorm, and|| - || s+ is the fourthSchattermorm [29]. For matrixA with singular values
A1 > --- Ay > 0, thekth Schatten norm is

N 1/k
| Allgn = [Z Ail : 9)
n=1

In [28] it is shown that under some regularity conditions, a Gaussian density reQikgseapfrog steps for efficient
samplingx may be approximated using the largest s@aletep sizé:, and average acceptance probabilitxétept:

K A );1127/4\/(1,1<1 _ P[Aczcepi> (10)

Above, @ is the normal cumulative distribution function. Thuss the number of steps needed to traverse the largest
scale); /h, times a correction factor depending on acceptance probability. In non-Gaussian problems, we recommend
using large (small); /h as evidence gbossibleof inefficient (efficent) sampling.
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3.5 Conductance in Multimodal HMC

Let A ¢ RY, andc(A) be the average probability of the chain escapih@n one step. Theonductanceof the
chain,C := min;(4y<1/2{c(A)}, quantifies its ability to escape local modes. In [30] it is shown that the conductance
of HMC is no better than that of the random walk Metropolis-Hastings method. An upper bound is also given for
conductance of HMC chains:

((A) < }faAﬂ(m)dx

-2 7w(A)
From Eq. (11) it is clear that an increasing integration time can increase conductance at most linearly. Since compu-
tational effort also increases linearly withthis does not help overall.

Equation (11) also shows that conductance can be constricted by a single low-probability (density) surface. For
Gaussian noise models (e.g., Section 2.3), this can lead to conductance decreasing exponehtigdlylnaeed,
for the bi-modal normab.5 N (-1, 6%) + 0.5N (1, 02), the leading-order term of conductance is proportional to
exp{—1/(20?)} (see [30] Theorem 3).

Tempering methods need to use a highest temperdiesuch that the corresponding “hottest density” has
nonvanishing conductance (see Section 5.3.2).

(11)

4. PRECONDITIONING OF THE POSTERIOR COVARIANCE

The HMC (as well as standard Metropolis Hastings) method works better when sampling from a unit Gaussian. The
preconditioning techniques below sample a transformed variabteF (X ), which (hopefully) looks more like a
unit Gaussian. These samplés are transformed back int§7 = F(Z7) ~ p(z | y).

4.1 Transformation by Diffeomorphism

Here we write some relations involving pushforwards by diffeomorphisms. They will be needed in later sections.
Let us start withX ~ p(- | y), and a diffeomorphisn#’, which transformsX +— Z = F~1(X). Equivalently, the
densityp(- | y) is transformed by thpushforwardoperator,F;;l, into g:

9(2) = (Fg'p(- |9))(2) := |de( DF ()| p(F () | y). (12)

Above, DF is the matrix of partial derivative§DF);; = 0F;/0z;. Using HMC, we sample from the transformed
densityg, producingZ?, ..., ZX. Transforming backX* := F(Z*), and we have samples frop(- | y) as desired.

In the Gaussian casg(- |y) ~ N(u, C), with C = LL7, the linear preconditioner induced by a matfix
transformsL — F~1L, and likewise the covariance ards

LLT — (FL)(F )T = (F~HLLT(F~HT

13
W(L) > [ E= Lol (F2L) e (13)

4.2 Preconditioning by Prior Reparameterization

If the support ofp(x | i) is bounded, sampling directly from it will suffer from boundary issues. It is therefore standard
practice to transfornrX — Z := F~1(X) (as in Section 4.1) such that sugp) = R". We know of no existing work
analyzing the effects of this reparameterization on conditioning, so we include it here.

In our case, the priop(z) is a transformation of a standard Gaussian by a diffeomorpbisithat is,p(z) =
(G4 d)(x). This meansZ = G~1(X) is a useful transformation. If the prior results in difficult posterior covariance
(see, e.g., Section 2.1), usigfas a preconditioner will often improve conditioning. To see this, note that

Gu'p(z|y) = p(G(z) |y)|de(DG(x))] o d(x)py (y | G(2)). (14)

Thus, preconditioning witld7 is equivalent to a reparameterization that uses a standard Gaussian prior andinserts
inside the likelihood (probably achieved by usi@gx) in the forward model). In our work, we sometimes explicitly
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preconditioned witlt7 and at other times reparameterized a unit normal. Not only are these mathematically equivalent,
but, due to caching in TensorFlow probability, they are computationally equivalent G~ is replaced by the
identity) [31]. Doing one of these is necessary, as it removes much of the nonlinearity and allows the methods of
Section 4.3 to work efficiently.

Organizing code around reparameterizations has some advantages: First, the benefits of preconditioning by the
prior are realized without the programmatic complexity of specifying a preconditioner. Second, the fuhdozs
not need to be a diffeomorphism (see [5] for an example). On the other hand, there are benefits to letting the prior
encode the state directly. First, in this setup the MCMC variables being sampled are the state variables you care about.
Second, one can use a priwt easily described as a transformation of a Gaussian.

The sampling benefits/degradation of prior reparameterization will vary. Consider the Gaussian example (1). If

Cpr = Ly L., then the reparameterized posterior covariance becomes
1

[T+ 0 2(AL, )" (ALy)] (15)

We see in Fig. 4 that reparameterization can help when prior covariance is the major contrilytouttoan hurt if
low noise is the major source of small eigenvalues.

