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In physics-based engineering modeling and uncertainty quantification, distinguishing the effects of two main sources

of uncertainty — calibration parameter uncertainty and model discrepancy — is challenging. Previous research has

shown that identifiability, which is quantified by the posterior covariance of the calibration parameters, can sometimes

be improved by experimentally measuring multiple responses of the system that share a mutual dependence on a com-

mon set of calibration parameters. In this paper, we address the issue of how to select the most appropriate subset of

responses to measure experimentally, to best enhance identifiability. We use a preposterior analysis approach that, prior

to conducting physical experiments but after conducting computer simulations, can predict the degree of identifiability

that will result using different subsets of responses to measure experimentally. It predicts identifiability via the pre-

posterior covariance from a modular Bayesian Monte Carlo analysis of a multi-response spatial random process (SRP)

model. Furthermore, to handle the computational challenge in preposterior analysis, we propose a surrogate preposte-

rior analysis based on Fisher information of the calibration parameters. The proposed methods are applied to a simply

supported beam example to select two out of six responses to best improve identifiability. The estimated preposterior

covariance is compared to the actual posterior covariance to demonstrate the effectiveness of the methods.
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1. INTRODUCTION

Computer simulations have been widely used for design and optimization in many fields of science and engineering,
as they are often much less expensive than physical experiments in analyzing complex systems. However, computer
simulations never agree completely with experiments because no computer model is perfect. Several sources of un-
certainty accounting for the differences between computer simulations and physical experiments have been reported
in the literature [1, 2].Parameter uncertaintyandmodel discrepancyare typically the two main sources; the former is
due to the lack of knowledge of physical parameters (e.g., friction coefficient in a finite element analysis) that are natu-
rally fixed but unknown and cannot be directly observed in physical experiments, while the latter is associated with the
lack of knowledge of the underlying true physics. Other sources of uncertainty may includenumerical uncertaintydue
to numerical errors in implementing computer models,experimental uncertaintydue to random observational error
when taking experimental measurements, and uncertainty due to randomly varying physical parameters. To analyze
the differences between computer simulations and physical experiments and to adjust simulation models to better re-
flect the reality, several model uncertainty quantification methodologies [1–5] have been developed for learning these
uncertainties via combining simulation data with physical experimental data. Adjusting predictive models based on
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identifying the unknown physical parameters and the model discrepancy are referred to ascalibration [1] andbias
correction[6–8], respectively.

Recent studies [9–12] indicate that calibration is usually difficult and that existing methodologies often fail at
distinguishing between the effects of parameter uncertainty and model discrepancy and even between the effects of
different model parameters. We refer to this issue as (non)identifiability. Loosely speaking, identifiability problems
occur when different but equally likely combinations of calibration parameters and discrepancy function result in
equally good agreement with the observed data. In many engineering applications, good identifiability is virtually
impossible if considering a single experimental response, although identifiability is often critically important for a
number of reasons. For example, consider material science and mechanical engineering applications in which many
material property parameters cannot be measured directly. If these parameters can be accurately identified via a model
calibration study comparing experimental data with computer simulations, their estimated values can be used to pre-
dict the behaviors of materials in more complex cases. Even for similar cases, better knowledge of the parameters
results in more accurate prediction over a broader range of input settings, because the model adjustment from learning
unknown parameters is more global than the adjustment from learning the model discrepancy. In addition, learning the
calibration parameters may in itself be a primary goal with broad-reaching implications (e.g., for scientific discovery
purposes or if an unknown parameter reflects performance of interest but cannot be directly observed or calculated).

Our recent results [11] indicate that, in spite of the identifiability challenges, good identifiability may often be
achieved in model uncertainty quantification by measuring multiple experimental responses that are automatically
calculated in the simulation and that share a mutual dependence on a common set of calibration parameters. We ob-
served an intriguing phenomenon that some combinations of responses may result in drastically different identifiability
than others: We used a simply supported beam example in our previous papers [10, 11] (revisited in Section 4) to show
that measuring certain responses will achieve substantial improvement in identifiability, while measuring other com-
binations of responses provides little improvement in identifiability beyond measuring only a single response. How
to select the most appropriate subset of responses to measure experimentally to best enhance identifiability remains a
research challenge.

Because of the cost and difficulty in developing and placing apparatus for measuring certain responses, it is
generally not feasible to measure experimentally all of the great many responses that are automatically calculated
in the simulations. Moreover, it is generally not necessary, because measuring only a subset of the responses may
result in acceptable identifiability. One primary objective of this paper is to address the issue of how to select the
most appropriate subset of responses to measure experimentally, to best enhance identifiability. We use apreposterior
analysisapproach built upon the approach introduced in [9, 13] that, prior to conducting the physical experiments
but after conducting the computer simulations, can predict the relative improvement in identifiability that will result
using different subsets of responses. Our preposterior analysis is based on Monte Carlo simulations within a modular
Bayesian multi-response spatial random process (SRP) framework. For validation of the approach, the preposterior
covariance predictions are compared with the actual posterior covariance calculated after the experiment is conducted.
Furthermore, to handle the computational challenges in the preposterior analysis, we introduce a simpler, surrogate
preposterior analysis based on the expected Fisher information of the calibration parameters. The expected Fisher
information matrix is the frequentist counterpart to the Bayesian preposterior covariance matrix of the parameters. We
demonstrate that, while being much faster to calculate than the preposterior covariance, it still provides a reasonable
indication of the resulting identifiability. For real engineering applications with many system responses (and hence
many different combinations of responses), we recommend using the surrogate preposterior analysis to eliminate the
responses that are unlikely to lead to good identifiability and reduce the number of response combinations that are
considered in preposterior analysis.

The remainder of the paper is organized as follows: In Section 2, we briefly review the standard approach to quan-
tify identifiability after observing experimental data, via the posterior covariance of the calibration parameters using
a multi-response modular Bayesian approach. Section 3 provides a detailed description of our proposed preposterior
analysis and surrogate preposterior analysis, in conjunction with the multi-response modular Bayesian approach, for
predicting identifiability prior to conducting physical experiments. In Section 4, the proposed methods are applied to
a simply supported beam example to select the best two (out of six) responses to measure experimentally in order
to best enhance identifiability. The results of the preposterior and surrogate preposterior analyses are compared to
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the results of the posterior analysis (after observing the experimental data) to demonstrate the effectiveness of the
methods. Conclusions are drawn in Section 5.

