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The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with
dimension has led to wide adoption of HMC by the statistics community. Modern autodifferentiating software should
allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encountered
using HMC for inverse problems: poor conditioning and multimodality. Novel results on preconditioning and replica
exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given
for the number of integration steps as well as step size, preconditioner type and fitting, annealing form, and schedule.
These recommendations are analyzed rigorously in the Gaussian case and shown to generalize in a fusion plasma
reconstruction.

KEY WORDS: inverse problems, Markov chain Monte Carlo, preconditioning, replica exchange, parallel
tempering

1. INTRODUCTION

The goal of Bayesian inverse problems is to produce and characterizep(x | y), theposteriordistribution over possible
state variablesX, given measurementsy. In principle, samples from the posterior can be used to determine the mean,
quantiles, and other relevant statistics. These samples can be obtained using Markov chain Monte Carlo sampling,
which requires only that the log density,log p(x | y) (assumed absolutely continuous with respect to Lebesgue mea-
sure), be available as a function (up to an additive constant). In practice, extracting samples can take prohibitively
long, so people often resort to point estimates.

The most common Monte Carlo setup is therandom walk Metropolis-Hastings. This requires, once burnt-in,
O(N) evaluations oflog p(x | y) for each effective sampleX ∈ RN . A more favorable scaling is obtained using
theHamiltonian Monte Carlo, or HMC, which requires onlyO(N1/4) evaluations of∇zlog p(x | y) [1]. Due to the
O(N1/4) scaling, HMC has seen wide acceptance in the statistics community. However, thus far HMC has seen only
minimal usage in the world of inverse problems [2–4]. The barriers to acceptance are real: The gradient evaluations,
∇zlog p(x | y), required by HMC, translate to derivatives through a forward model. This task is made easier by
recent advancements in autodifferentiating software. The next two barriers are geometrical and appear in somewhat
predictable ways in inverse problems. In particular, the second barrier is ill-conditioned posterior covariance, often
induced by low rank and/or low noise forward models. These introduce a large multiplier to theO(N1/4) scaling that
must be dealt with. Another barrier is that of posterior mass separated by regions of extremely low density. When
present, thismultimodalitycauses such difficulty that the highest priority is crossing these low-density regions.

Our efforts to mitigate ill-conditioned covariance led to reparameterization and linear preconditioning. We con-
tribute rigorous analysis of reparameterization, diagonal, and “full covariance” preconditioning, including an algo-
rithm to select burn-in size.Replica Exchange Monte Carlo(abbreviated REMC, also known asparallel tempering),
is used to deal with multimodality. Novel criteria for selecting annealing form and schedule, number of integration
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steps, as well as step size are given. In all cases, a generic Gaussian problem is used to extract concrete recommenda-
tions, which we then test on a spectroscopy-based inversion.

Our perspective is the result of Google’s ongoing work in reconstruction of (fusion) plasma states [5]. In this
industrial research setting, new experimental data arrives daily. Reconstructions must be done, and redone, forthou-
sandsof experiments. Unexpected artifacts may appear in new measurements that are not well represented by the
current model. Physicists modify models weekly and need to understand changes. Sampling code must work well in
the majority of reconstructions, and optimal tuning in each situation is not possible. For that reason, we emphasize the
use of simple scaling laws and crude algorithmic decisions over intricate methods. With this perspective, we add to the
body of inverse-problems-oriented HMC literature. See [2,4,6] for some applications. See also [7] for reparameteri-
zations of HMC relevant to inverse problems in high dimension. See [8] for a lift-and-project approach applicable to
inverse problems with low noise. An introduction to HMC can be found in [1]. For those with some HMC experience
we recommend [9]. An introduction to Bayesian inverse problems can be found in [10], and an overview of Bayesian
modeling in statistics in [11].

Section 3 is a prerequisite for Sections 4 and 5. All other sections can be read independently.
Section 2 describes how common features of inverse problems can lead to difficult sampling situations. Section 3

reviews HMC. Section 4 discusses preconditioning. Section 5 discusses REMC.

2. SOME FEATURES FOUND IN INVERSE PROBLEMS

In the Bayesian inverse problems setup we are interested in, the unknownX parameterizes a physical quantity of
interest. For each uniqueX, a singlemeasurementY ∈ RM is observed. The likelihood is chosen as a (hopefully
very accurate) representation of the data generating processes. Often, little to no ground truth examples ofX are
available. A different situation is often found in the statistics community, where many independentY are observed
for the one and onlyX. For example,X could be a coefficient of effectiveness of a drug treatment andY the outcome
(recovery or not). The likelihood is often then chosen as a mathematically convenient representation of the distribution
of possibleY givenX [11]. Often, no attempt is made to describe details of the process by whichY emerges. Both
of these contrast with the so-called “generative models” popular in the machine learning community. There, the usual
goal is to learn a probabilistic relationshipX → Y so as to generate newY [12]. The likelihood there is often taken
as a mathematically convenient and extremely flexible function withlearnedparameters.

These differences lead to a different prioritization of challenges for Bayesian inverse problems. The lack of
flexibility in choosing a likelihood means we must deal with the covariance structure imposed by the measurement.
The need for physically realistic representations ofX, combined with often sparse measurements, means we often
use parameterizations leading to multiple local maxima ofp(x | y). Contrast this with the “generative models” world.
There, a deep network can often transform a simple posterior to the observedY , thus reducing the need to model
correlations [13]. Moreover, since recoveringX is a nongoal, being stuck in one of many modes is okay, so long as
the resultant distribution overY is the same.

2.1 Poorly Conditioned Posterior Covariance

Consider the toy problem,

p(x) ∝ exp
{
−1

2
xT C−1

pr x

}
, p(y |x) ∝ exp

{
− 1

2σ2
‖Ax− y‖2

}
, (1)

whereA ∈ RM×N is theforward matrix, mapping the unknown state variableX to the measurement spaceRM . The
prior correlation,Cpr, is the discretization of Eq. (5). Collecting terms quadratic inx, the posterior covariance is

C =
[
C−1

pr + σ−2AT A
]−1

. (2)

Suppose the forward matrixA is low rank and so only constrainsM < N directions inRN . For smallσ, these
constrained directions will have small posterior variance asymptotic toσ2. The other directions will have variance
governed byCpr. The result is poorly conditioned posterior covariance (see Fig. 1). In that example, sampling is
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FIG. 1: Singular values of Gaussian problem. Spectra of relevant matrices in Eq. (1). The low rank forward matrix and/or long
prior correlation length results in poor conditioning. In all cases,M = 20, N = 40, and the prior shrinkageδ = 0.001. We sort
spectra by their corresponding eigenvectors’ (Pearson) correlation with prior eigenvectors. Frequency increases left to right. Left:
the forward matrixA ∈ RM×N . Center: prior covariance for two different values of prior correlation lengthτ, cf. Eq. (5). Right:
posterior covariance (2) is poorly conditioned.

about 92 times less efficient than if the posterior was ideally conditioned. Section 3.4 details the relationship between
sampling efficiency and conditioning.

2.2 Multimodal Posteriors

The posterior corresponding to the linear problem from Section 2.1 will always have exactly one local maximum, or
mode. In practice, nonlinear parameterizations of state can easily lead to multiple modes. These tend to arise in an
attempt to model details that are not fully constrained by the data.

A multimodal toy model is a Gaussian prior forX ∈ RN and mixture of Gaussians likelihood corresponding to
M ≤ N measurements:

p(x) ∝
N∏

n=1

e−x2
n/2, p(y |x) ∝

M∏

m=1

[
e−(xm−1)2/(2σ2) + e−(xm+1)2/(2σ2)

]
. (3)

This leads to posterior density

p(x | y) ∝
(

M∏

m=1

[
e(xm−µ(σ))2/(2v(σ)2) + e(xm+µ(σ))2/(2v(σ)2)

])(
N∏

n=M+1

e−x2
n/2

)
,

µ(σ) : = 1 + σ2, v(σ)2 := σ2/(1 + σ2).

Whenσ ¿ 1, standard HMC will find itself stuck in any of the2M modes. The probability of escaping one of these
modes is, to leading order, less thanexp

{−(1 + σ2)/σ2
}

(see Section 3.5).