4.3 Linear Preconditioning for Gaussian Problems

Here we examine linear preconditioning of Gaussian distributions. This simplification allows for precise results and
inspires techniques. These techniques are applied to non-Gaussian problems in Section 4.4.

The setup here is like other diffeomorphisms (Section 4.1), except we assume\/ (0, C) is Gaussian, and
the preconditioning transformatiafi € RV*V is linear. If FF7 is a scalar multiple o, then Eq. (13) shows the
transformed covariance is a multiple of the identity, which minimizeSubsequent sections will use approximations
of this factor built from samples obtained during burn-in.

4.3.1 Diagonal Preconditioning

A simple approximation of a covariance factor is the diagonal md#rimade with sample standard deviations. This
approximatesD, the diagonal matrix ofictual standard deviations. The next three propositions are original, and
illustrate why we like this preconditioner.

First, preconditioning withD should work well in the diagonally dominant case. The proof follows from the
Gershgorin circle theorem [29].

Proposition 1. Suppos&’ = LL” is diagonally dominant with, for every ., |Cij/Cii| <8 <1 Then,

k(D7L) < NV T
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FIG. 4: Covariance spectra. Eigenvalues indexed by correlation with the prior eigenvectors. From the posterior before reparam-
eterization (2), and after (15). Reparameterization “lifts” the high-frequency posterior scales. Different noise kvelprior
correlation lengthx result in reparameterization helping or hurting. In all cagds= 20, N = 40, and the prior shrinkage

& = 0.001 The minimal condition numbex [see Eq. (8)] ist0/* ~ 2.5.
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Second,D is close to the ideal diagonal preconditioner, especially in the near-diagonal case.

Proposition 2. Let D,,; be a preconditioner minimizing(G—1L) over all diagonal matrices;. Then,
K(D™'L) < VN «(D,;L).

Furthermore, if at mosK entries in each row of. L” are nonzero, then
K(D7'L) < VK x(D,}L).

The proof is found in Appendix A.1. A corollary is that preconditioning withcan hurt by at most a factor of
V'N (or VK).

Third, in practice, we use the diagonal matrix of sample standard deviatignsather thanD. If we use
S i.i.d. samples from\V/(0, LLT), thenS need only grow logarithmically withV.

Proposition 3. Givene, p € (0,1),

1+¢
1-¢’
with probability p, as soon as the number of i.i.d. sampfesatisfies

25 3N
Proof. We have the distributional equalit@i\/(f + A)D, whereA € RV*V is diagonal,

s S 2
1, 1
Appn = g E Zs,n -1- (S § :ZSJL) ’
s=1 s=1

andZ; , are i.i.d. normal variates. Then, using Lemma 3,

~_ AL _1a 1+ max,{A.,} _
17y — 1 1 < 7).
K(D™L) = |[|[D™"L||2||L DHS“*VHminn{Ann} k(D™'L)

The proof will be complete once we show that our conditiorSamplies max,|A,.,,| < € with probability less than
p. This follows from Lemma 6 and the fact thanRax, |A,.,| > €] < N P[|Ag] > €. O

k(D™L) < x(D71L)

4.3.2 Full Covariance Preconditioning

By full covariance preconditioningwe mean starting with the sample covarian€eg,factorizing asC’ = LL7,
then preconditioning wittL. After stating two results on full covariance preconditioning, we discuss a scheme for
implementing it. The results and the scheme were discussed in our previous work [28]. The scheme is discussed in
more detail and implemented here for the first time (Section 4.4).

Remarkably, if the samples are independent, the condition numbendbdspend on the true covariance.

Lemma 1. SupppséXl, ..., X% are ii.d. samples ok ~ N (0, C), and we precondition sampling &f with the
S-sample factor.. Then the preconditionedfollows the law ok (B), for BBT ~ InverseWishart(S, N).

In the high-dimensional limitg for inverse Wishart matrices has a simple expression.

Proposition 4. If BBT ~ InverseWishart(N,S), andN — oo with S/N — w € (1, 00), then

kK(B) (1+w hHl/4
N4 11— -2

almost surely.
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See Fig. 5 for a visualization of Lemma 1 and Proposition 4. Due to the “universality” of random matrices, we
expect these results to hold for linear transformations of a wide variety of i.i.d. random variables [32,33].

These results lead to a useful preconditioning schemexd_be the condition number before preconditioning,
and kg be the condition number after preconditioning wih i.i.d. samples. Assuming the sampling rate is pro-
portional tol/«, the time to obtairs; “final” samples is proportional t&'ko + Sykg. On the other hand, without
preconditioning, the time is proportional & ko. This means the speedup from preconditioning is

SfKo

- 1
SK0+SfKS (16)

Estimatingkg using Eq. (10), and using Proposition 4 as an expressiorgpwe can compute speedup for various
S. If the maximal speedup (using* samples) is> 1, we proceed with drawing™ burn-in samples, precondition
with L, then draw ourSy final samples. If not we draw; samples without preconditioning.