2. REVIEW OF MULTI-RESPONSE SRP MODELING AND CALIBRATION PARAMETER
IDENTIFIABILITY

The most popular general model uncertainty quantification framework to assess parameter uncertainty and model
discrepancy is a Bayesian one in which the simulation model responses and the physical experimental responses are
all viewed as realizations of SRPs. A modular Bayesian approach [1, 11, 14, 15] is typically one of the most useful for
calibration and bias correction. Consider the following model [1, 2, 4, 16] that relates the experimental and simulated
values ofq responses:

ye
i (x) = ym

i (x, θ∗) + δi(x) + εi (i = 1, 2, ..., q), (1)

wherex = [x1, ..., xd]
T denotes a vector ofd controllable input variables,θ = [θ1, ..., θr]

T denotes a vector ofr
calibration parameters (which, although unknown to modelers, can be specified likex in the simulation),θ∗ denotes
their true values,ym

i (x, θ)(i = 1, ..., q) denotes theith response from the simulation model as a function ofx and
θ, ye

i (x)(i = 1, ..., q) denotes the same response but as measured in the physical experiment,δi(x)(i = 1, ..., q) is a
model discrepancy function that represents the difference between theith model response (using the trueθ

∗) andith
experimental response, andεi(i = 1, ..., q) is the random measurement error. Bothym

i (x, θ) andδi(x) are modeled
as SRPs. After observing both simulation data and experimental data, the modular Bayesian approach calculates the
posterior distributions ofθ and of the discrepancy functions, which subsequently can be combined with the simulation
model to improve the response prediction.

In this section, we briefly review the multi-response modular Bayesian approach [5, 11, 14, 15, 17], in particular to
calculate the (joint) posterior distribution of calibration parameters based on combining simulation and experimental
data. The posterior distribution of calibration parameters provides a quantification of identifiability. The approach is an
extension of the single response modular Bayesian approach of Kennedy and O’Hagan [1]. The following assumes the
general relationship of Eq. (1), in which all of the responses share a mutual dependence on the same set of calibration
parametersθ.

2.1 SRP-Based Metamodeling of the Computer Simulations and Discrepancy Functions

The Bayesian SRP-based metamodeling of simulation responses [18–22] provides an analytical basis for the modular
Bayesian approach. Simulation runs, although generally much less expensive than experimental runs, still involve
some expense and cannot densely cover the input space, especially with high-dimensional inputs. Hence, metamodels
that replace the simulations are useful for inferring the response at input combinations for which no simulations have
been conducted [23]. Moreover, metamodels for discrepancy functions are also needed to enable the comparisons
between simulation data and experimental data, especially when simulations and experiments are conducted at two
different sets of input settings. A Gaussian process model [24] is a widely used SRP model capable of capturing the
trend and roughness of the simulation response surface by choosing and fitting a few key parameters, which are called
hyperparametersof the Gaussian process. The well-known Kriging method [25] is also based on the Gaussian process
approach. The SRP modeling technique is compatible with the Bayesian framework to quantify model uncertainty,
particularly the type of model parameter uncertainty on which we focus in this paper. It also has the merit of pro-
viding a reasonable quantification of the uncertainty of the prediction via a prediction error variance (in addition to a
prediction mean) of the experimental responses.

After collecting simulation and experimental data, two separate modules are used to fit the multi-response Gaus-
sian process (MRGP) models for the computer simulations and for the model discrepancy functions, as follows.

Module 1. Multi-response Gaussian process modeling for the computer simulations

A MRGP model is fitted to the simulation data to replace the expensive computer simulations and to predict the value
of the simulation response at any input site in the design domain. The MRGP model follows the form [14, 15] that is
specified by its prior mean and prior covariance functions:
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ym(·, ·) ∼ GP
(

hm(·, ·)Bm,ΣmRm((·, ·), (·, ·))
)

, (2)

whereym(x, θ) = [ym
1 (x, θ), ..., ym

q (x, θ)] denotes the multiple responses from the computer model.hm(x, θ) =
[hm

1 (x, θ), ..., hm
q (x, θ)] denotes a set of pre-defined regression basis functions andBm = [βm

1 , ..., βm
q ] is a matrix

of unknown regression coefficients associated withhm(x, θ); their producthm(x, θ)Bm represents the prior mean
function of the MRGP. The product of an unknown non-spatialq × q covariance matrixΣm and a pre-defined scalar
spatial correlation functionRm((x, θ), (x′, θ′)) represents the prior covariance function of the MRGP, where(x, θ)
and(x′, θ′) denote two sets of computer model inputs. A frequently used stationary spatial correlation function is the
Gaussian correlation function

Rm((x, θ), (x′, θ′)) = exp

{

−
d

∑

k=1

ω
m
k (xk − x′

k)2 −
r

∑

k=1

ω
m
d+k(θk − θ

′

k)2

}

, (3)

whereωm = [ωm
1 , ..., ωm

d+r] is the vector of roughness parameters that are used to capture the nonlinearity of the
process. The unknowns in this MRGP model are its hyperparametersφ

m = {Bm,Σm, ωm}.
Suppose that a set of simulation dataYm = [ym

1 , ...,ym
q ], whereym

i = [ym
i (xm

1 , θm
1 ), ..., ym

i (xm
Nm

, θm
Nm

)]T ,
is collected atNm input sitesXm = [xm

1 , ...,xm
Nm

]T andΘm = [θm
1 , ..., θm

Nm
]T . To obtain the estimates of the

hyperparametersφm, the maximum likelihood estimation (MLE) method is used to maximize the multivariate normal
log-likelihoodfunction for the simulation data:

ln p
(

vec(Ym)|φm
)

= −
qNm

2
ln(2π) −

Nm

2
ln (|Σm|) −

q

2
ln (|Rm|)

−
1

2
vec(Ym − HmBm)T (Σm ⊗ Rm)

−1
vec(Ym − HmBm),

(4)

wherevec(·) is matrix vectorization (by stacking the columns of the matrix),⊗ denotes the Kronecker product,
Rm is anNm × Nm correlation matrix whoseith-row, jth-column entry isRm((xm

i , θm
i ), (xm

j , θm
j )), andHm =

[

hm(xm
1 , θm

1 )T , ...,hm(xm
Nm

, θm
Nm

)T
]T

.