2.3 Model Problem: Reconstruction from Spectroscopy

Our model problem is the inference of amplitude, temperature, and velocity of an ion species from an emission spec-
trum. Photons are emitted from an N-point discretization of the square[−1, 1]× [−1, 1], and line-integrated emission
is measured. Some details are given, so as to emphasize the ability of HMC to handle non-Gaussian posteriors. Other
sections donot require understanding of these details.

For a set of (around 200) frequenciesν, we parameterize emissivity as a transformation,ϕν, of an a priori
Gaussian random variableX ∈ RN , X ∼ N (0, Cpr). At each frequencyν, an integration matrixI ∈ RM×N
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projects the emissivityϕν(X) ontoM measurements. This modelsM distinct viewchordsin the [−1, 1] × [−1, 1]
square (Fig. 2):

Yν = Iϕν(X) + ην.

The noiseην ∈ RM is, conditional onX, Gaussian, and independent for every frequency and chord. It takes the form

ην,m ∼ N (0,σ2 + σ2
p[Iϕν(X)]2m).

The factorσ gives rise to the usual additive independent noise.σp gives us noise proportional to the signal, represent-
ing model error. This leads to the likelihood

p(y |x) =
M∏

m=1

exp
{−(1/2σ(x)2)(ym − [Iϕν(x)]m)2

}
√

2πσ(x)2
m

,

σ(x)2
m := σ2 + σ2

p[Iϕν(x)]2m.

(4)

The mappingϕν is composed of two stages. First,X is divided into independent amplitude, temperature, and
velocity components:X = (XA, XT , XV). These are mapped to amplitudeA, temperatureT , and velocityV.
The mapping is eitherslab, meaning constant on chord-aligned rectangles, orshell, meaning constant on circles of
rotation, about a shifted center (Fig. 2).

To make amplitude and temperature positive, we use thesoftplusfunction,S(u) := log[1 + exp{u}]:
A := cA S(X̃A), T := cT S(X̃T ), V := cV X̃V .

Above,(cA, cT , cV) are scaling factors, and̃X := (X̃A, X̃T , X̃V) is a transformation ofX to impart radial corre-
lation and a shifted center. That is, the amplitude, temperature, and velocity components ofX̃ have radial values
approximating a zero mean Gaussian random field with correlation

Γpr(r, r′) := exp
{
−|r − r′|2

2τ2

}
+ δ. (5)

Above,δ > 0 is ashrinkageparameter preventing small eigenvalues from creating numerical difficulties. The coor-
dinater is the radius about a center shifted by ana priori 2D normal.

The second step ofϕν is the dimensionless discrete emissivity spectrum,

Eν(A, T ,V) :=
A√
2πw

exp
(−(ν−1 − ν̃−1)2

2w2

)
, (6)

whereν̃ = ν0/(1−V) is the Doppler-shifted center frequency, andw =
√T /ν0 is the Doppler-broadened bandwidth.

FIG. 2: Left: example shell model values for arbitrary plasma state variable (amplitude, temperature, or density). They are radially
smooth and circularly symmetric about a shifted center. Center: example slab model values are constant along rectangles aligned
with the measurement chords. Right: 20 rays through a disk shaped body, representing chords of measurement.
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In its shell parameterization, the spectroscopy problem can suffer from ill-conditioned posterior covariance. The
Gaussian toy problem (1) is a linearization, achieved by assuming amplitudeA is the only unknown, ignoring the
softplus, and settingσp = 0 andcA = 1.

Multimodality can also occur. Suppose the measured emissivityYν has two spectral peaks atν1 andν2, as a
result of carbon III and an additional, unexpected pollutant. As a result, we are trying to fit two peaks with a model
capable of producing only one. This results in five different posterior modes (Fig. 3). Changing velocity determines
the Doppler shift, and therefore the mode a sample is closest to. In a neighborhood of each mode, the log-posterior is
concave. In this way our spectroscopy problem is similar to the toy model (3) with the number of velocity variables,
M , equal toN/3.

3. REVIEW OF BAYESIAN INFERENCE USING MCMC

Common to all Bayesian inversion is the goal of inferring a probabilistic description of an unobserved quantity
X ∈ RN , given the observedY ∈ RM . Thisposterior, p(x | y), is proportional to the product of theprior p(x) and
the likelihood p(y |x). That is,p(x | y) ∝ p(x)p(y |x). The goal of this inference can be point estimates, such as
E{X |Y = y}, or a quantification of uncertainty, such as Var{X |Y = y}.

Markov chains have been used since 1953 as a means to generate sequences of samplesX1, X2, . . . from target
distributions [14]. These samples can be viewed by themselves or used to approximate expectationsE{f(X)} ≈
S−1 ∑S

s=1 f(Xs).

3.1 Statistical Efficiency

Samples from the Markov chain have two major deficiencies. First, only in the limitk →∞ can we say thatXk ∼ π.
Often a chain is initialized with a draw from the prior, and an initialburn-in period is used to allow the chain to
“forget” this initial position and move toward thetypical setof the posterior [15]. Second, draws are correlated.
Roughly speaking, we say that identically distributed samples

{
X1, . . . , XK

}
haveeffective sample size(ESS)S if

the variance ofK−1 ∑K
k=1 Xk is Var

{
X1

}
/S, in other words, if, for purposes of computing the mean, they are “as

effective” asS i.i.d. samples. UsuallyS ≤ K. The most straightforward computation of ESS assumes the{Xk}
are identically distributed but correlated draws from the target, with meanµ and varianceν2. Then, for dimensions
n = 1, . . . , N , ESS is built from thet−lag autocorrelationρt,

ESSn :=
K

1 + 2
∑∞

t=1 ρt
, ρt :=

E
{
(X1

n − µn)(X1+t
n − µn)

}

ν2
n

.

FIG. 3: Multiple modes: observed two-peak measurements, along with hypotheticalposterior predictivesamples (Y ∼ p(y |X)
whereX ∼ p(x | y)) demonstrating different posterior modes. Mode 1: if the temperature prior allows for large values and/or the
modeled noise is large enough, a local maximum is a hot plasma with bulk velocity near zero, giving rise to a single wide spectra
that covers both peaks. Mode 2 or 3: the next two modes arise if the temperature isa priori small enough, with velocity values
either positive or negative. These correspond to modeled spectral peaks that cover one of the measured peaks. Mode 4 or 5: if the
velocity prior is permissive and the amplitude prior discourages tiny values, we have two more local maxima. These have velocity
values so large that the modeled peak is shifted far to the left or right, outside the measured range of frequencies.
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We are are usually most interested in the worst-performing dimension and therefore minn{ESSn}. Due to insufficient
burn-in, or being stuck in local modes, the assumption thatXk are draws from the target is often not satisfied. For
that reason, our version of ESS will be lower if the mean differs between multiple chains (see Appendix A of [16]).
A more direct method of checking deviation between chains is thepotential scale reduction, or R̂ [16].

3.2 Computational Efficiency

In our experience, obtaining Markov chain Monte Carlo (MCMC) samples on production models is a computationally
intensive task that can take prohibitively long. Graphical processing units (GPUs) provide a significant speedup, as
they excel at parallel (SIMD) operations. This allows concurrent running of multiple Markov chains [17]. The slow-
down as more chains are added is sublinear, until GPU memory is exhausted. We therefore only consider algorithms
that take advantage of GPU parallelism. In particular, our replica-exchange implementation uses the same number of
leapfrog steps for each replica (see Section 5.3.4).

The majority of HMC computation time is spent in the numerical (leapfrog) integration of Hamilton’s equations.
Accordingly, we track the number of leapfrog steps per effective sample (minn{ESSn} actually) as a performance
metric. This allows platform-independent comparisons.

A secondary performance consideration is time spent compiling and optimizing the computational graph [18,19].
This takes a fixed amount of time proportional to the graph complexity. In our model problem, where ill conditioning
and/or multimodality was present, graph optimization was a small fraction of total runtime. In well-conditioned HMC
sampling problems, avoiding many graph optimizations may be important.

