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An efficient low-order virtual element method (VEM) for the phase-field modeling of ductile fracture is outlined within
this work. The recently developed VEM is a competitive discretization scheme for meshes with highly irregular shaped
elements. The phase-field approach is a very powerful technique to simulate complex crack phenomena in multi-physical
environments. The formulation in this contribution is based on a minimization of a pseudo-potential density functional
for the coupled problem undergoing large strains. The main aspect of development is the extension toward the virtual
element formulation due to its flexibility in dealing with complex shapes and arbitrary number of nodes. Two numerical
examples illustrate the efficiency, accuracy, and convergence properties of the proposed method.
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1. INTRODUCTION

The virtual element method (VEM) has been developed over the last decade and applied to various problems in solid
mechanics. It is a generalization of the finite element method (FEM) (Bathe, 1996; Wriggers, 2008; Zienkiewicz et al.,
2005), which has been inspired from modern mimetic finite difference schemes in Brezzi et al. (2009). VEM allows
exploration of features such as flexibility with regard to mesh generation and choice of element shapes, e.g., the use
of very general polygonal and polyhedral meshes. In this regard, a stabilization procedure is required in the virtual
element method, as described in Cangiani et al. (2015) for linear Poisson problems. Up until now, applications of
virtual elements have been devoted to linear elastic deformations in Artioli et al. (2017) and Gain et al. (2014), contact
problems in Wriggers et al. (2016), finite elasto-plastic deformations in Hudobivnik et al. (2019) and Wriggers and
Hudobivnik (2017), anisotropic materials at finite strains in Wriggers et al. (2018a,b), small strain isotropic damage in
Bellis et al. (2018), inelastic solids in Taylor and Artioli (2018) and hyperelastic materials at finite deformations in Chi
et al. (2017) and Wriggers et al. (2017). Recently, Aldakheel et al. (2018a) propose an efficient virtual element scheme
for the phase-field modeling of brittle fracture at small strains. This paper extends VEM towards finite deformations
ductile fracture using the phase-field approach.

The development of a virtual element methodology for solving fracture-mechanics problems numerically in-
cludes a projection step and a stabilization step. In the projection step, the deformation mapϕ and the fracture phase-
field d which appear in the pseudo-potential density functional are replaced by their projection:ϕΠ anddΠ onto a
polynomial space. This results in a rank-deficient structure; therefore, it is necessary to add a stabilization term to the
formulation (Beir̃ao Da Veiga et al., 2013a,b; Chi et al., 2017), where in the latter the scalar stabilization parameter of
the linear case was replaced by one that depends on the fourth-order elasticity tensor. A new stabilization technique
for VEM was recently developed in Wriggers et al. (2017) who use a technique that was first described in Nadler and
Rubin (2003), generalized in Boerner et al. (2007), and simplified in Krysl (2015a) in the context of hexahedral finite
elements. The essence of the method is the addition of the pseudo-energy density functionW (∇ϕΠ, dΠ,∇dΠ,h)

1543–1649/19/$35.00 © 2019 by Begell House, Inc. www.begellhouse.com 181



182 Aldakheel, Hudobivnik, & Wriggers

to a density function̂W (∇ϕ, d,∇d,h) which is evaluated using full quadrature. For consistency the subtraction of
a term involvingŴ (∇ϕΠ, dΠ,∇dΠ,h) as a function of the projected deformation map and the crack phase field is
made. Hereh is the history field array for the plastic strain measures and the crack driving force. This history array
is locally evaluated only once at the element level and used in all parts of the pseudo-energy density function.

In the presented work, we examine the efficiency of VEM for predicting ductile failure mechanisms in solids
due to crack initiation and propagation. The modeling of crack formation can be achieved in a convenient way by
continuum phase-field approaches to fracture, which are based on the regularization of sharp crack discontinuities.
Phase-field modeling of fracture has been attracting considerable attention in recent years due to its capability of
capturing complex crack patterns in various problems in solid mechanics. Many efforts have been focused on the
regularized modeling of Griffith-type brittle fracture in elastic solids. In this regard, Miehe et al. (2010) proposed
a phase-field approach to fracture with a local irreversibility constraint on the crack phase-field. It incorporates
regularized crack surface density functions as central constitutive objects, which is motivated in a descriptive for-
mat based on geometric considerations. Recent works on brittle fracture have been devoted to the dynamic case
in Borden et al. (2012), cohesive fracture in Verhoosel and de Borst (2013), multiplicative decomposition of the
deformation gradient into compressive-tensile parts in Hesch and Weinberg (2014), different choices of degrada-
tion functions in Kuhn et al. (2015), coupled thermo-mechanical and multi-physics problems at large strains in
Dittmann et al. (2019) and Miehe et al. (2015b), to model fracture of arterial walls with an emphasis on aortic
tissues in G̈ultekin et al. (2016), finite-deformation contact problems in Hesch et al. (2016), emphasis on a possi-
ble formula for the length scale estimation in Zhang et al. (2017), anisotropic material behavior at small and large
deformations in Bleyer and Alessi (2018) and Teichtmeister et al. (2017), for the description of hydraulic fractur-
ing in Ehlers and Luo (2017) and Heider and Markert (2017), to describe fatigue effects for brittle materials in
Alessi et al. (2018b), to the modeling of fracture in polymeric hydrogels in Böger et al. (2017), for enhanced as-
sumed strain shells at large deformations in Reinoso et al. (2017), and the virtual element method in Aldakheel et al.
(2018a).