Module 2. Multi-response Gaussian process modeling for the discrepancy functions

Similarly to Module 1, a MRGP model

δ(·) ∼ GP
(

hδ(·)Bδ,ΣδRδ(·, ·)
)

, (5)

is created for the discrepancy functions, whereδ(x) = [δ1(x), ..., δq(x)] denotes the discrepancy functions for multi-
ple responses.hδ(x) = [hδ

1(x), ..., hδ
s (x)] denotes a set of pre-defined regression basis functions,Bδ = [βδ

1 , ..., βδ

q ]

is a matrix of unknown regression coefficients,Σδ is an unknown non-spatialq × q covariance matrix, andRδ(x,x′)
implemented in this paper is again the Gaussian spatial correlation function

Rδ(x,x′) = exp

{

−
d

∑

k=1

ω
δ

k(xk − x′

k)2

}

, (6)

parameterized by a vector of roughness parametersωδ = [ωδ
1 , ..., ω

δ

d]. Assuming the experimental errorεi (i =
1, ..., q) in Eq. (1) are independently, normally distributed with mean 0 and unknown varianceλi, the prior for the
experimental responses is also a MRGP that is the sum of the two MRGPs [Eqs. (2) and (5)] and the random error
term, i.e.,

ye(·)
∣

∣(θ = θ
∗) ∼ GP

(

me(·, θ∗),Ve((·, θ∗), (·, θ∗))
)

,

me(x, θ) = hm(x, θ)Bm + hδ(x)Bδ,

Ve((x, θ), (x′, θ)) = ΣmRm((x, θ), (x′, θ)) + ΣδRδ(x,x′) + diag(λ),

(7)
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whereye(x) = [ye
1(x), ..., ye

q(x)] denotes the multiple responses from experiments,λ = (λ1, ..., λq) is a vector
comprising the variance of measurement error, anddiag(λ) is a diagonal matrix formed by the vectorλ.

The unknown hyperparameters of the MRGP model (together with the yet-to-be-estimated measurement error
variance) areφδ = {Bδ,Σδ, ωδ, λ}. To obtain the MLEs of the hyperparametersφ

δ for this MRGP model, ex-
perimental dataYe = [ye

1, ...,y
e
q], whereye

i = [ye
i (x

e
1), ..., y

e
i (x

e
Ne

)]T (i = 1, ..., q), are collected atNe input sites
Xe = [xe

1, ...,x
e
Ne

]T . A prior distributionp(θ) of the calibration parametersθ is specified, with respect to which a
likelihood function, constructed using the simulation dataYm and experimental dataYe and the MLEs of the com-
puter model hyperparameters from Module 1, is marginalized. By maximizing this likelihood function, MLEs of the
discrepancy function hyperparameters are obtained. Mathematical details of constructing the likelihood function and
calculating the MLEs of hyperparametersφ

δ can be found in [9, 11].
Generally speaking, the higher dimensionality (the more input variables and/or calibration parameters) the prob-

lem has, the more training data are needed to estimate the hyperparameters of the MRGP models, and the higher
the computational cost. The computational cost has at least two contributing factors. The first is the matrix inver-
sion required in Eq. (4), and the second is the fact that there may be multiple local optima during the optimization
when finding the MLEs of the hyperparameters. Regarding the latter, robust global optimization algorithms can often
alleviate this.

2.2 Quantifying Identifiability of Calibration Parameters

After obtaining the MLEs of the hyperparameters of the two MRGP models in Modules 1 and 2, the posterior distri-
bution of the calibration parametersθ and of the simulation and experimental responses can be calculated as follows.

Module 3. Calculating posterior distribution of the calibration parameters
Based on Bayes theorem, the posterior of the calibration parameters is

p(θ
∣

∣Ym,Ye, ϕ̂) =
p(Ym,Ye

∣

∣θ, ϕ̂)p(θ)

p(Ym,Ye
∣

∣ϕ̂)
, (8)

where ϕ̂ is the MLEs ofϕ = {Σm, ωm,Σδ, ωδ, λ}. p(Ym,Ye
∣

∣θ, ϕ̂) is the likelihood function of the col-
lected simulation and experimental data (Ym andYe) conditioned onθ and ϕ̂; it is achieved by marginalizing
p(Ym,Ye

∣

∣θ, ϕ̂,Bm,Bδ) with respect top(Bm,Bδ
∣

∣θ, ϕ̂,Ym,Ye).
Due to the nature of the effects of the calibration parametersθ and model discrepancy functionδ(x), different

combinations of calibration parameters and discrepancy functions might result in equally good agreement with the
physical experiments and equally high values for the likelihood function. Figure 1 illustrates this with an example
having a single response (q = 1), a scalar inputx (d = 1), and a scalar calibration parameterθ(r = 1). θ̂

(1), θ̂
(2)

and θ̂
(3) denote three possible estimates of the calibration parameterθ; ym(x, θ̂(1)), ym(x, θ̂(2)) andym(x, θ̂(3))

are the computer simulation models corresponding to the three different values ofθ. For each simulation realization
ym(x, θ̂(i))(i = 1, ..., 3), an estimated discrepancy functionδ

(i)(x)(i = 1, ..., 3) can be found so that the resulting
experimental response predictionsym(x, θ̂(1)) + δ

(1)(x), ym(x, θ̂(2)) + δ
(2)(x) andym(x, θ̂(3)) + δ

(3)(x) are quite
similar and in equally good agreement with the experimental data within the experimental region. Intuitively from
the smoothness of the observed experimental data, the combination ofθ̂

(3) andδ
(3)(x) seems less likely than the

other two combinations to be the true parameter value and true bias function as the simulation is highly nonlinear.
Rigorous calculation can show that its posterior probability densityp(θ̂(3))|ym, ye) is smaller thanp(θ̂(1))|ym, ye)

andp(θ̂(2))|ym, ye). However, it may be virtually and computationally impossible to identify which ofθ̂
(1) andθ̂

(2)

is a better estimate ofθ, since in both cases [Figs. 1(a) and 1(b)] the computer simulations are consistent with the
experiments to a similar degree, and the values ofp(θ̂(1))|ym, ye) andp(θ̂(2))|ym, ye) are close.

Figure 2 depicts how the posterior distribution ofθ can be used to assess the level of identifiability for a hypo-
thetical single-parameter example. A tight posterior distribution ofθ with a clear mode indicates good identifiability.
In sharp contrast, with a widely dispersed posterior distribution, the identifiability is poor. Throughout, to measure
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-0.08

-0.04

0

δ(1)(x )

ye(x )

ym(x, θ̂(1)) + δ(1)(x )

ym(x, θ̂(1))

x

(a) Likely
-0.08

-0.04

0

δ(2)(x )

ye(x )

ym(x, θ̂(2)) + δ(2)(x )

ym(x, θ̂(2))

x

(b) Likely

-0.08

-0.04

0
δ(3)(x )

ye(x )
ym(x, θ̂(3)) + δ(3)(x )

ym(x, θ̂(3))

x

(c) Unlikely

FIG. 1: An illustration of non-identifiability. Three different combinations of calibration parameter and discrepancy
function result in equally good agreement with the experimental observations. While it is easy to tell that (c) is the
least likely estimate ofθ, it may be impossible to identify which of (a) and (b) is better.

the degree of identifiability, we will use the posterior variance (or posterior covariance matrix for cases with multiple
calibration parameters) and its preposterior counterpart as its estimate prior to conducting the physical experiment.