3.3 Description of HMC

The Hamiltonian Monte Carlo (HMC) method was introduced in 1987 as “Hybrid Monte Carlo” for use in lat-
tice field theory simulations [20]. Since then, it has been recognized as an efficient alternative to the random walk
Metropolis-Hastings method, well suited for higher-dimensional problems. Implementations are available for a vari-
ety of languages [17,21,22]. A comprehensive introduction to HMC can be found in [1].

To sampleX ∈ RN , distributed according to a smooth (with respect to Lebesgue measure) densityπ(x), HMC
augments state space with a fictitious momentumξ ∈ RN . This defines the joint density

π(x,ξ) ∝ exp{−H(x, ξ)}, where H(x, ξ) := − log π(x) +
‖ξ‖2

2
,

and‖ξ‖ is the Euclidean norm. In the physics setting, theHamiltonianH is total energy, whereas− log π(x), ‖ξ‖2/2
are potential and kinetic energies. It is not uncommon to model the kinetic energy

√
ξ ·A−1ξ/2, whereA ∈ RN×N

is themass matrix. However, as shown in Section 4 of [1], this is equivalent to the linear preconditioningX 7→ LX
(whereA−1 = LLT ) in conjunction with the Euclidean norm. Kinetic energy can be non-Gaussian, e.g., depend on
position [23] (see also [15]).

Sampling proceeds by (a numerical approximation to) the following iteration from point(xj , ξj):

1. Draw ξ̃ ∼ N (0, IN ).

2. Let (x(t), ξ(t)) be the timet solution to the Hamilton’s equations of motion:ẋ = ξ, ξ̇ = ∇ log π(x), with
initial condition(xj , ξ̃).

3. Set(xj+1, ξj+1) = (x(t), ξ(t)) for integration timet.

Each integration path lives on a single level set of the Hamiltonian. The resampling stepξ̃ ∼ N (0, IN ) is necessary
to jump between level sets and is thus necessary for ergodicity [24].

In practice, Hamilton’s equations must be solved numerically over` steps with step sizeh. Denote this solution
by Ψ`. The integration error means we can no longer just accept the move in step 3, which is replaced by a Metropolis
correction:

(xj+1, ξj+1) = Ψ`, with probability a(xj , ξj → Ψ`),
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and
(xj+1, ξj+1) = (xj , ξj), with probability 1− a(xj , ξj → Ψ`),

for acceptance probability

a(xj , ξj → Ψ`) := min
(
1, exp

{
H(xj , ξj)−H(Ψ`)

})
. (7)

Since Hamilton’s equations preserve the Hamiltonian, if numerical integration was perfect,H(xj , ξj) = H(Ψ`) and
every step would be accepted. In practice, finite step size leads to some rejections and wasted effort. We also note
that for the Metropolis correction to be symmetric, the final momentum should be negated before evaluatingH. This
makes no difference since our Hamiltonian is symmetric in momentum.

The numerical integration is usually done with` steps of theSẗormer-Verletor leapfrog integrator. This symplec-
tic integrator ensures that the Hamiltonian does not diverge, providedh is sufficiently small (see [25], Theorem 8.1).

3.4 HMC Step Size Scaling Laws

Here we review existing scaling laws for HMC step size. These results always inform our choice of HMC step size
and integration time. They are directly used in Section 4.

The step sizeh, along with the number of leapfrog steps`, are two important parameters to choose. Usually,h is
chosen to achieve some desired acceptance rate, and` is set to the desired integration time divided byh. If h is too
large, the average acceptance probability, P[Accept], will tend to zero. On the other hand, ifh is too small, then too
many steps̀ will be required, and computational effort will be wasted. In [26,27],X ∈ RN = RK × · · ·RK with
densityπ(x1, . . . , xN/K) = f(x1) · · · f(xN/K) is studied in the limitN → ∞. This so-calledi.i.d. limit yields the
result thath should be tuned until0.6≤ P[Accept] ≤ 0.9.

In the Gaussian case, we can extract more precise conclusions, resulting in useful analysis and algorithms that
can be used, even in non-Gaussian problems. Consider a targetX ∼ N (0, C), whereC has eigenvaluesλ2

1 ≥ λ2
2 ≥

· · · ≥ λ2
N > 0. If we want the integration trajectories to travel a distance comparable to the largest scaleλ1, we

must haveh` = O(λ1). On the other hand, to avoid instability we must haveh ≤ 2λN . This leads to a naive scaling
` = O(λ1/λN ). The ratioλ1/λN is the common,spectral, condition number of any matrixL such thatC = LLT .

The problem with the spectral condition number is that it takes into account only the largest and smallest scales.
The largest scale does set the required integration length, butall dimensions contribute to integration error. A condi-
tion number taking these considerations into account was introduced in [28]:

κ(L) :=

(
N∑

n=1

(
λ1

λN

)4
)1/4

= ‖L‖2‖L−1‖S4. (8)

Above,‖ · ‖2 is thespectralnorm, and‖ · ‖S4 is the fourthSchattennorm [29]. For matrixA with singular values
λ1 ≥ · · · λN ≥ 0, thekth Schatten norm is

‖A‖Sk :=

[
N∑

n=1

λk
n

]1/k

. (9)

In [28] it is shown that under some regularity conditions, a Gaussian density requiresO(κ) leapfrog steps for efficient
sampling.κ may be approximated using the largest scaleλ1, step sizeh, and average acceptance probability P[Accept]:

κ ≈ λ1

h
27/4

√
Φ−1

(
1− P[Accept]

2

)
. (10)

Above,Φ is the normal cumulative distribution function. Thusκ is the number of steps needed to traverse the largest
scale,λ1/h, times a correction factor depending on acceptance probability. In non-Gaussian problems, we recommend
using large (small)λ1/h as evidence ofpossibleof inefficient (efficent) sampling.
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3.5 Conductance in Multimodal HMC

Let A ⊂ RN , andc(A) be the average probability of the chain escapingA in one step. Theconductanceof the
chain,C := minπ(A)<1/2{c(A)}, quantifies its ability to escape local modes. In [30] it is shown that the conductance
of HMC is no better than that of the random walk Metropolis-Hastings method. An upper bound is also given for
conductance of HMC chains:

c(A) ≤ t
1
2

∫
∂A

π(x) dx

π(A)
. (11)

From Eq. (11) it is clear that an increasing integration time can increase conductance at most linearly. Since compu-
tational effort also increases linearly witht, this does not help overall.

Equation (11) also shows that conductance can be constricted by a single low-probability (density) surface. For
Gaussian noise models (e.g., Section 2.3), this can lead to conductance decreasing exponentially in1/σ2. Indeed,
for the bi-modal normal0.5N (−1, σ2) + 0.5N (1,σ2), the leading-order term of conductance is proportional to
exp

{−1/(2σ2)
}

(see [30] Theorem 3).
Tempering methods need to use a highest temperatureTmax such that the corresponding “hottest density” has

nonvanishing conductance (see Section 5.3.2).

4. PRECONDITIONING OF THE POSTERIOR COVARIANCE

The HMC (as well as standard Metropolis Hastings) method works better when sampling from a unit Gaussian. The
preconditioning techniques below sample a transformed variableZ = F−1(X), which (hopefully) looks more like a
unit Gaussian. These samplesZj are transformed back intoXj = F (Zj) ∼ p(x | y).

4.1 Transformation by Diffeomorphism

Here we write some relations involving pushforwards by diffeomorphisms. They will be needed in later sections.
Let us start withX ∼ p(· | y), and a diffeomorphismF , which transformsX 7→ Z = F−1(X). Equivalently, the

densityp(· | y) is transformed by thepushforwardoperator,F−1
# , into g:

g(z) = (F−1
# p(· | y))(z) := |det(DF (z))| p(F (z) | y). (12)

Above,DF is the matrix of partial derivatives,(DF )ij = ∂Fj/∂zi. Using HMC, we sample from the transformed
densityg, producingZ1, . . . , ZK . Transforming back,Xk := F (Zk), and we have samples fromp(· | y) as desired.