Mentioning some practicalities is in order. Burn-in samples obtained using standard HMC are far from indepen-
dent. As a remedy, we use the no-U-turn sampler (NUTS) [34] to obtaifthereconditioning burn-in samples and
stop sampling when the mean (across dimensions) effective sample sizelisour experience, obtaining NUTS
samples takes around three times longer than standard HMC samples. This happens since NUTS sampling involves
doubling the trajectory length and resampling within these long trajectories. Moreover, the additional preconditioning
stage requires another step-size adaptation stage. We therefore repleitie 4x, in the denominator of Eq. (16).
This leads to Algorithm 1. See also plots of samples in different stages in Fig. 6.

Each step-size adaptation in Algorithm 1 is done via an iterative scheme [35], invoked after preemptively adjust-
ing step size using Eq. (10). Step size adjustment comprises around 30% of runtime. This could often be shorter, but
this longer adaptation makes the algorithm more robust to stuck chains.

4.4 Application to a Weakly Non-Gaussian Problem

Here we compare preconditioning schemes as applied to the shell model from Section 2.3. This problem is non-
Gaussian. In particular, the noise level depends on the signal, the temperature and amplitude are constrained to be
positive via a Softplus, the coordinate system is shifted, and emissivity is a nonlinear function. This is still “weakly”
non-Gaussian, since observed skew and kurtosis levels of transformed saZmyses close to that of a Normal.

The schemes compared are referred to as “full,” “diag,” and “none.” “Full” uses Algorithm 1. “Diag” uses Algo-
rithm 1 but skips the NUTS sampling and uses diagonal rather than sample covariance preconditioning. “None” does
not precondition. Code was run on Tesla P100 GPUs.

20.0
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g ‘ 2
g 4 — 30 | 12.5 Zos |1
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S 2 | 7.5 g |
o
e I
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S
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FIG. 5: Density and asymptotie(B), when BBT ~ InverseWishart(N,S) with N = 64. Left: density plots of sample
values ofi(B) for differentS/N. k(B) — N¥*asS/N — oco. Center: asymptotic estimate (from Proposition 4) vs. samples of
k. OnceS/N = 20, « is close to the ideal value d¥'/4 ~ 2.8. Right: the Magenko-Pastur density, which is the limiting spectral
density ofWishart(N, S).
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Algorithm 1: Sampling stages for unimodal problems. Abandon and restart using RERI@ifs to reduce
fast enough

Initialize 20 chains by sampling from the prior;
Starth small enough so[Rccept ~ 1.0, then adaph until P[Accept ~ 0.9. Use number of leapfrog steps
¢ =5.When done, set = (1/h)(7/2);
Draw stage 1 samples. Use them to compute the largest’scdleen set = (A1 /h)(7/2);
Draw stage 2 samples. Use them to recompytand RAccept. Computex, using Eg. (10) and maximal
speedup using Eq. (16);
if maximal speedup 1then

while N-1 3 {ESS(stage 3 samplgd < S5* do

\ Draw more stage 3 samples using NUTS;

end

Precondition using the stage 3 sample covariance;

Adapt step size until ccept = 0.9, and set = (1/h)(r/2);
end
while ESS (final stage samples< Sy do

\ Draw morefinal stage samples;

end
Result Sy “final” samples

1 1 [ 1

40 1 1 n 1

Lo

20 = N 1 u 1

0 i 1 “m 1

1 1 [ 1

N, 1 1 n 1

—-20 1 1 1 u 1

—400 —-300 —200 —100 —400 —300 —-200 -100 0
Sample index : Burnin are negative Sample index : Burnin are negative

FIG. 6: Traces of Algorithm 1. Plots of coordinate sampl&§ ) are the most important diagnostic tool. Left: stages of Algorithm 1

are divided by dotted lines. Leftmost is the initial step-size adaptation phase. Using a large number of samples here allows chains
to reach the typical set. The lofwalue and low initial. means sampling proceeds slowly but is likely to be stable. Second from

the left are the “stage 1" samples. These hélarge enough to get a reasonable estimat® aind also allow chains more time

to reach the typical set. Next are the “stage 2" samples, used to comypatel the number of preconditioning samples needed,

S*. Next are four very closely spaced dashed lines, within which NUTS sampling was used to$bédiactive samples. These

are used to form the sample covariance fadtansed for preconditioning. Second stage from the right is step-size adaptation
done after preconditioning. The final stage, starting at 0, includes the first 25 “final” samples. Right: same stages, in a case where
preconditioning hurt. The reason here is that some chains did not reach the typical set before preconditioning samples were taken.
This led to a bad preconditioner.