While we do not need it in this paper, the multi-response modular Bayesian approach also includes an ad-
ditional module to predict the experimental responses and the discrepancy function at untested sitesx once the

Poor identifiability

Good identifiability

θ

P
ro
b
a
b
ili
ty

d
e
n
si
ty

FIG. 2: Posterior distribution of calibration parameter as a demonstration of identifiability for a single-parameter case.
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hyperparameters in Modules 1 and 2 are estimated. By combining the estimates of hyperparameters and the col-
lected simulation data and experimental data, the conditional posterior distribution of the experimental responses (or
the discrepancy functions if interested), givenθ, can be calculated and subsequently marginalized with respect to the
posterior distribution of the calibration parameters. Details can be found in [9, 11].

3. PREPOSTERIOR ANALYSIS TO SELECT THE RESPONSES TO MEASURE

In the previous section we discussed identifiability assessment using the posterior covariance calculated after observ-
ing both the simulation data and the experimental data. As discussed earlier, identifiability may possibly be enhanced
by measuring multiple experimental responses. However, because each experimentally measured response incurs ad-
ditional cost and effort, it is important to select an appropriate subset of responses that will reasonably enhance identi-
fiability but that are economically feasible to measure. In this section we discuss our approach for using a preposterior
analysis (Section 3.1) topredict (prior to conducting the experiments) the posterior covariance of the calibration
parameters that will result after experimentally measuring each subset of responses from a collection of candidate
subsets. The results of the preposterior analysis provides guidance on choosing which responses to measure experi-
mentally in an economical yet effective manner. A surrogate preposterior analysis (Section 3.2) is also proposed based
on the Fisher information of the calibration parameters in order to handle the computational challenge in preposterior
analysis by eliminating combinations of responses that are unlikely to lead to good identifiability.

3.1 Multi-Response Preposterior Analysis

The preposterior analysis framework for selecting the experimentally measured responses is shown in Fig. 3. The
procedure is based on an extension of our preposterior analysis for a single response [9, 13]. After conducting the
simulations but before conducting the experiments, the user first defines a number of candidate subsets of responses
for preposterior analysis. This could be accomplished based on some heuristics (e.g., one that will be discussed in
Section 3.2) and/or on which responses are deemed inexpensive to measure. If there areNc candidate subsets of
responses, the analysis evaluates the degree of identifiability for each via the preposterior covariance. The subset
of responses that yields the tightest preposterior distribution (cost/difficulty of measurement can also be taken into
consideration) would be deemed the most likely to achieve good identifiability. Each step of the preposterior analysis
is described in detail as follows.

Step 1. Preliminaries
In this step, a MRGP model is fit to the simulation data, and several quantities needed in the subsequent steps are

defined. First, Module 1 of the multi-response modular Bayesian approach described in Section 2.1 is implemented
to construct the MRGP model for the computer simulations based on the simulation dataYm = [ym

1 , ...,ym
q ], where

ym
i = [ym

i (xm
1 , θm

1 ), ..., ym
i (xm

Nm
, θm

Nm
)]T , (i = 1, ..., q), collected atNm input sitesXm = [xm

1 , ...,xm
Nm

]T and
Θm = [θm

1 , ..., θm
Nm

]T . The maximum likelihood estimation (MLE) method estimates the hyperparametersφ
m =

{Bm,Σm, ωm} of the computer simulations. In subsequent steps, the MRGP model is used to infer the simulation
response at input settings within the design domain where no simulations are conducted.

Next, a total ofNe experimental input settingsXe = [xe
1, ...,x

e
Ne

]T are defined, representing the input settings,
i.e., the experimental design that one intends to use for the physical experiment (in the MC simulations of step 2, simu-
lated experimental response values will be generated at these input settings). Step 1c then assigns the prior distribution
parameters for the priors of MRGP hyperparameters in the discrepancy function, the prior for the experimental error,
and the prior for the calibration parametersθ. The experimental error is assumed to be i.i.d. normal with mean 0 and a
prior variance chosen based on prior knowledge of the level of measurement error. The prior for discrepancy function
MRGP hyperparametersφδ \ λ = {Bδ,Σδ, ωδ} captures the prior uncertainty and nonlinearity of the discrepancy
functions;Σδ in Eq. (5) controls the magnitude of uncertainty of the MRGP model, andωδ controls its roughness
(rougher surfaces correspond to larger values ofωδ). For computational convenience,{Bδ,Σδ, ωδ} can be assigned
with point mass priors. However the prior for calibration parametersθ should have support spanning the entire range
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Choose Nc candidate subsets of responses

k=1

Select the kth subset of responses

Step 1: Preliminaries

a) MRGP for computer models based on simulation data

b) Define the experimental inputs Xe

c) Assign prior for

i. Discrepancy function MRGP hyperparameters

ii. Observational error

iii. Calibration parameters

Step 2: Monte Carlo Loop (for i=1, …, Nmc)

a) Generate a simulated set of experimental data Ye(i) by 

generating

i. A realization of parameter θ(i) from its prior in 1c

ii. A realization of simulation Ym(i) from MRGP in 1a

iii. A realization of model discrepancy ∆(i) from 

MRGP in 1c

iv. A realization of observational error E (i) from 1c

and Ye(i)=Ym(i)+ (i)+ (i)

b) Based on Ye(i), estimate the hyperparameters of the 

discrepancy function MRGP for the ith MC replicate

c) Calculate the sample posterior covariance of for 

replicate i

Step 3: Calculate the preposterior covariance as average of 

the Nmc sample posterior covariances from Step 2

k≥Nc? k=k+1

MULTI-RESPONSE 

MODULAR BAYESIAN 

APPRAOCH PREPOSTERIOR ANALYSIS

Step 4: Based on the preposteriors of all Nc subsets of 

responses, select a subset to measure

No

Yes

Module 3

Posterior of the 

Calibration Parameters

Module 2

MRGP for the 

Discrepancy Functions

Module 1

MRGP for the 

Computer Models

E∆

θ

FIG. 3: Flowchart of the preposterior analysis for selecting experiment responses.
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of possible values forθ; for a less informative prior, one can use a uniform distribution over a broad range, while a
normal distribution with specified mean and variance can be used for a more informative prior.