In the Gaussian case,p(· | y) ∼ N (µ, C), with C = LLT , the linear preconditioner induced by a matrixF
transformsL 7→ F−1L, and likewise the covariance andκ as

LLT 7→ (F−1L)(F−1L)T = (F−1)LLT (F−1)T

κ(L) 7→ ‖F−1L‖2‖(F−1L)−1‖S4.
(13)

4.2 Preconditioning by Prior Reparameterization

If the support ofp(x | y) is bounded, sampling directly from it will suffer from boundary issues. It is therefore standard
practice to transformX → Z := F−1(X) (as in Section 4.1) such that supp(Z) = RN . We know of no existing work
analyzing the effects of this reparameterization on conditioning, so we include it here.

In our case, the priorp(x) is a transformation of a standard Gaussian by a diffeomorphismG. That is,p(x) =
(G#φ)(x). This meansZ = G−1(X) is a useful transformation. If the prior results in difficult posterior covariance
(see, e.g., Section 2.1), usingG as a preconditioner will often improve conditioning. To see this, note that

G−1
# p(x | y) = p(G(x) | y)|det(DG(x))| ∝ φ(x)pY (y |G(x)). (14)

Thus, preconditioning withG is equivalent to a reparameterization that uses a standard Gaussian prior and insertsG
inside the likelihood (probably achieved by usingG(x) in the forward model). In our work, we sometimes explicitly
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preconditioned withG and at other times reparameterized a unit normal. Not only are these mathematically equivalent,
but, due to caching in TensorFlow probability, they are computationally equivalent (G ◦ G−1 is replaced by the
identity) [31]. Doing one of these is necessary, as it removes much of the nonlinearity and allows the methods of
Section 4.3 to work efficiently.

Organizing code around reparameterizations has some advantages: First, the benefits of preconditioning by the
prior are realized without the programmatic complexity of specifying a preconditioner. Second, the functionG does
not need to be a diffeomorphism (see [5] for an example). On the other hand, there are benefits to letting the prior
encode the state directly. First, in this setup the MCMC variables being sampled are the state variables you care about.
Second, one can use a priornot easily described as a transformation of a Gaussian.

The sampling benefits/degradation of prior reparameterization will vary. Consider the Gaussian example (1). If
Cpr = LprL

T
pr, then the reparameterized posterior covariance becomes[

I + σ−2(ALpr)T (ALpr)
]−1

. (15)

We see in Fig. 4 that reparameterization can help when prior covariance is the major contributor toκ, but can hurt if
low noise is the major source of small eigenvalues.

4.3 Linear Preconditioning for Gaussian Problems

Here we examine linear preconditioning of Gaussian distributions. This simplification allows for precise results and
inspires techniques. These techniques are applied to non-Gaussian problems in Section 4.4.

The setup here is like other diffeomorphisms (Section 4.1), except we assumeX ∼ N (0, C) is Gaussian, and
the preconditioning transformationF ∈ RN×N is linear. IfFFT is a scalar multiple ofC, then Eq. (13) shows the
transformed covariance is a multiple of the identity, which minimizesκ. Subsequent sections will use approximations
of this factor built from samples obtained during burn-in.

4.3.1 Diagonal Preconditioning

A simple approximation of a covariance factor is the diagonal matrixD̂ made with sample standard deviations. This
approximatesD, the diagonal matrix ofactual standard deviations. The next three propositions are original, and
illustrate why we like this preconditioner.

First, preconditioning withD should work well in the diagonally dominant case. The proof follows from the
Gershgorin circle theorem [29].

Proposition 1. SupposeC = LLT is diagonally dominant with, for everyi,
∑

j 6=i |Cij/Cii| ≤ δ < 1. Then,

κ(D−1L) ≤ N1/4

√
1 + δ

1− δ
.

FIG. 4: Covariance spectra. Eigenvalues indexed by correlation with the prior eigenvectors. From the posterior before reparam-
eterization (2), and after (15). Reparameterization “lifts” the high-frequency posterior scales. Different noise levelsσ and prior
correlation lengthsτ result in reparameterization helping or hurting. In all cases,M = 20, N = 40, and the prior shrinkage
δ = 0.001. The minimal condition numberκ [see Eq. (8)] is401/4 ≈ 2.5.
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Second,D is close to the ideal diagonal preconditioner, especially in the near-diagonal case.

Proposition 2. LetDopt be a preconditioner minimizingκ(G−1L) over all diagonal matricesG. Then,

κ(D−1L) ≤
√

N κ(D−1
optL).

Furthermore, if at mostK entries in each row ofLLT are nonzero, then

κ(D−1L) ≤
√

K κ(D−1
optL).

The proof is found in Appendix A.1. A corollary is that preconditioning withD can hurt by at most a factor of√
N (or

√
K).

Third, in practice, we use the diagonal matrix of sample standard deviations,D̂, rather thanD. If we use
S i.i.d. samples fromN (0, LLT ), thenS need only grow logarithmically withN .

Proposition 3. Givenε, p ∈ (0, 1),

κ(D̂−1L) ≤ κ(D−1L)

√
1 + ε

1− ε
,

with probabilityp, as soon as the number of i.i.d. samplesS satisfies

S ≥ 25
ε2

log
(

3N

p

)
.

Proof. We have the distributional equality,̂D
d=
√

(I + ∆)D, where∆ ∈ RN×N is diagonal,

∆nn :=
1
S

S∑

s=1

Z2
s,n − 1−

(
1
S

S∑

s=1

Zs,n

)2

,

andZs,n are i.i.d. normal variates. Then, using Lemma 3,

κ(D̂−1L) = ‖D̂−1L‖2‖L−1D̂‖S4 ≤
√

1 + maxn{∆nn}
1 + minn{∆nn} κ(D−1L).

The proof will be complete once we show that our condition onS implies maxn|∆nn| ≤ ε with probability less than
p. This follows from Lemma 6 and the fact that P[maxn|∆nn| ≥ ε] ≤ N P[|∆11| ≥ ε].

4.3.2 Full Covariance Preconditioning

By full covariance preconditioning, we mean starting with the sample covariance,Ĉ, factorizing asĈ = L̂L̂T ,
then preconditioning witĥL. After stating two results on full covariance preconditioning, we discuss a scheme for
implementing it. The results and the scheme were discussed in our previous work [28]. The scheme is discussed in
more detail and implemented here for the first time (Section 4.4).

Remarkably, if the samples are independent, the condition number doesnot depend on the true covariance.

Lemma 1. Suppose(X1, . . . , XS) are i.i.d. samples ofX ∼ N (0, C), and we precondition sampling ofX with the
S-sample factor̂L. Then the preconditionedκ follows the law ofκ(B), for BBT ∼ InverseWishart(S,N).

In the high-dimensional limit,κ for inverse Wishart matrices has a simple expression.

Proposition 4. If BBT ∼ InverseWishart(N,S), andN →∞ with S/N → ω ∈ (1,∞), then

κ(B)
N1/4

→ (1 + ω−1)1/4

1−ω−1/2
,

almost surely.

International Journal for Uncertainty Quantification



Hamiltonian Monte Carlo in Inverse Problems 79

See Fig. 5 for a visualization of Lemma 1 and Proposition 4. Due to the “universality” of random matrices, we
expect these results to hold for linear transformations of a wide variety of i.i.d. random variables [32,33].

These results lead to a useful preconditioning scheme. Letκ0 be the condition number before preconditioning,
andκS be the condition number after preconditioning withS i.i.d. samples. Assuming the sampling rate is pro-
portional to1/κ, the time to obtainSf “final” samples is proportional toSκ0 + SfκS . On the other hand, without
preconditioning, the time is proportional toSfκ0. This means the speedup from preconditioning is

Sfκ0

Sκ0 + SfκS
. (16)

Estimatingκ0 using Eq. (10), and using Proposition 4 as an expression forκS , we can compute speedup for various
S. If the maximal speedup (usingS∗ samples) is> 1, we proceed with drawingS∗ burn-in samples, precondition
with L̂, then draw ourSf final samples. If not we drawSf samples without preconditioning.

Mentioning some practicalities is in order. Burn-in samples obtained using standard HMC are far from indepen-
dent. As a remedy, we use the no-U-turn sampler (NUTS) [34] to obtain theS∗ preconditioning burn-in samples and
stop sampling when the mean (across dimensions) effective sample size isS∗. In our experience, obtaining NUTS
samples takes around three times longer than standard HMC samples. This happens since NUTS sampling involves
doubling the trajectory length and resampling within these long trajectories. Moreover, the additional preconditioning
stage requires another step-size adaptation stage. We therefore replaceκ0 with 4κ0 in the denominator of Eq. (16).
This leads to Algorithm 1. See also plots of samples in different stages in Fig. 6.