Twenty plasmas to reconstruct were drawn from the prior. The reconstruction model used a variety of noise
levels fromo = 1.25to0 15. Each reconstruction was run until m{ESS,} = Sy, for Sy € {400,1600Q 6400;. A
total of 282 reconstruction configurations were attempted for each of the three schemes. Eleven configurations were
thrown out, since at least one model failed to rediéast enough. This is usually the result of being stuck in a
local mode due to poor initialization. If this happens in production, our algorithm restarts with REMC. The traces in
Fig. 6 help visualize different stages of Algorithm 1. Figure 7 shevesrrelates well with sampling efficiency, and
can be predicted from Proposition 4, even in this non-Gaussian problem. Figure 8 shows that the full preconditioner
significantly speeds up sampling, at the cost of a more expensive burn-in. Diagonal preconditioning helps only a
little.
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FIG. 7: Using Eq. (10), we compute at various sampling stages to show our formulas apply, even in non-Gaussian problems.
Experiments when the burn-iknwas huge (upper 2%) are not shown, as these distort the plot. Preconditioning often made the
situation worse for these. Left: the relationship betweeand the seconds required for effective samples is somewhat close to
linear. This validates (16) as a measure of speedup from preconditioning. Center: the predicted post-preconditioning value of
matches nicely with the actual value obtained by preconditioning, validating Proposition 4. Right: the post-preconditipizing
plotted against the burn-in valuey. This shows a significant reduction kndue to Algorithm 1.
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FIG. 8: Preconditioner comparison from the study outlined in Section 4.4. Left: average runtime breajowril600 shows

that while the burn-in time is longer for full preconditioning, the sampling time is significantly shorter. Center: full covariance
preconditioning results in sampling efficiency around 36, which is aroundt8fiter than not preconditioning. Right: histogram

of oversampling ratiav = S/N selected by Eg. (16) for two values of desired p{iESS,}. When the desired mi{ESS,} is

larger, a largetwv is selected.

5. TEMPERING TO SAMPLE WITH MULTIMODALITY

Best practices for sampling from multimodal distributions are not as easy to come by as for their unimodal coun-
terparts. For example, linear preconditioning usually does not help. A popular family of techniques involves using
a number of modifications of the target, edemperedoy temperaturd’. The terminology and history is rooted in
statistical mechanics [36]. These techniques make use of the fact tha & probability density, and temperature

T > 1, the density proportional to*/ 7 will have lower peaks and higher troughs. Hence it will be better able to jump
between modes.

5.1 Replica Exchange Monte Carlo (REMC)

This section reviews REMC (also known parallel tempering. Related techniques, such aisnealed importance
sampling also deserve consideration [37].
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Given posteriop(x | y) « p(z)p(y | =), and sequence of temperatues 71 < 1> < --- < T < oo, we form
thereplica densitiesr,. in one of two ways:

() o () p(y|z)Y ™, posterior tempering (requirdd; < o), a7
" p()ply | )Y, likelihood tempering

To gain intuition, consider the unimodal example where the prio) ~ N(0, I) and the likelihoodh(y | z) ~
N (u,T). The posterior covariance after tempering withwill be

T[I+T7 ~'. posterior tempering

_ 18
I+T-T-1 ", likelihood tempering (18)

Lpost(T) = = {[

Posterior tempering increases posterior variance without changing the shape or condition number. Likelihood tem-
pering distorts the posterior covariance to make it look like the prior (see Fig. 9).

Together, these form the joint densityzy, ..., zg) := mi(x1) - - Tr(zr). Samples from{(X},..., Xk) ~ 7
are generated, but only the target sampis ~ 71 = p(-|y) are kept. REMC repeats two alternating steps. In
the explorationstep, each replica progresses independeftfy;! — X*. HMC, or another sampling method, can
be used here. In theommunicatiorstep, a number adwapsare proposed between adjacent replicas. For example,
the (1,2) swap proposes that replicas 1 and 2 exchange posiign = X} and X3 = XF. The set of swaps
proposed at each turn are either the set of even sWép<), (3,4), ...}, or odd swaps{(2, 3), (4,5), ...}. In both

3 Untempered 3 likelihood tempering, T=10 3 likelihood tempering, T=99
2 2 2
1 1 1
Sihs
0 <0 .ﬁ%{ <0
-1 = -1 14t -1
—2 -2 -2
-3 -3 -3
-2 0 2 -2 0 2 -2 0 2
X1 X1 X1
3 Untempered 3 posterior tempering, T=10 3 posterior tempering, T=99
T ey N = 1
2 2 W 2 —
By .
1 = 1 = 1 .
1 Y -
0 20 20 :
-1 s ? -1 -1 e
-2 —2 8 -2 . B
-3 -3 o R -3 . e
-2 0 2 -2 0 2 -2 0 2
X1 X1 X1

FIG. 9: Likelihood and posterior tempering. Sampling from a tempered bi-modal normal/[aa 1 version of Eq. (3)]. Top:
likelihood tempering means the hotte%t & 99) replica samples come from a (nearly) isotropic Gaussian. Bottom: posterior
tempering means th€ = 10 replica samples come from a (nearly) bimodal normal, with each mode being (nearly) as poorly
conditioned as the posteridf'(= 1) modes.
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cases, each swap is independently accepted or rejected according to the standard Metropolis-Hastings criteria. For
example,

PlSwap, 5 | 21, z2] = Min{1, &(12)(z1,22) }»
7T($2, 1,23, .. ) _ 7r1(x2)7r2(x1) (19)
m(z1, 22,73, ...)  mi(w1)m2(T2)’

“(172) =

The computational cost of swapping is negligible compared with leapfrog integration. We therefore propose
swaps between every exploration step. In most of the literature, swaps are proposed using a stochastic even-odd
(SEO) scheme, whereby a coin flip chooses between even and odd swaps. More recently, deterministically alternating
between even and odd swaps was proposed [38]. This deterministic even-odd (DEO) scheme has superior scaling
characteristics [39]. We use DEO in all experiments.