Step 2. Monte Carlo (MC) loop(for i = 1, ..., Nmc)
In order to calculate the preposterior covariance, a Monte Carlo (MC) sampling strategy is applied to generate

Nmc replicates of hypothetical experimental response data based on the information calculated or specified in step 1.
For each replicate, after generating the hypothetical experimental data, the multi-response modular Bayesian approach
is applied to estimate the hyperparameters of the discrepancy function MRGP models and to calculate the posterior
covariance for this replicate. For theith MC replicate, the following steps are involved. The superscript(i) added to a
quantity indicates that it is for theith MC replicate.

(a) Generate a simulated set of experimental dataYe(i).

A realizationθ
(i) of the calibration parameters is first generated from its prior distribution specified in step 1.

Next, using the MRGP model for the computer simulation obtained in step 1, we generate a realization of the
computer simulation response values at parameter valuesθ

(i) and input settingsXe, denoted byYm(i) =

ŷm(Xe, θ(i)) = [ŷ
m(i)
1 , ..., ŷ

m(i)
q ], whereŷ

m(i)
j =

[

ŷ
m(i)
j (xe

1, θ
(i)), ..., ŷ

m(i)
j (xe

Ne
, θ(i))

]T

(j = 1, ..., q).

Here,Ym(i) is generated from a multivariate normal distribution whose mean vector and covariance matrix
are determined by the MRGP model. The hat notation ‘ˆ’ overym(Xe, θ(i)) denotes that we are drawing
interpolated data from the MRGP model (instead of the original model) ofym. Next, using the priors for
φ

δ \ λ = {Bδ,Σδ, ωδ} specified in step 1c and the MRGP model of Eq. (5), we generate a realization for
the discrepancy functions at the design settingsXe, denoted by∆(i) = [δ

(i)
1 , ..., δ(i)

q ], whereδ
(i)
j (j = 1, ..., q)

represents the realization of discrepancy function for theith response atXe. Similar to generatingYm(i), a mul-
tivariate normal distribution is used to generate∆(i), but with mean vector and covariance matrix determined
by the MRGP model for the discrepancy functions.

Finally, we generate a realizationE(i) of the observation errors at the design settingsXe, assuming that the
experimental errorεj(j = 1, ..., q) follows i.i.d. normal distributions with mean 0 and varianceλj specified in
step 1c.E(i) is anNe × q matrix whoseuth-row,vth-column entry is the realization of observation error for the
vth response at theuth design settingxe

u. Based on Eq. (1), the realizationYe(i) of the simulated experimental
responses at the design settingsXe is calculated via

Ye(i) = Ym(i) + ∆(i) + E(i). (9)

(b) Based onYe(i), estimate the hyperparameters of the discrepancy function MRGPδ
(i)(x) for theith MC repli-

cate.

This is a direct application of Module 2 of the multi-response modular Bayesian approach described in Sec-
tion 2.1, but with an actual set of experimental dataYe replaced by the hypothetical setYe(i) generated on the
ith MC replicate. Specifically, Module 2 estimates the hyperparameters of the MRGP model for the discrepancy
functions for theith MC replicate using MLE methods based on combining the simulation dataYm obtained
in step 1 and the hypothetical experimental dataYe(i) generated in step 2a for theith MC replicate.

(c) Calculate the sample posterior covariance ofθ for replicatei.

This is also a direct application of Module 3 of the multi-response modular Bayesian approach described in
Section 2.2, but with an actual set of experimental dataYe replaced by the hypothetical setYe(i) generated on
theith MC replicate. Specifically, Module 3 calculates the sample posterior covarianceCov(i)[θ|Ym,Ye(i)] of
the posterior distribution of theta in Eq. (8). For low-dimensionalθ, Legendre-Gauss quadrature [26, 27] can
be used to calculate the posterior covariance. For higher-dimensionalθ, other numerical approaches such as
Markov Chain Monte Carlo (MCMC) [28] or sampling-resampling [29] methods can be used.
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Step 3. Calculate the preposterior covariance as average of theNmc posterior covariances from step 2
Iterating through theNmc MC replicates in step 2 produces{Cov(i)[θ|Ym,Ye(i)] : i = 1, 2, ..., Nmc}. The

preposterior covariance matrix of the calibration parameters is defined asEYe [Cov[θ|Ym,Ye]
∣

∣Ym], where the
outer expectation is with respect to the actual, yet-to-be-observed experimental response dataYe, conditioned on
the already-observed simulation dataYm. As an estimate of the preposterior covariance matrix, we use

Σ̃θ (or σ̃
2
θ

for a scalar θ) =
1

Nmc

Nmc
∑

i=1

{

Cov(i)[θ|Ym,Ye(i)]
}

. (10)

Step 4. Based on the preposterior covariances of all subsets of responses, select a subset to measure experimentally
In Bayesian analyses, the posterior covariance constitutes a standard quantification of parameter identifiability [9–

11]. The preposterior covariance serves as a prediction of the posterior covariance that we expect to result after
conducting the physical experiment based on the knowledge we have obtained from the observed simulation response
surface. Consequently, we use the preposterior covariance to guide the selection of the subset of responses to measure
experimentally that has the most potential to enhance identifiability. For a simple case with a single calibration param-
eter, the subset of responses that leads to the smallest preposterior variance (tightest preposterior distribution) would
be deemed as the most likely to achieve good identifiability. For cases with multiple calibration parameters, scalar
metrics of the preposterior covariance matrix, such as its trace, determinant, maximum eigenvalue, etc., can be used
to determine which subset yields the tightest preposterior distribution and, subsequently, which subset of responses to
measure experimentally.

3.2 Fisher-Information-Based Surrogate Preposterior Analysis

Clearly, the proposed multi-response preposterior analysis is very computationally intensive. For a system withN
responses, there areN(N − 1)/2 combinations of two responses and2N total combinations of any subset of the
N responses. Even for a single subset of responses, the computational cost can be substantial. The MC strategy
requires a large numberNmc of replicates, and for each MC replicate, Modules 2 and 3 (which themselves involve
a MC simulation or numerical integration) of the modular Bayesian approach must be implemented. Therefore, to
make the preposterior analysis feasible for engineering applications with many system responses, we develop a more
computationally efficient surrogate preposterior analysis that can be used to eliminate the responses that are unlikely to
lead to good identifiability, thereby substantially reducing the number of response combinations that must be included
in preposterior analysis.