Each step-size adaptation in Algorithm 1 is done via an iterative scheme [35], invoked after preemptively adjust-
ing step size using Eq. (10). Step size adjustment comprises around 30% of runtime. This could often be shorter, but
this longer adaptation makes the algorithm more robust to stuck chains.

4.4 Application to a Weakly Non-Gaussian Problem

Here we compare preconditioning schemes as applied to the shell model from Section 2.3. This problem is non-
Gaussian. In particular, the noise level depends on the signal, the temperature and amplitude are constrained to be
positive via a Softplus, the coordinate system is shifted, and emissivity is a nonlinear function. This is still “weakly”
non-Gaussian, since observed skew and kurtosis levels of transformed samplesZ were close to that of a Normal.

The schemes compared are referred to as “full,” “diag,” and “none.” “Full” uses Algorithm 1. “Diag” uses Algo-
rithm 1 but skips the NUTS sampling and uses diagonal rather than sample covariance preconditioning. “None” does
not precondition. Code was run on Tesla P100 GPUs.

FIG. 5: Density and asymptoticκ(B), whenBBT ∼ InverseWishart(N, S) with N = 64. Left: density plots of sample
values ofκ(B) for differentS/N . κ(B) → N1/4 asS/N →∞. Center: asymptotic estimate (from Proposition 4) vs. samples of
κ. OnceS/N ≈ 20, κ is close to the ideal value ofN1/4 ≈ 2.8. Right: the Mar̆cenko-Pastur density, which is the limiting spectral
density ofWishart(N, S).
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Algorithm 1: Sampling stages for unimodal problems. Abandon and restart using REMC ifR̂ fails to reduce
fast enough

Initialize 20 chains by sampling from the prior;
Starth small enough so P[Accept] ≈ 1.0, then adapth until P[Accept] ≈ 0.9. Use number of leapfrog steps
` = 5. When done, set̀ = (1/h)(π/2);
Draw stage 1 samples. Use them to compute the largest scaleλ1, then set̀ = (λ1/h)(π/2);
Draw stage 2 samples. Use them to recomputeλ1 and P[Accept]. Computeκ0 using Eq. (10) and maximal
speedup using Eq. (16);
if maximal speedup> 1 then

while N−1 ∑N
n=1{ESSn(stage 3 samples)} < S∗ do

Draw more stage 3 samples using NUTS;
end
Precondition using the stage 3 sample covariance;
Adapt step size until P[Accept] ≈ 0.9, and set̀ = (1/h)(π/2);

end
while ESSn(final stage samples) < Sf do

Draw morefinal stage samples;
end
Result: Sf “final” samples

FIG. 6: Traces of Algorithm 1. Plots of coordinate samples (Zs
n) are the most important diagnostic tool. Left: stages of Algorithm 1

are divided by dotted lines. Leftmost is the initial step-size adaptation phase. Using a large number of samples here allows chains
to reach the typical set. The loẁvalue and low initialh means sampling proceeds slowly but is likely to be stable. Second from
the left are the “stage 1” samples. These have` large enough to get a reasonable estimate ofλ1 and also allow chains more time
to reach the typical set. Next are the “stage 2” samples, used to computeκ0 and the number of preconditioning samples needed,
S∗. Next are four very closely spaced dashed lines, within which NUTS sampling was used to obtainS∗ effective samples. These
are used to form the sample covariance factorL̂ used for preconditioning. Second stage from the right is step-size adaptation
done after preconditioning. The final stage, starting at 0, includes the first 25 “final” samples. Right: same stages, in a case where
preconditioning hurt. The reason here is that some chains did not reach the typical set before preconditioning samples were taken.
This led to a bad preconditioner.

Twenty plasmas to reconstruct were drawn from the prior. The reconstruction model used a variety of noise
levels fromσ = 1.25 to 15. Each reconstruction was run until minn{ESSn} = Sf , for Sf ∈ {400, 1600, 6400}. A
total of 282 reconstruction configurations were attempted for each of the three schemes. Eleven configurations were
thrown out, since at least one model failed to reduceR̂ fast enough. This is usually the result of being stuck in a
local mode due to poor initialization. If this happens in production, our algorithm restarts with REMC. The traces in
Fig. 6 help visualize different stages of Algorithm 1. Figure 7 showsκ correlates well with sampling efficiency, and
can be predicted from Proposition 4, even in this non-Gaussian problem. Figure 8 shows that the full preconditioner
significantly speeds up sampling, at the cost of a more expensive burn-in. Diagonal preconditioning helps only a
little.
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FIG. 7: Using Eq. (10), we computeκ at various sampling stages to show our formulas apply, even in non-Gaussian problems.
Experiments when the burn-inκ was huge (upper 2%) are not shown, as these distort the plot. Preconditioning often made the
situation worse for these. Left: the relationship betweenκ and the seconds required for effective samples is somewhat close to
linear. This validates (16) as a measure of speedup from preconditioning. Center: the predicted post-preconditioning value ofκ

matches nicely with the actual value obtained by preconditioning, validating Proposition 4. Right: the post-preconditioningκS , is
plotted against the burn-in value,κ0. This shows a significant reduction inκ due to Algorithm 1.

FIG. 8: Preconditioner comparison from the study outlined in Section 4.4. Left: average runtime breakdown (Sf = 1600) shows
that while the burn-in time is longer for full preconditioning, the sampling time is significantly shorter. Center: full covariance
preconditioning results in sampling efficiency around 36, which is around 30× better than not preconditioning. Right: histogram
of oversampling ratioω = S/N selected by Eq. (16) for two values of desired minn{ESSn}. When the desired minn{ESSn} is
larger, a largerω is selected.

5. TEMPERING TO SAMPLE WITH MULTIMODALITY

Best practices for sampling from multimodal distributions are not as easy to come by as for their unimodal coun-
terparts. For example, linear preconditioning usually does not help. A popular family of techniques involves using
a number of modifications of the target, eachtemperedby temperatureT . The terminology and history is rooted in
statistical mechanics [36]. These techniques make use of the fact that ifπ is a probability density, and temperature
T > 1, the density proportional toπ1/T will have lower peaks and higher troughs. Hence it will be better able to jump
between modes.

5.1 Replica Exchange Monte Carlo (REMC)

This section reviews REMC (also known asparallel tempering). Related techniques, such asannealed importance
sampling, also deserve consideration [37].
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Given posteriorp(x | y) ∝ p(x)p(y |x), and sequence of temperatures1 = T1 < T2 < · · · < TR ≤ ∞, we form
thereplicadensitiesπr in one of two ways:

πr(x) ∝
{

p(x)1/Trp(y |x)1/Tr , posterior tempering (requiresTR < ∞),
p(x)p(y |x)1/Tr , likelihood tempering.

(17)

To gain intuition, consider the unimodal example where the priorp(x) ∼ N (0, I) and the likelihoodp(y |x) ∼
N (µ,Γ). The posterior covariance after tempering withT will be

Γpost(T ) : =

{
T

[
I + Γ−1

]−1
, posterior tempering,[

I + T−1Γ−1
]−1

, likelihood tempering.
(18)

Posterior tempering increases posterior variance without changing the shape or condition number. Likelihood tem-
pering distorts the posterior covariance to make it look like the prior (see Fig. 9).