5.2 Swapping, Dimension Laws, and Underconstrained Problems

Effective REMC requires the mean swap probabilities,

PISwaR, 1)) = E{PISWaR, .. | X, X,41]},

be large enough to allow information from the hottest replica (the replica using the highest temperature) to make its
way to the target. This section shows that, unlike conductance, swap probability is strongly related to dimension.

5.2.1 Existing Fundamental Results

In higher dimensions, samples concentrate in a thin neighborhood tfptval set[15]. For example, ifr is log-
concave, the typical set{s: : log 7(z) = E{log 7(X)}}, and the neighborhood grows (relatively) thinner as dimen-
sion increases [40]. Since swapping of replicasmdr + 1 must lead to valid samples from their respective densities,
they must swap about as often as these neighborhoods overlap. This overlap is made explicit by Proposition 5.

Proposition 5. Let X,. be a sample from replica,. defined by Eq. (17). The mean swap probability can be written in
terms of the untempered posterior/likelihood:

PlSwa = 2Pp(X, |y) < p(Xr41|9)]s posterior tempering
Rrrt1) 2Pp(y| X,) < p(y| Xrs1)]s likelihood tempering

Proof. The proof has likely been shown many times before (e.g., [41]), for the case of posterior tempering. Consider
likelihood tempering, and write,.(x) « exp{—V (x)/T, — Vo(x)}. The Metropolis criteria (19) gives

P[SwaQT’,H_l)] = /min{ﬂr(mT)wr+1(:1cT+1), T (Tpg2)Trp1 () } A2y A2y g (20)

SinceT, < Ty41,

V(z, V(x, V(z, Viz,
'/Tr(xr)ﬂ—r—&-l(xr—i-l) < 7Tr(£r+l)77r+l(xr) — ( ) + ( +l) > ( ) + ( +1)
Tr TTJrl Tr+1 TT

= V(z,) > V(reg1).
This leads us to split the integral (20) up over regi¢Wgz,) > V(z,41)} and{V (z,) < V(z,4+1)}. A switch of the

dummy variables:,., =41 in the second shows that both integrals are equal¥a R,) > V(X,11)], which gives
to the desired result. The case of posterior tempering is similar. O
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For REMC to work well, information must propagate from the hottest replica (replica using the highest tem-
perature) to the target. To study this, one can keep track dhttex proces®f temperatures. For example, chain
may start by sampling fromr, then swap and sample frofiz_1, thenmtr_», mg_1 and so on. The corresponding
indiceswould bd R, R — 1, R — 2, R — 1,...). A round trip occurs when a chain starts at indexreachesR, then
1, then back tdk. The average number of round trips, starting from all replicas, &ftewvap attempts, is theund
trip rate. To derive round trip rates for likelihood tempering wHER = oo, [39] makes three assumptions: First,
stationarity, X,. ~ ., which is reasonable after burn-in. Secoefficient local exploratiofELE). ELE means that if
X ~ 7, andX" is the result of local exploration (e.g., HMC integration) starting fr&then the potential energy is
independent. In the case of posterior tempering, this meafns X | y)] andlog[p(X’ |y)] are independent, and for
likelihood temperinglog[p(y | X)] andlog[p(y | X')] are independent. Third, they assume integrability of the cubed
log likelihood. This leads to round-trip rates for the SEO and DEO swapping schemes:

1 e 1
2R+2y PEOT oo

TSEO = (21)

wherey is theschedule inefficiency

Rz—:l 1—P[Swap,., )]
Y = .
r—=1 P[Swaqr,r+l)}

This justifies using DEO rather than SEO. Importantly for 21sjs the fraction of samples, starting from, that
make their way down to the target.

Note that ELE will be violated if chains are stuck in different modes, and the modes do not have identical energy
surfaces. In other words, we expect ELE to be violated in most multimodal problems. Nonetheless, [39] finds that the
results of this section roughly held in a variety of problems despite ELE being violated.

As max.|T, 1 —T[fl\ — 0, the swap probabilities are governed by the increasing functififi), which satisfies
the Theorem 1.

Theorem 1([39] Theorem 2) For annealing schedulé =71 < Ty < --- < Tr < 00,
1- PiSwap, , 1)) = A(Trs1) — A(T;) + O(max | T, = T, 4 ).

WhenTg = Thaxis fixed, A is understood to meaf(7ax), theglobal communication barrier
Ignoring the error term in Theorem 1, the round-trip rateo is optimized when

1-P[Swap,, 1) = A/R. (22)

Consider running: copies (chains, in our terminology) of REMC independently, with a total computational budget
of R. In other words,R = k R. In this setup, [39] derives the optimal number of chaitisnumber of replicag?*,
and round-trip ratec:

; ) = R
T2A+ 1 PEOT 204N T 22A + 12

R*=2A+1, k*:% (23)

This optimum is achieved wherj$wag, .. ;)] = A/R =~ 0.5, although they recommend®way, .. ;)] > 0.5t0
reduce the ELE violation.