For ther-dimensional calibration parameter vectorθ, theobserved Fisher informationI(θ) is a matrix whose
uth-row,vth-column entry is the negative second-order derivative of the log-likelihood function:

[I(θ)]u,v = −
∂2

∂θu∂θv

log p(Ym,Ye
∣

∣θ, ϕ̂) (u, v = 1, 2, ..., r), (11)

wherep(Ym,Ye
∣

∣θ, ϕ̂) is the likelihood function for the simulation and experimental data together, as in Eq. (8). It
measures the amount of information that yet-to-be-collected experimental dataYe, together with the already observed
Ym, carry about calibration parameterθ. We use Fisher information in our paper because most standard measures
of the quality of a designed experiment are based on it (e.g., D-optimality, A-optimality, I-optimality, etc.), and we
have a computationally reasonable way to calculate it. Note thatθ in Eq. (11) is meant to be the true values of the
calibration parameters. Hence, in Eq. (11) the distribution of the computer responseYm by itself does not depend on
θ. Only the distribution ofYe depends onθ.

The Fisher-like surrogate preposterior criterion that we propose in this section, which we use only for reducing the
number of response combination that must be considered, is a modified version of Eq. (11). To handle the complication
that we do not know the yet-to-be-collected experimental dataYe in Eq. (11), we make the simple substitution
ŷm(Xe, θ) for Ye. Here,ŷm(Xe, θ) represents the predicted value ofYe via interpolating the data from the MRGP
model ofym. After generating this fictitious realization ofYe, we use the modular Bayesian approach (step 2b of
the flowchart in Fig. 3) to estimate the hyperparametersϕ̂ for substitution into Eq. (11). Because we replaceYe by
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its prediction, this will tend to result in a small estimated variance parameters for the discrepancy function, which
will naturally result in some level of underestimation of the identifiability inθ. However, we only use this surrogate
procedure forrelative ranking of the identifiability that results from the various combinations of responses, and our
results (see Section 4) indicate that the surrogate analysis does a reasonable job of preserving the relative ranking. The
advantage of this approach is computational — instead of generating multiple realizations ofYe, we only generate a
single realization̂ym(Xe, θ).

There is an additional complication. Theθ in Eq. (11) represents the true parameters, and these are unknown. To
handle this, we replace (11) by the “averaged” observed Fisher information matrix, averaging (11) with respect to
the prior distributionp(θ) of θ. To calculate this, we use Monte Carlo simulation, as outlined in steps 2 and 3 of the
flowchart in Fig. 4. Specifically, we drawN ′

mc realizationsθ(i)(i = 1, 2, ..., N ′

mc) from p(θ) and take theuth-row,
vth-column entry (u, v = 1, 2, ..., r) of our averaged observed Fisher information matrix to be

Consider all candidate subsets of responses

For the kth subset of responses (k=1, …):

Step 3: Calculate

Step 4: Based on the analysis of all subsets of responses, select the 

top Nc subsets for preposterior analysis

Step 1: Preliminaries

a) MRGP for computer models based on simulation data

b) Define the experimental inputs Xe

c) Assign prior for calibration parameters

= sample average of

PREPOSTERIOR ANALYSIS (Fig. 3)

Step 2: Monte Carlo Loop (for i=1, …, N’mc)

a) Generate a simulated set of experimental data Ye(i) by

i. Generating a realization of parameter (i) from its 

prior in 1c

ii. Setting

b) Based on Ye(i), estimate the hyperparameters of the 

discrepancy function MRGP for the ith MC replicate

c) Calculate

( ) ( )ˆ ,e i m e i
Y     = y    X θ

θ

(          )

I θ
( i )

u,v
= −

∂2

∂θu ∂θv
log p Ym

, ŷm Xe
, θ

( i )
θ , ϕ̂

( i )

θ = θ ( i )

I θ
( i )

u,v

ˆ
I

u,v

FIG. 4: Flowchart of the surrogate preposterior analysis.
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[

Î
]

u,v
=

1

N ′

mc

N ′

mc
∑

i=1

{

−
∂2

∂θu∂θv

log p
(

Ym, ŷm(Xe, θ(i))
∣

∣θ, ϕ̂
(i)

)

∣

∣

∣

∣

∣

θ=θ
(i)

}

, (12)

whereϕ̂
(i) denotes the values ofϕ estimated in the modular Bayesian algorithm on theith MC replicate. Various

scalar metrics of̂I (e.g., trace, determinant, maximum eigenvalue, etc.) can be used as the surrogate measure of iden-
tifiability. For a simple case with a single calibration parameterθ, Î is a scalar. The larger̂I is, the more information
we have aboutθ from Ym andYe, and the more likely we are to achieve good identifiability.

After calculatingÎ from Eq. (12), we choose the topNc subsets of responses (based on one of the scalar measures
of identifiability extracted from̂I) to be further analyzed in the full preposterior analysis. Figure 4 is a flowchart of
the entire Fisher-information-based surrogate preposterior procedure.

The surrogate analysis is clearly much more efficient than the full preposterior analysis. The number of MC
replicatesN ′

mc can be significantly smaller than what is required in the preposterior analysis (Nmc), since the MC
sampling now is only with respect toθ. In addition, and more importantly, the calculations in each MC replicate are
much simpler. Within each MC replicate, neither an inner level MC simulation, nor numerical integration, is needed.
The main computation within each MC replicate is to calculate the MLEs of the hyperparametersϕ̂

(i) and then to
evaluate the likelihood at a few discrete values in the neighborhood ofθ

(i) to calculate the second-order derivative in
Eq. (12) numerically.

4. CASE STUDY: A SIMPLY SUPPORTED BEAM EXAMPLE

In this section, a simply supported beam example (Fig. 5) used in [10, 11] is employed to demonstrate the effectiveness
of the preposterior and surrogate preposterior analyses approach. The simply supported beam is fixed at one end and
supported by a roller on the other end, with a length of2 m and a rectangular cross section with a height of52.5 mm
and a width of20 mm. The input variablex is the magnitude of the static force applied to the midpoint of the beam,
and the calibration parameterθ is Young’s modulus. The true value of Young’s modulus isθ

∗ = 206.8 GPa, which
is assumed unknown to the modeler and the experimentalist. There are six output variablesyi(i = 1, ..., 6) that are
calculated in the computer simulation and that we consider as candidates to measure experimentally. The physical
meanings of the six responses are listed in Table 1.

y

Force (x)

Cross Section of Beam

FIG. 5: Schematic of the simply supported beam.