Together, these form the joint densityπ(x1, . . . , xR) := π1(x1) · · ·πR(xR). Samples from(Xk
1 , . . . , Xk

R) ∼ π
are generated, but only the target samplesXk

1 ∼ π1 = p(· | y) are kept. REMC repeats two alternating steps. In
theexplorationstep, each replica progresses independently,Xk−1

r → Xk
r . HMC, or another sampling method, can

be used here. In thecommunicationstep, a number ofswapsare proposed between adjacent replicas. For example,
the (1, 2) swap proposes that replicas 1 and 2 exchange position,Xk+1

1 = Xk
2 andXk+1

2 = Xk
1 . The set of swaps

proposed at each turn are either the set of even swaps,{(1, 2), (3, 4), . . .}, or odd swaps,{(2, 3), (4, 5), . . .}. In both

FIG. 9: Likelihood and posterior tempering. Sampling from a tempered bi-modal normal [anM = 1 version of Eq. (3)]. Top:
likelihood tempering means the hottest (T = 99) replica samples come from a (nearly) isotropic Gaussian. Bottom: posterior
tempering means theT = 10 replica samples come from a (nearly) bimodal normal, with each mode being (nearly) as poorly
conditioned as the posterior (T = 1) modes.
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cases, each swap is independently accepted or rejected according to the standard Metropolis-Hastings criteria. For
example,

P[Swap(1,2) |x1, x2] = min
{

1,α(1,2)(x1,x2)

}
,

α(1,2) :=
π(x2, x1, x3, . . .)
π(x1, x2, x3, . . .)

=
π1(x2)π2(x1)
π1(x1)π2(x2)

.
(19)

The computational cost of swapping is negligible compared with leapfrog integration. We therefore propose
swaps between every exploration step. In most of the literature, swaps are proposed using a stochastic even-odd
(SEO) scheme, whereby a coin flip chooses between even and odd swaps. More recently, deterministically alternating
between even and odd swaps was proposed [38]. This deterministic even-odd (DEO) scheme has superior scaling
characteristics [39]. We use DEO in all experiments.

5.2 Swapping, Dimension Laws, and Underconstrained Problems

Effective REMC requires the mean swap probabilities,

P[Swap(r,r+1)] = E
{

P[Swap(r,r+1) |Xr, Xr+1]
}
,

be large enough to allow information from the hottest replica (the replica using the highest temperature) to make its
way to the target. This section shows that, unlike conductance, swap probability is strongly related to dimension.

5.2.1 Existing Fundamental Results

In higher dimensions, samples concentrate in a thin neighborhood of thetypical set[15]. For example, ifπ is log-
concave, the typical set is{x : log π(x) = E{log π(X)}}, and the neighborhood grows (relatively) thinner as dimen-
sion increases [40]. Since swapping of replicasr andr + 1 must lead to valid samples from their respective densities,
they must swap about as often as these neighborhoods overlap. This overlap is made explicit by Proposition 5.

Proposition 5. LetXr be a sample from replicaπr defined by Eq. (17). The mean swap probability can be written in
terms of the untempered posterior/likelihood:

P[Swap(r,r+1)] =
{

2P[p(Xr | y) < p(Xr+1 | y)], posterior tempering,
2P[p(y |Xr) < p(y |Xr+1)], likelihood tempering.

Proof. The proof has likely been shown many times before (e.g., [41]), for the case of posterior tempering. Consider
likelihood tempering, and writeπr(x) ∝ exp{−V (x)/Tr − V0(x)}. The Metropolis criteria (19) gives

P[Swap(r,r+1)] =
∫

min{πr(xr)πr+1(xr+1), πr(xr+1)πr+1(xr)} dxr dxr+1. (20)

SinceTr < Tr+1,

πr(xr)πr+1(xr+1) < πr(xr+1)πr+1(xr) ⇐⇒ V (xr)
Tr

+
V (xr+1)

Tr+1
>

V (xr)
Tr+1

+
V (xr+1)

Tr

⇐⇒ V (xr) > V (xr+1).

This leads us to split the integral (20) up over regions{V (xr) > V (xr+1)} and{V (xr) < V (xr+1)}. A switch of the
dummy variablesxr, xr+1 in the second shows that both integrals are equal to P[V (Xr) > V (Xr+1)], which gives
to the desired result. The case of posterior tempering is similar.
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For REMC to work well, information must propagate from the hottest replica (replica using the highest tem-
perature) to the target. To study this, one can keep track of theindex processof temperatures. For example, chaink
may start by sampling fromπR, then swap and sample fromπR−1, thenπR−2, πR−1 and so on. The corresponding
indices would be(R, R − 1, R − 2, R − 1, . . .). A round trip occurs when a chain starts at indexk, reachesR, then
1, then back tok. The average number of round trips, starting from all replicas, afterS swap attempts, is theround
trip rate. To derive round trip rates for likelihood tempering whenTR = ∞, [39] makes three assumptions: First,
stationarity, Xr ∼ πr, which is reasonable after burn-in. Second,efficient local exploration(ELE). ELE means that if
X ∼ πr andX ′ is the result of local exploration (e.g., HMC integration) starting fromX, then the potential energy is
independent. In the case of posterior tempering, this meanslog[p(X | y)] andlog[p(X ′ | y)] are independent, and for
likelihood tempering,log[p(y |X)] andlog[p(y |X ′)] are independent. Third, they assume integrability of the cubed
log likelihood. This leads to round-trip rates for the SEO and DEO swapping schemes:

τSEO =
1

2R + 2γ
, τDEO =

1
2 + 2γ

, (21)

whereγ is theschedule inefficiency

γ :=
R−1∑

r=1

1− P[Swap(r,r+1)]
P[Swap(r,r+1)]

.

This justifies using DEO rather than SEO. Importantly for us,2τ is the fraction of samples, starting fromπR, that
make their way down to the targetπ1.

Note that ELE will be violated if chains are stuck in different modes, and the modes do not have identical energy
surfaces. In other words, we expect ELE to be violated in most multimodal problems. Nonetheless, [39] finds that the
results of this section roughly held in a variety of problems despite ELE being violated.

As maxr|T−1
r −T−1

r+1| → 0, the swap probabilities are governed by the increasing function,Λ(T ), which satisfies
the Theorem 1.

Theorem 1([39] Theorem 2). For annealing schedule1 = T1 < T2 < · · · < TR ≤ ∞,

1− P[Swap(r,r+1)] = Λ(Tr+1)− Λ(Tr) + O(maxr|T−1
r − T−1

r+1|3).

WhenTR = Tmax is fixed,Λ is understood to meanΛ(Tmax), theglobal communication barrier.
Ignoring the error term in Theorem 1, the round-trip rateτDEO is optimized when

1− P[Swap(r,r+1)] ≡ Λ/R. (22)

Consider runningk copies (chains, in our terminology) of REMC independently, with a total computational budget
of R̄. In other words,R̄ = k R. In this setup, [39] derives the optimal number of chainsk∗, number of replicasR∗,
and round-trip rateτ∗DEO:

R∗ = 2Λ + 1, k∗ =
R̄

R∗
=

R̄

2Λ + 1
, τ∗DEO =

k∗

2 + 4Λ
=

R̄

2(2Λ + 1)2
. (23)

This optimum is achieved when P[Swap(r,r+1)] ≡ Λ/R ≈ 0.5, although they recommend P[Swap(r,r+1)] > 0.5 to
reduce the ELE violation.

An asymptotic expression forΛ(TR) is also provided in the i.i.d. regime. Here, one adds a parameterd, and with
N = d ·N ′, assumes the prior and likelihood acts in an i.i.d. manner on each of thed copies ofRN ′

. In other words,

log p(x | y) =
d∑

i=1

V (xi), log p(x) =
d∑

i=1

Ṽ0(xi). (24)

We restate their proposition, extending it to posterior tempering.
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Proposition 6 ([39] Proposition 4). Given 24, asd →∞, we have asymptotic convergence

Λd(TR)
asy.∼

√
1
π

∫ TR

1

σ(T )
T 2

dT,

where, withX(T ) the tempered state,

σ2(T ) =

{
Var{log p(X(T ) | y)}, posterior tempering,

Var{log p(y |X(T ))}, likelihood tempering.

In this i.i.d. regime,σ2 = O(d) and henceΛ = O(
√

d). It follows thatR̄/τ∗DEO = O(d) units of work are done
to produce each sample making its way from the hottest replica to the target.

5.2.2 Number of Replicas and Its Relation to Underconstrained Problems

This section makes its point by example, although results should apply more generally. The example is a lin-
ear/Gaussian problem, withA ∈ RM×N and Rank(A) = M < N :

p(x) ∝ exp
{
−1

2
xT C−1

pr x

}
, p(y |x) ∝ exp

{
− 1

2σ2
‖Ax− y‖2

}
.