An asymptotic expression fdr(Tr) is also provided in the i.i.d. regime. Here, one adds a paranigsed with
N =d- N’, assumes the prior and likelihood acts in an i.i.d. manner on each dftygies ofRYN". In other words,

d

d
logp(a|y) =3 V(z,), logpla) =3 V(). (24)

i=1 i=1

We restate their proposition, extending it to posterior tempering.
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Proposition 6 ([39] Proposition 4) Given 24, asl — oo, we have asymptotic convergence

asy. 1 Tr o(T
Aa(Tr) "~ \/;/1 ;z)dT,

where, withX (T") the tempered state,

T =
° Var{log p(y | X(T))}, likelihood tempering

5 {Var{log p(X(T)|y)}, posterior tempering
In this i.i.d. regimeg? = O(d) and hencé\ = O(v/d). It follows thatR /% ;,, = O(d) units of work are done
to produce each sample making its way from the hottest replica to the target.

5.2.2 Number of Replicas and Its Relation to Underconstrained Problems

This section makes its point by example, although results should apply more generally. The example is a lin-
ear/Gaussian problem, with € RM*Y and RankA) = M < N:

1 _ 1
pto) exp =37 Cta b alylo) x expd - g l14s - 12},

In this case, the log posterior is a sum &f terms, whereas the log likelihood a sum &f. If these terms are
independent enough, we expect Proposition 6 and Eq. (23) to show the optimal number of r&plicas, O(v/N)

for posterior tempering, ane: O(v/M) for likelihood tempering. Figure 10 shows this relation holds for a toy
problem.

More precise results can be obtained for unimodal distributions. This approach is partially justified by noting that
if R replicas are needed to exchange in unimodal densigy leastR should be needed to exchange in a multimodal
distribution where one mode looks like

Consider an arbitrary Gaussian posterior, and posterior tempering. Proposition 5 shows that with two
independent chi-square random variables,

PISwaR,. 1)) = P[T:x% — TrraXa > 0].

1.0
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T 6 /,
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FIG. 10: Tempering comparison. The communication barrerand conductance in the bimodal normal of Eq. (3) are shown,
andN is increased while fixing4 = 1. These show the/N, v/M scaling of the communication barrier for posterior tempering
discussed in Section 5.2.2. The resultant conductance is much better for likelihood tempering.
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Since the mean df,.x% — Tr11X% is N(T, — T,41) < 0O, the probability is non-vanishing @& — oo only if the
standard deviation is of the same order. This is satisfi@Lif /7, = 1+ ¢/v/N, for somec > 0 depending only on
the desired acceptance probabilityTHax < oo is chosen ahead of tim&ax = (T2/T1) %1 = (1 + ¢/VN)E- L It
follows thatR o v/N log Trmax. This line of reasoning can be extended to any distribution with constant heat capacity
[41].

To analyze the case of likelihood tempering, it will help to rewrite the variance of the potentials from Proposi-
tion 6 as specific heatlike quantities:

Lemma 2. Let X (T') ~ 7%/ be a tempered state. Then, for posterior tempering,

d
Var{log p(X (T) | y)} = ~=T*=E{log p(X(T) | y)},
and for likelihood tempering,
d
Var{log p(y | X(T))} = —TzﬁE{logp(y | X(T))}-
With this in hand, suppose the prior covariart¢g. = I in Eq. (1), and Rankd) = M < N. Supposed has

singular valueg o, }. If the nonzerax,, are all equal, one can use Lemma 2 and Proposition 6 to derive an asymptotic
relation (asM — oo) for likelihood tempering. Assuming the relation holds whepis nonconstant, we have

A \/7/ _1 (B2 —|—02 (ot +otf P = \/7 {1+0/(1¢/1“1) }

Equation (23) now indicates that the optimal number of replicas shoutd ©¢\/ M).

5.3 Selecting Parameters for REMC with HMC

The work of previous sections allow us to give concrete recommendations.

5.3.1 Likelihood vs. Posterior Tempering

We usually prefer likelihood tempering. The reasons are that (i) it has better scaling properties for underconstrained
problems (Section 5.2.2), (ii) it is stable no matter how lafggy is, and (iii) the hottest replica is close to the prior,
facilitating the leapfrog heuristic of Section 5.3.4.

Likelihood tempering is limited in that the highest temperature replica is approximately the prior. For that reason,
if there is a possibility of modes far outside the typical set of the prior, posterior tempering should be used.

5.3.2 Selecting the Annealing Schedule

The annealing schedule1s= 71 < T, < -+ < Tr = Thmax. We select this in two stages. First we fiffiglax, and
second we adjust the other temperatures.

Tmax Must be hot enough so that the hottest replica can mix well and explore the proximity of all posterior modes.
The dimensionV need not play a role. For example, with our spectroscopy model, tempering changes the noise term
o(x)? [in Eq. (4)] to To(x)?. We therefore expectiax o« o2 to be hot enough for nonvanishing conductance
(see Section 3.5). The constant of proportionality will depend on the maximum regdudl ¢, (x)],,| on some
path between modes. We cannot expect to knowdhisiori. Instead, during burn-in we start with geometrically
increasing temperatures. We then monifo([16]) to see which replicas miwithout swapping Tiax is Set to the
coldest temperature that was mixing during this burn-in phase. For likelihood temperiogulidhaveset?max = oo,
but we found that to be less efficient.