TABLE 1: Physical meanings of the six responses that can be
measured from the beam example

Response Physical meaning
y1 Strain at the midpoint of the beam
y2 Plastic strain at the midpoint of the beam
y3 Angle of deflection at the end of the beam (rad)
y4 Internal energy of the beam (J)
y5 Displacement at the middle of the beam (m)
y6 Plastic dissipation energy (J)
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As in [10, 11], what we treated as experimental data was from a higher-fidelity simulator for all the six responses,
and the original objective is to calibrate the unknown parameterθ by integrating the experimental data and the simula-
tion data. It turns out that the identifiability of this system is rather poor using any one of the six responses. Using two
responses together may potentially enhance identifiability. Paper [11] provides detailed results of posterior analysis
on each pair of the six responses and demonstrates the enhancement of identifiability. However, it did not provide
a strategy for predicting which pair of responses will best enhance identifiability prior to conducting the physical
experiment.

In this paper, we predict identifiability prior to collecting the physical experimental data, although the simulation
data for all six responses are available on a4 × 4 grid over the(x, θ) space with a range of1300 6 x 6 2300 N and
150 6 θ 6 300 GPa. Note that the design does not have to be factorial as in the example; any design of experiments
(DOE) technique can be used to select the input settings. The objective is to select which two out of six responses to
measure experimentally, in order to best enhance identifiability. The preposterior and surrogate preposterior analyses
using the simulation data are used to predict the degree of identifiability. The candidate subsets of responses that we
consider are all15 {yi, yj : i, j = 1, ..., 6, i < j}. In the following discussion, we use the candidate subset{y4, y5} to
demonstrate the main procedures of the two analyses.

In the preliminary step of both preposterior and surrogate preposterior analyses, a MRGP model is built for
{y4, y5} from the simulation data. Figure 6 plots the predicted response surfaces from the MRGP model, which
are quite close to the true simulation response surface, because the latter is relatively smooth in this example. The
experimental settingsXe for the input variable are defined as11 points uniformly spaced over the design region,
i.e., Xe = [1300, 1400, ..., 2200, 2300] N. The prior for the calibration parameterθ is a uniform distribution over
[150, 300] GPa. Additionally for the preposterior analysis, we assign point mass priors for the hyperparameters of the
discrepancy functions with masses atBδ = 0, Σδ = diag(1.11×10−7, 1.11×10−7), andωδ = 2. The experimental
errors are assigned independent normal distributions:ε4 ∼ N (0, 0.0070) andε5 ∼ N (0, 2.943 × 10−9).

In the MC loop of the preposterior analysis, there are a total ofNmc = 1600 MC replicates for this specific
subset of responses. Within theith MC replicate, a realization of the simulation responseYm(i) at the input settings
Xe is generated from the MRGP model fitted in step 1a (the mean of which is shown in Fig. 6), a realization of
the model discrepancy∆(i) is generated based on the specified prior for the hyperparameters, and a realization of
the observational errorE(i) is generated based on the distributions ofε4 and ε5. Based on this, a realization of
experimental dataYe(i) is calculated via step 2a-iv and can be used for the multi-response modular Bayesian approach
to calculate the sample posterior variance for theith MC replicate. A histogram of the1600 sample posterior variances
is plotted in Fig. 7. Assuming a uniform prior forθ over the range shown in Fig. 7, the preposterior variance is
estimated as the average of all1600 sample posterior variances, which isσ̃

2
θ

= 2.0054 GPa2.
In the MC loop of the surrogate preposterior analysis, we considerN ′

mc = 16 equally spaced values ofθ. Within
the ith MC replicate, a realization of the simulationYm(i) is generated, as in the preposterior analysis. However,
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FIG. 6: The MRGP model for (a)y4 and (b)y5.
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FIG. 7: Histogram of the1600 sample posterior variances for{y4, y5}.

without generating∆(i) andE(i), we directly takeYe(i) = Ym(i) and apply the multi-response modular Bayesian
approach to calculate the negative second-order derivative of log-likelihood function [as the term inside the brackets
in Eq. (12)]. The results for all16 values ofθ are plotted in Fig. 8(b). The Fisher-information-based scalar predictor
Î, taken to be the average of the16 values, is351.8. Becauseθ is scalar with a uniform prior for this example, taking
the average over the16 evenly spaced values ofθ is more computationally efficient than generating random draws of
θ from its prior and using Eq. (12).

To better illustrate the relationship between the preposterior and the surrogate preposterior analyses, we conduct
the preposterior analysis in the same “fixed-θ” manner described in the preceding paragraph for the surrogate prepos-
terior analysis. That is, we consider the16 different values ofθ equally spaced within[150, 300] GPa, and for each
specificθ value we use100 MC replicates to calculate the sample posterior variance. A procedure identical to that
describes in Section 3.1, but withθ fixed over the 100 MC replicates, was used to estimate the preposterior variance
(as the average of the 100 sample posterior variances over the16 values ofθ). The results are shown in Fig. 8(a).
Comparing Figs. 8(a) and 8(b), we see a clear negative correlation between the preposterior variance and the Fisher
information criterion. This is expected, considering that the preposterior variance is an estimate of the actual poste-
rior variance, which is closely related to the inverse of the Fisher information; a larger value of the former generally
corresponds to a larger value of the latter.
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FIG. 8: 16 equally spaced values ofθ, and the corresponding (a) sample average of posterior variance (unit:GPa2)
over 100 MC simulations perθ, and (b) negative second-order derivative of the log-likelihood function.
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The same procedure was repeated for every other pair of responses. Table 2 shows the results of the preposte-
rior and surrogate preposterior analyses. The ranks in columns 2 and 3 are based on the predicted identifiability; 1
corresponds to the smallest preposterior variance / largestÎ, and 15 to the largest preposterior variance / smallestÎ.
The rankings provide us with predictions of which subsets are most likely to enhance identifiability (lower ranks) and
which less likely (higher ranks). The “Posterior Analysis” columns in Table 2, which are taken from [11], show the
actual posterior covariances that resulted from each combination of measured responses after the experiments were
conducted. They serve as a basis for comparison, and ideally we would like the rankings from the posterior analyses
to coincide with the predicted rankings from the preposterior and surrogate preposterior analyses. It can be seen that
the preposterior analysis is in good relative agreement with the posterior. Although the values of preposterior and
posterior standard deviations are off by roughly a factor of 2.5, both analyses indicate that{y4, y5} together lead to
the best identifiability, while{y1, y2} together lead to the worst identifiability. Overall, the rankings are in very close
agreement. The improvement on identifiability relative to the worst case (i.e.,{y1, y2} for both analyses) is also cal-
culated and provided in the table. The relative improvements are also in very close agreement. The results provided by
the surrogate preposterior analysis are also in close agreement with the posterior standard deviation results, although
slightly less so than the preposterior standard deviations. The top seven pairs of responses coincide with the top seven
pairs from the actual posterior analysis. Hence, the surrogate preposterior analysis would have effectively narrowed
down the candidate pairs to consider in the preposterior analysis. Considering its extremely low computational cost,
the surrogate preposterior analysis is a useful enhancement to the preposterior analysis for reducing the number of
response pairs to consider.