In this case, the log posterior is a sum ofN terms, whereas the log likelihood a sum ofM . If these terms are
independent enough, we expect Proposition 6 and Eq. (23) to show the optimal number of replicas,R∗, is = O(

√
N)

for posterior tempering, and= O(
√

M) for likelihood tempering. Figure 10 shows this relation holds for a toy
problem.

More precise results can be obtained for unimodal distributions. This approach is partially justified by noting that
if R replicas are needed to exchange in unimodal densityπ, at leastR should be needed to exchange in a multimodal
distribution where one mode looks likeπ.

Consider an arbitrary Gaussian posterior, and posterior tempering. Proposition 5 shows that withχ2
N , χ̃2

N two
independent chi-square random variables,

P[Swap(r,r+1)] = P
[
Trχ

2
N − Tr+1χ̃

2
N > 0

]
.

FIG. 10: Tempering comparison. The communication barrier,Λ, and conductance in the bimodal normal of Eq. (3) are shown,
andN is increased while fixingM = 1. These show the

√
N ,
√

M scaling of the communication barrier for posterior tempering
discussed in Section 5.2.2. The resultant conductance is much better for likelihood tempering.
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Since the mean ofTrχ
2
N − Tr+1χ̃

2
N is N(Tr − Tr+1) < 0, the probability is non-vanishing asN → ∞ only if the

standard deviation is of the same order. This is satisfied ifTr+1/Tr = 1+ c/
√

N , for somec > 0 depending only on
the desired acceptance probability. IfTmax < ∞ is chosen ahead of time,Tmax = (T2/T1)R−1 = (1 + c/

√
N)R−1. It

follows thatR ∝ √
N log Tmax. This line of reasoning can be extended to any distribution with constant heat capacity

[41].
To analyze the case of likelihood tempering, it will help to rewrite the variance of the potentials from Proposi-

tion 6 as specific heatlike quantities:

Lemma 2. LetX(T ) ∼ π1/T be a tempered state. Then, for posterior tempering,

Var{log p(X(T ) | y)} = −T 2 d
dT
E{log p(X(T ) | y)},

and for likelihood tempering,

Var{log p(y |X(T ))} = −T 2 d
dT
E{log p(y |X(T ))}.

With this in hand, suppose the prior covarianceCpr = I in Eq. (1), and Rank(A) = M ≤ N . SupposeA has
singular values{αn}. If the nonzeroαn are all equal, one can use Lemma 2 and Proposition 6 to derive an asymptotic
relation (asM →∞) for likelihood tempering. Assuming the relation holds whenαn is nonconstant, we have

Λ
asy.∼

√
1

2π

∫ 1

0

√√√√
N∑

n=1

α4
n

(βα2
n + σ2)2 dβ ≤

√
M

2π
log

[
1 + (σ/α1)2

(σ/α1)2

]
.

Equation (23) now indicates that the optimal number of replicas should be= O(
√

M).

5.3 Selecting Parameters for REMC with HMC

The work of previous sections allow us to give concrete recommendations.

5.3.1 Likelihood vs. Posterior Tempering

We usually prefer likelihood tempering. The reasons are that (i) it has better scaling properties for underconstrained
problems (Section 5.2.2), (ii) it is stable no matter how largeTmax is, and (iii) the hottest replica is close to the prior,
facilitating the leapfrog heuristic of Section 5.3.4.

Likelihood tempering is limited in that the highest temperature replica is approximately the prior. For that reason,
if there is a possibility of modes far outside the typical set of the prior, posterior tempering should be used.

5.3.2 Selecting the Annealing Schedule

The annealing schedule is1 = T1 < T2 < · · · < TR = Tmax. We select this in two stages. First we findTmax, and
second we adjust the other temperatures.

Tmax must be hot enough so that the hottest replica can mix well and explore the proximity of all posterior modes.
The dimensionN need not play a role. For example, with our spectroscopy model, tempering changes the noise term
σ(x)2 [in Eq. (4)] to Tσ(x)2. We therefore expectTmax ∝ σ−2 to be hot enough for nonvanishing conductance
(see Section 3.5). The constant of proportionality will depend on the maximum residual|y − [Iϕν(x)]m| on some
path between modes. We cannot expect to know thisa priori. Instead, during burn-in we start with geometrically
increasing temperatures. We then monitorR̂ ([16]) to see which replicas mixwithout swapping.Tmax is set to the
coldest temperature that was mixing during this burn-in phase. For likelihood tempering, wecould havesetTmax = ∞,
but we found that to be less efficient.

After TR = Tmax is chosen, we adjustT2, . . . , TR−1 until P[Swap(r,r+1)] is close to constant, as justified by
Eq. (22). We use an interpolation scheme as in [39].
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5.3.3 Selecting Step Sizes for Each Replica

A good initial guess for therth replica’s step size,hr, is hr ∝
√

Tr, since this would be ideal for a Gaussian. After
every temperature change, step sizes can be adjusted by an iterative scheme [35]. It helps to have an initial guess for
the new step sizes. This can be done by finding an interpolating function,h = f(T ), that is piecewise linear in

√
T .

5.3.4 Selecting the Number of Leapfrog Steps

To take advantage of batch operations on a single GPU, the number of leapfrog steps` should be the same for all
replicas (see Section 3.2). Given likelihood tempering, the hottest replica will be similar to the prior, and should be
much better conditioned than the target. We therefore expect the hottest replica will need far fewer leapfrog steps than
the target. Since we chooseTmax so that only the hottest replica is mixing well (without swapping), we should choose
` to facilitate mixing of this hottest replica. This allows` ∝ 1/hR, which is less than theO(1/h1) needed for the
target to mix well (without swapping).

As it turns out, we can reducèeven further. Equation (21) indicates that only one out of1+γ samples produced
by the hottest replica make their way to the target. These1 + γ intermediate samples give additional time for the
hottest replica to mix. To use this opportunity, note that leapfrog integration travels for a time≈ hR`, and if hR`
is small, sampling approximates a random walk. The expected time traveled by these1 + γ intermediate samples is
therefore proportional tohR`

√
1 + γ. Assuming the hottest replica has largest scale ofλR,1, we should choosèso

thathR`
√

1 + γ ≈ λR,1π/2, or

` ≈ λR,1
π

2
1

hR

√
1 + γ

. (25)

Reducing̀ according to thisleapfrog heuristicmeans the integration length is less than ideal for every replica.
As a result, state samplesXj will certainly not be independent. We also expect the potential energy samples,
− log[p(y |Xj)], to lack independence as well. In other words, the ELE assumption of [39] (see Section 5.2.1) will
be violated. This can be visualized by plotting chain traces (see Fig. 11). Swapping is turned off for these plots, since
we want to visualizelocal exploration.

The toy model in Fig. 11 implemented Eq. (3) withN = 10, M = 5, 55 replicas, and noiseσ = 0.025. We also
setTmax = σ−2 to ensure the hottest replica was barely mixing. Other temperatures were geometrically distributed.
We estimatedλR,1 using an exact formula for the largest scale of the tempered unimodal version of Eq. (3).

We next used the same toy model but with swapping turned on (P[Swap(r,r+1)] ≈ 0.75). The noise levelσ was
swept from 0.00075 to 0.05 while keeping the number of replicasR fixed at 55. This varies the schedule inefficiency
γ. See Fig. 12, where following our leapfrog heuristic exactly (leapfrog multiplier= 1) led to more efficient sampling
than shorter (leapfrog multiplier< 1) or longer (leapfrog multiplier> 1) integration times.

In a problem where modes are not Gaussian, the optimal integration time will no longer be given by theπ/2
heuristic, and the energy distribution may be such that an ELE violation is more problematic. To test these effects,
we used the multimodal version of our spectroscopy model from Section 2.2. Since our REMC implementation runs
R concurrent chains on GPU at once, memory usage increasesR times. We therefore limitedR to 150. We used the
parameter choices outlined in Sections 5.3.2 and 5.3.3, and assumedλR,1 = 1. Figure 13 shows potential energy
traces, similar to the toy-model traces of Fig. 11. Again, we see correlated samples. However, with the spectroscopy
model, different modes have different average potential energy forT = 1.