After Tr = Tmax is chosen, we adjusty, ..., Tr—1 until P[Swap,., )] is close to constant, as justified by
Eq. (22). We use an interpolation scheme as in [39].
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5.3.3 Selecting Step Sizes for Each Replica

A good initial guess for theth replica’s step sizey,., is h, « /1., since this would be ideal for a Gaussian. After
every temperature change, step sizes can be adjusted by an iterative scheme [35]. It helps to have an initial guess for
the new step sizes. This can be done by finding an interpolating funatienf (T'), that is piecewise linear ix/T.

5.3.4 Selecting the Number of Leapfrog Steps

To take advantage of batch operations on a single GPU, the number of leapfrod stepgd be the same for all
replicas (see Section 3.2). Given likelihood tempering, the hottest replica will be similar to the prior, and should be
much better conditioned than the target. We therefore expect the hottest replica will need far fewer leapfrog steps than
the target. Since we choo%k .« S0 that only the hottest replica is mixing well (without swapping), we should choose

¢ to facilitate mixing of this hottest replica. This allowsx 1/hg, which is less than th&(1/h1) needed for the

target to mix well (without swapping).

As it turns out, we can redudeeven further. Equation (21) indicates that only one olit-fy samples produced
by the hottest replica make their way to the target. THesey intermediate samples give additional time for the
hottest replica to mix. To use this opportunity, note that leapfrog integration travels for a<timg/, and if hg¢
is small, sampling approximates a random walk. The expected time traveled byl thegéntermediate samples is
therefore proportional th z¢ /1 + v. Assuming the hottest replica has largest scalkof, we should choosé so
thathrl/1+v ~ Ag1m/2, 0r

1
hrvVI+y

Reducingl according to thideapfrog heuristianeans the integration length is less than ideal for every replica.

As a result, state samples’ will certainly not be independent. We also expect the potential energy samples,
—log[p(y | X7)], to lack independence as well. In other words, the ELE assumption of [39] (see Section 5.2.1) will
be violated. This can be visualized by plotting chain traces (see Fig. 11). Swapping is turned off for these plots, since
we want to visualizéocal exploration.

The toy model in Fig. 11 implemented Eq. (3) with= 10, M = 5, 55 replicas, and noise = 0.025 We also
setThmax = 02 to ensure the hottest replica was barely mixing. Other temperatures were geometrically distributed.
We estimated r 1 using an exact formula for the largest scale of the tempered unimodal version of Eqg. (3).

We next used the same toy model but with swapping turned kﬁv\(&qmﬂ)] ~ 0.75). The noise leveb was
swept from 0.00075 to 0.05 while keeping the number of replitdized at 55. This varies the schedule inefficiency
v. See Fig. 12, where following our leapfrog heuristic exadegffrog multiplier= 1) led to more efficient sampling
than shorterléapfrog multiplier< 1) or longer {(eapfrog multiplier> 1) integration times.

In a problem where modes are not Gaussian, the optimal integration time will no longer be giveni2the
heuristic, and the energy distribution may be such that an ELE violation is more problematic. To test these effects,
we used the multimodal version of our spectroscopy model from Section 2.2. Since our REMC implementation runs
R concurrent chains on GPU at once, memory usage incréaieges. We therefore limited to 150. We used the
parameter choices outlined in Sections 5.3.2 and 5.3.3, and asumee- 1. Figure 13 shows potential energy
traces, similar to the toy-model traces of Fig. 11. Again, we see correlated samples. However, with the spectroscopy
model, different modes have different average potential enerdy ferl.

As with the toy model, we usedlaapfrog multiplierto test variations on the leapfrog heuristic (25). Sampling
is once again most efficient if the heuristic is followed exactly (Fig. 14). We also compared $htting= oo in
addition to the coldest temperature that mixes without swapfling. = oo was much less efficient, supporting the
recommendations given in Section 5.3.2.

™
€ ~ )\R’]'E (25)
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FIG. 11: Potential energy traces from the toy model (3). Three chain traced@f[p(y | X )] are shown for the targqt = 1 and
hottestT” = 1599replicas. Autocorrelation length is longer in the target. In neither case are samples independent. Since the two
modes in the toy model are identical, one cannot tell (by potential energy alone) if the chains are in different modes.
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FIG. 12: Optimal number of leapfrog steps and toy model. The (likelihood) tempered posterior from Eq. (3) was run for

a number of differentt. Eacho corresponds to a different schedule inefficiencyThe x-axis is deapfrog multiplier The

number of leapfrog steps taken is this multiplier times the heuristic (25). Left: sampling effort, as measured in leapfrog steps per
min,{ESS}, is lowest when the leapfrog multipliets 1. So following the heuristic (25) exactly was most efficient. Center: the
number of effective samples obtained by the hottest replica (in relation to the target) amms$ 1/2 to 1/10 that predicted by