The results from three analyses in Table 2 are in good accordance with the underlying physics of the system.
For example, the strainy1 and the plastic strainy2 are perfectly correlated with each other; their values are off by
a constant (equal to the value of elastic strain). Therefore, their combination adds no more information aboutθ and
enhances identifiability little beyond using either single response. In contrast, the internal energyy4 and the midpoint
displacementy5 follow a nonlinear relationship, and thus the degree of improvement in identifiability is substantial.

It is not surprising to observe the absolute differences between the posterior variance and preposterior variances. In
the MC simulations of the preposterior analysis, the hypothetical experimental data are generated based on discrepancy
functions generated from their assigned prior distribution. In contrast, the posterior variance calculation is based on
the single realization that is the actual discrepancy function. Consequently, the Bayesian analysis modules inside the
MC loops are hypothetical and are not expected to obtain same values of preposterior variance as the actual posterior
variance. The surrogate preposterior analysis involves further approximations. However, it appears to accomplish

TABLE 2: Comparisons between posterior, preposterior, and surrogate preposterior analyses

Responses Posterior Preposterior Surrogate preposterior
yi yj σθ Rank Improvement σ̃θ Rank Improvement Î Rank
y4 y5 3.63 1 86.7% 1.4161 1 87.0% 351.8 1
y4 y6 3.90 2 85.8% 1.5224 3 86.0% 186.9 6
y5 y6 4.67 3 83.0% 1.6528 4 84.8% 218.2 3
y3 y6 4.86 4 82.2% 1.6618 5 84.7% 161.6 7
y3 y4 5.49 5 80.0% 1.4801 2 86.4% 273.0 2
y3 y5 6.27 6 77.1% 2.1117 6 80.6% 202.9 5
y1 y4 9.29 7 66.1% 3.0933 7 71.6% 209.6 4
y1 y3 10.13 8 63.0% 3.2583 8 70.1% 113.3 9
y2 y3 10.96 9 60.0% 3.6595 9 66.4% 93.34 10
y2 y5 15.42 10 43.4% 6.0765 11 44.2% 114.3 8
y1 y5 15.57 11 43.1% 5.5379 10 49.2% 90.92 11
y2 y4 18.35 12 33.9% 8.7816 12 19.4% 65.94 14
y1 y6 24.08 13 12.0% 9.1008 13 16.5% 81.19 12
y2 y6 26.46 14 3.3% 10.1850 14 6.5% 80.99 13
y1 y2 27.37 15 — 10.8931 15 — 47.09 15
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its intended purpose, as the preposterior and surrogate preposterior analyses do a reasonable job of predicting the
relative degree of identifiability and guide users in selecting the best set of responses to measure experimentally.
Fig. 9 illustrates this by plotting the preposterior standard deviation and the Fisher information criterionÎ versus the
actual posterior standard deviation. The preposterior standard deviation is roughly in proportion to the actual posterior
standard deviation, and̂I is negatively correlated with the posterior standard deviation, which indicates that for this
case study preposterior and surrogate preposterior analyses are sufficient in predicting identifiability.

We further illustrate the improvement on identifiability in Figs. 10 and 11. While neither analyzingy4 nor analyz-
ing y5 alone can provide an informative posterior distribution ofθ (Fig. 10), uncertainty quantification considering
bothy4 andy5 provides a much tighter posterior distribution ofθ, and the mean of the posterior is close to the true
value ofθ [Fig. 11(a)]. In contrast, the subset of{y1, y2} provides a dispersed posterior distribution ofθ [Fig. 11(b)].
The level of uncertainty is well predicted by both the preposterior and surrogate preposterior analyses.
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FIG. 9: Preposterior standard deviation and Fisher-information-based identifiability predictor, versus posterior stan-
dard deviation, demonstrating very high correlation.
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FIG. 10: Posterior distribution of the calibration parameter using a single response.
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FIG. 11: Posterior distribution of the calibration parameter using multiple responses.

5. CONCLUSIONS

Identifiability is of major importance in model calibration and predictive modeling in all engineering disciplines.
The degree of identifiability can be measured by the posterior covariance of the calibration parameters in a typical
model uncertainty quantification framework. Earlier studies have demonstrated that identifiability can be enhanced by
measuring multiple responses that share a mutual dependence on a common set of calibration parameters. However, to
take advantage of this, a method is needed for predicting multi-response identifiability prior to conducting the physical
experiments, to allow users to choose the most appropriate set of responses to measure experimentally. In this research,
we propose a preposterior analysis that, prior to conducting the physical experiments but after conducting computer
simulations, can predict the degree of identifiability that will result using different subsets of responses to measure
experimentally. This is accomplished by calculating the preposterior covariance from a modular Bayesian Monte
Carlo analysis of a MRGP model. To render the approach computationally feasible in engineering applications with a
large number of responses, we also proposed a surrogate preposterior analysis based on the Fisher information of the
calibration parameters, which is used to eliminate combinations of responses that are unlikely to provide substantial
improvement in identifiability, thereby substantially reducing computational cost. The proposed methods were applied
to a simply supported beam example to select which two out of six responses will best improve identifiability. Our
study shows that the approach is effective in predicting which subset of responses will provide the largest improvement
in identifiability. Even though there are absolute differences between the preposterior and actual posterior covariances,
the relative differences and the rankings derived from them are quite consistent, indicating that the method can be used
effectively to choose the best combination of responses to measure experimentally.

Future work in this direction includes examining the impact of using different priors for discrepancy function
MRGP hyperparameters on the preposterior covariance. Also, the model input settings for physical experiments ap-
parently affect identifiability; simultaneously optimizing the selected experimental responses and the design for the
experimental input settings is another research direction.
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