As with the toy model, we used aleapfrog multiplierto test variations on the leapfrog heuristic (25). Sampling
is once again most efficient if the heuristic is followed exactly (Fig. 14). We also compared settingTmax = ∞ in
addition to the coldest temperature that mixes without swapping.Tmax = ∞ was much less efficient, supporting the
recommendations given in Section 5.3.2.
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FIG. 11: Potential energy traces from the toy model (3). Three chain traces of− log[p(y |X)] are shown for the targetT = 1 and
hottestT = 1599replicas. Autocorrelation length is longer in the target. In neither case are samples independent. Since the two
modes in the toy model are identical, one cannot tell (by potential energy alone) if the chains are in different modes.

FIG. 12: Optimal number of leapfrog steps andγ, toy model. The (likelihood) tempered posterior from Eq. (3) was run for
a number of differentσ. Eachσ corresponds to a different schedule inefficiencyγ. The x-axis is aleapfrog multiplier. The
number of leapfrog steps taken is this multiplier times the heuristic (25). Left: sampling effort, as measured in leapfrog steps per
minn{ESSn}, is lowest when the leapfrog multiplier= 1. So following the heuristic (25) exactly was most efficient. Center: the
number of effective samples obtained by the hottest replica (in relation to the target, andγ) was 1/2 to 1/10 that predicted by
Eq. (21). Perhaps extra effective samples were picked up along the “hot to target” trip. Right: the target integration time,h1`, is
significantly less than would be required to efficiently explore the largest target scale (= 1) without REMC. So (i) the leapfrog
heuristic is saving a significant number of steps, (ii) the state samples are correlated, hinting that ELE is likely violated, and (iii)
even so, following our leapfrog heuristic was the most efficient choice.
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FIG. 13: Potential energy traces from the spectroscopy model. Three chain traces shown for the targetT = 1 and hottestT = 33
replicas. Both replicas exhibit autocorrelation within each chain. The target replica’s chains also exhibit different average potential
energy. This happens since the target replica is unable to jump between modes, and the modes have different potential energy. The
autocorrelation of each chain (not shown) is longer for the targetT = 1 than hottest replicaT = 33. This is is expected since both
use the same number of leapfrog steps, but the target must use a smaller step size.

FIG. 14: Efficiency, number of leapfrog steps, andγ in the spectroscopy model. The (likelihood) tempered multimodal posterior
from Section 2.2.X andY axis are as in Fig. 12. The “Mean” is taken over experiments with differentγ. Left: following the
leapfrog heuristic was the most efficient choice. Center: experiments were also done withTmax = ∞ in addition to the coldest
temperature that mixes without swapping (recommended in Section 5.3.2). WhenTmax = ∞, sampling was less efficient, and
the leapfrog heuristic selected too few steps to be efficient. Right: whenTmax = ∞, the ratio of (effective) samples drawn by the
hottest replica to that of the target was greater than1+γ. This is unexpected and unexplained. For bothTmax values, oncè is high
enough, Eq. (21) is satisfied (theY value is≈ 1), presumably because ELE is no longer violated.
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APPENDIX A. SUPPORTING LEMMAS

APPENDIX A.1 Equilbration of Matrices

The equilibration of a matrixA is defined in [42] as a rescaling of the rowsAj such that‖Aj‖ ≡ 1, in some vector
norm. Since the preconditioned covariance(D−1L)(D−1L)T has ones on the diagonal,D−1L is equilibrated in the
L2 norm. They go on to prove that equilibration is a near optimal diagonal scaling. In this section we follow their
lead, reproving pieces from scratch in order to avoid unwinding their more general, and technical, results.

Below,‖x‖2 is the L2 norm on vectors, and‖A‖2 := max‖x‖2=1x · Ax is the spectral norm on matrices. This is
upper bounded by the Frobenius norm‖A‖2

F =
∑

i,j A2
ij . In the following,Aj denotes thejth row of matrixA. A

key to [42] establishing their results is the notion of monotonicity of some norms. We prove here the only case we
need.
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Lemma 3. LetG ∈ RN×N be diagonal with non-negative entries. For anyA ∈ RN×N ,

‖AG‖S4 ≥ ‖A‖S4minn{Gnn}.

Proof. We have

‖AG‖4
S4 = Trace

{
(AG)(AGT )(AG)(AG)T

}
= Trace

{
G2AT AG2AT A

}
.

The result then follows by repeatedly applying (to positive semidefiniteU )

Trace{GU} =
∑

n

GnnUnn ≥ minn{Gnn}Trace{U}.

Lemma 4. Let A ∈ RN×N be equilibrated in the L2 norm. SupposeAAT has K nonzero elements in every
row/column. Then‖A‖2 ≤

√
K.

Proof. Since(AAT )ij = Ai · Aj , our condition onAAT implies that, for everyi, there are at mostK rowsAj such
thatAi ·Aj 6= 0. For these rows, Cauchy-Schwarz gives usAi ·Aj ≤ 1. Therefore,

‖A‖4
2 = ‖AAT ‖2

2 ≤ ‖AAT ‖2
F =

∑

i,j

(Ai ·Aj)2 ≤
∑

{(i,j): Ai·Aj 6=0}
1≤ K2.

The result follows by taking fourth roots.

We now have our main equilibration result.

Lemma 5. SupposeA is equilibrated in the L2 norm, withAAT having at mostK nonzero elements in every row.
Then for any diagonal matrixG,

κ(A) = ‖A‖2‖A−1‖S4 ≤
√

K ‖G−1A‖2‖A−1G‖S4 =
√

K κ(G−1A).

Proof. For any matrixF , ‖F‖2 ≥ maxj‖Fj‖2. Therefore, using Lemma 4,

‖G−1A‖2 ≥ maxj‖(G−1A)j‖2 = maxj |G−1
jj | = maxj |G−1

jj |
‖A‖2√

K
.

Likewise, Lemma 3 tells us‖A−1G‖S4 ≥ ‖A−1‖S4minj |Gjj |. Therefore,

‖G−1A‖2‖A−1G‖S4 ≥ maxj |G−1
jj |

‖A‖2√
K
‖A‖S4minj |Gjj | = ‖A‖2√

K
‖A‖S4.

Rearranging, we have proved Lemma 5.

APPENDIX A.2 Chi-Square Bounds

Lemma 6. If Zs ∼ N (0, 1) are i.i.d., then forε ∈ (0, 1),

P



∣∣∣∣∣∣
1
S

S∑

s=1

Z2
s − 1−

(
1
S

S∑

s=1

Zs

)2
∣∣∣∣∣∣
≥ ε


 ≤ 3exp

{−Sε2

25

}
.
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Proof. In the corollary to Lemma 1 in [43], they establish forχ2
S a chi-square random variable withS degrees of

freedom, andc > 0:

P[χ2
S − S ≥ 2

√
St + 2t] ≤ e−t,

P[χ2
S − S ≤ −2

√
St] ≤ e−t.

(A.1)

The second inequality in Eq. (A.1) directly gives us, ifε/2 = 2
√

c/S,

P

[
1
S

∑

s=1

Z2
s − 1≤ −ε

2

]
= P

[
χ2

S − S ≤ −2
√

Sc
]
≤ e−c = e−Sε2/16.

To use the first inequality in (A.1), we start with the substitutionε/2 = (5/2)
√

c/S, which implies
√

c/S = ε/5 <

1/4, so that(5/4) ≥ 1 +
√

c/S:

P

[
1
S

S∑

s=1

Z2
s − 1≥ ε

2

]
= P

[
χ2

S − S

S
≥ 2

5
4

√
c

S

]

≤ P

[
χ2

S − S

S
≥ 2

(
1 +

√
c

S

)√
c

S

]

= P
[
χ2

S − S ≥ 2
√

Sc + 2c
]

≤ e−c

= e−Sε2/25.

Combining, we have

P

[∣∣∣∣∣
1
S

S∑

s=1

Z2
s − 1

∣∣∣∣∣ ≥
ε

2

]
≤ 2e−Sε2/25. (A.2)

Next, a Bernstein inequality gives the standard Normal tail bound

P



(

1
S

S∑

s=1

Zs

)2

≥ ε

2


 ≤ e−Sε/4. (A.3)

Combining Eqs. (A.2) and (A.3), we have the result.
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