Eq. (21). Perhaps extra effective samples were picked up along the “hot to target” trip. Right: the target integratioi? time,
significantly less than would be required to efficiently explore the largest target sedlpwithout REMC. So (i) the leapfrog
heuristic is saving a significant number of steps, (ii) the state samples are correlated, hinting that ELE is likely violated, and (iii)
even so, following our leapfrog heuristic was the most efficient choice.
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FIG. 13: Potential energy traces from the spectroscopy model. Three chain traces shown for tHE tarfyeind hottes?” = 33
replicas. Both replicas exhibit autocorrelation within each chain. The target replica’s chains also exhibit different average potential
energy. This happens since the target replica is unable to jump between modes, and the modes have different potential energy. The
autocorrelation of each chain (not shown) is longer for the tafget 1 than hottest replicd’ = 33. This is is expected since both
use the same number of leapfrog steps, but the target must use a smaller step size.
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FIG. 14: Efficiency, number of leapfrog steps, apdn the spectroscopy model. The (likelihood) tempered multimodal posterior
from Section 2.2X andY axis are as in Fig. 12. The “Mean” is taken over experiments with diffeyehteft: following the
leapfrog heuristic was the most efficient choice. Center: experiments were also doriBnyyitk oo in addition to the coldest
temperature that mixes without swapping (recommended in Section 5.3.2). YWhagr= oo, sampling was less efficient, and
the leapfrog heuristic selected too few steps to be efficient. Right: Whgn= oo, the ratio of (effective) samples drawn by the
hottest replica to that of the target was greater thany. This is unexpected and unexplained. For bBbthyx values, oncé is high
enough, Eq. (21) is satisfied (thévalue isx 1), presumably because ELE is no longer violated.
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APPENDIX A. SUPPORTING LEMMAS
APPENDIX A.1 Equilbration of Matrices

The equilibration of a matrixl is defined in [42] as a rescaling of the rows such that| 4;| = 1, in some vector
norm. Since the preconditioned covariarié& 1 L)(D~1L)T has ones on the diagond), L is equilibrated in the
L2 norm. They go on to prove that equilibration is a near optimal diagonal scaling. In this section we follow their
lead, reproving pieces from scratch in order to avoid unwinding their more general, and technical, results.

Below, ||z[|2 is the L2 norm on vectors, arfti||2 := max,,—1z - Az is the spectral norm on matrices. This is
upper bounded by the Frobenius nofm||% = >, ; A%. In the following, A; denotes thgth row of matrix A. A
key to [42] establishing their results is the notion of monotonicity of some norms. We prove here the only case we
need.
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Lemma 3. LetG € RV*Y pe diagonal with non-negative entries. For adyc RV,
[AG| s = [|All semin, { G }-
Proof. We have
|AG|| % = Trace{(AG)(AGT)(AG)(AG)"} = Trace{ G*AT AGZAT A}.
The result then follows by repeatedly applying (to positive semideflnjte

TracgGU} = ZGMUM > min, {Gn, }TracgU}.

n

O

Lemma 4. Let A € RV*N be equilibrated in the L2 norm. Supposged” has K nonzero elements in every
row/column. Ther A, < VK.

Proof. Since(AAT)ij = A; - A, our condition ond AT implies that, for every, there are at mosk’ rows A; such
thatA; - A; # 0. For these rows, Cauchy-Schwarz givesys A; < 1. Therefore,

IANI3 = [AAT |3 < AAT|F =Y (Ai- 4;) < > 1<KA
iJ {(@.5): Ai-A;70}
The result follows by taking fourth roots. O

We now have our main equilibration result.

Lemma 5. Supposed is equilibrated in the L2 norm, witll A” having at mostX nonzero elements in every row.
Then for any diagonal matrig,

K(A) = [All2 A s < VE |G AJ2l| ATG 5 = VK k(G A).

Proof. For any matrixF’, ||F'||, > max;|| F;||». Therefore, using Lemma 4,

_ _ _ _1,14]]2
1G22 > masg (G2 = m 6| = mawgl 12
Likewise, Lemma 3 tells uA—1G|| s+ > ||A~Y||gemin;|G;;|. Therefore,
_ _ —1,14]]2 , All2
1672 Al A6 e = mavg| G A2 ] g G = 172 e
Rearranging, we have proved Lemma 5. O

APPENDIX A.2 Chi-Square Bounds
Lemma 6. If Z, ~ N(0,1) arei.i.d., then fore € (0,1),
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Proof. In the corollary to Lemma 1 in [43], they establish fef a chi-square random variable withdegrees of
freedom, and > O:

Plx% — S >2VSt+2t] < e,

Al
Plx% — S < —2VSt] <et, e

The second inequality in Eq. (A.1) directly gives us; ji2 = 2,/¢/S,
S 37 AP B PP P
S — s - 2 S = >

To use the first inequality in (A.1), we start with the substitutig@ = (5/2)+/c/.S, which impliesy/c/S = ¢/5 <
1/4,sothat5/4) > 1+ \/c¢/S:

S -

1 £ X% — S 5 [c

PI=Y Z22-1>_|=pP|22 >2=, /=
[SSZ_:I s —2] S T4 S}

<P XS;S >2<1+ ;) ;}
=P XZS—S>2\/§+ZC}
<e €
—Se?/25
Combining, we have
Pl 1 ES: 72 -1 > E] < 2675/, (A2)
S ~ s -2~

s 2
P[(;ZZS> > ;] < e Se/4, (A.3)

Combining Egs. (A.2) and (A.3), we have the result. O
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