Extensions of these models toward the phase-field modeling of ductile fracture can be achieved by coupling of
gradient damage mechanics with models of elasto-plasticity. In this regard, Duda et al. (2014) investigate a setting of
brittle fracture in elastic-plastic solids. In Miehe et al. (2015a), the modeling of dynamic fracture in the logarithmic
Lagrangian strain space has been presented with emphasis on the brittle to ductile transition in thermo-elastic-plastic
solids. The model suggested in Ambati et al. (2015) uses a characteristic degradation function that couples damage
to plasticity in a multiplicative format. Borden et al. (2016) proposes a mechanism for including a measure of stress
triaxiality as a driving force for crack initiation and propagation. The coupling of gradient plasticity with gradient
damage at finite strains is considered in Aldakheel (2016), Aldakheel et al. (2014), Dittmann et al. (2017, 2018a),
and Miehe et al. (2016a,b,c, 2017) based on a rigorous variational principle. In Alessi et al. (2018a) a comparative
study between different phase-field models of fracture coupled with plasticity is outlined. A coupled phase-field
and plasticity modeling of geological materials is recently proposed by Aldakheel et al. (2017) and Choo and Sun
(2018). Recently, Aldakheel et al. (2018b) extend the phase-field modeling of fracture toward porous finite plasticity
to account for complex phenomena at the micro-scale, such as nucleation, growth, and coalescence of micro-voids,
as well as the final rupture at the macro-scale.

A minimization of a pseudo-potential density functional for the phase-field modeling of ductile fracture is pre-
sented as a key goal of this work by using an efficient virtual element method. It is based on the definition of a
pseudo-energy density per unit volume, that contains the sum of a degrading elastic-plastic part and a contribution
due to fracture, in line with Aldakheel (2016) and Miehe et al. (2015a, 2016a). On the computational side, a robust and
efficient monolithic scheme is employed in the numerical implementation to compute the unknowns (the deformation
map and the crack phase-field) using the software toolACEFEM (Korelc and Wriggers, 2016).

The paper is organized as follows: Section 2 outlines the governing equations for the phase-field approach to duc-
tile fracture in elastic-plastic solids undergoing large deformations. The development of the virtual element method
is formulated in Section 3. Finally, Section 4 presents numerical results that demonstrate the modeling capabilities of
the proposed approach. The formulation performs extremely well in benchmark tests involving regular, distorted, and
Voronoi meshes. For purpose of comparison, results of the standard finite element method (FEM) are also demon-
strated.
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2. GOVERNING EQUATIONS FOR PHASE-FIELD DUCTILE FRACTURE

This section outlines a theory of fracture in elastic-plastic solids at large deformations. It is based on a minimization
of a pseudo-potential energy for the coupled problem. To this end, letΩ ∈ Rδ with δ = 2, 3 be the reference
configuration of a solid domain. The response of fracturing solid at material pointsX ∈ Ω and timet ∈ T = [0, T ]
is described by the deformation mapϕ(X, t) and the crack phase-fieldd(X, t) as

ϕ :
{

Ω× T → Rδ

(X, t) 7→ x = ϕ(X, t) = X + u(X, t) and d :
{

Ω× T → [0, 1]
(X, t) 7→ d(X, t) with ḋ ≥ 0, (1)

wherex is the position of a material point in the deformed configuration andu(X, t) is the displacement field.
The crack phase-fieldd(X, t) = 0 andd(X, t) = 1 refer to the unbroken and fully broken state of the material
respectively, as visualized in Fig. 1. The material deformation gradient is defined byF := ∇ϕt(X) = Gradϕ with
the JacobianJ :=det[F ] > 0. The solid is loaded by prescribed deformations and external traction on the boundary,
defined by time-dependent Dirichlet- and Neumann conditions

ϕ = ϕ̄(X, t) on∂Ωϕ and PN = t̄(X, t) on∂Ωt, (2)

whereN is the outward unit normal vector on the surface∂Ω = ∂Ωϕ ∪ ∂Ωt of the undeformed configuration. The
first Piola-Kirchoff stress tensorP is the thermodynamic dual toF . In finite strain plasticity, the deformation gradient
is multiplicatively decomposed into an elastic and a plastic part as

F = Fe Fp with J = JeJp = Je = det[Fe] and Jp = det[Fp] = 1, (3)

where the constraint of plastic incompressibility holds for the case of von MisesJ2-plasticity. The elastic part of the
right Cauchy-Green tensorC = F T F can be computed as

C = F T
p F T

e FeFp = F T
p CeFp yields Ce = F−T

p CF−1
p . (4)

Furthermore, the elastic left Cauchy-Green tensorbe is defined as

be = FeF
T
e = FC−1

p F T with Cp = F T
p Fp, (5)

whereCp is the plastic part of the right Cauchy-Green tensor. To account for phenomenological hardening/softening
response, we define the equivalent plastic strain variable by the evolution equation

α̇ = γ̇ with α̇ ≥ 0 (6)

FIG. 1: Solid with a regularized crack and boundary conditions
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as a local internal variable, whereγ̇ ≥ 0 is the plastic Lagrange multiplier. The hardening variable starts to evolve
from the initial conditionα(X, 0) = 0.

The solidΩ has to satisfy the equation of equilibrium as

Div P + f = 0 , (7)

where dynamic effects are neglected andf is the given body force.
For the phase-field problem, a sharp-crack surface topologyΓ → Γl is regularized by the crack surface functional

as outlined in Miehe et al. (2010, 2015a)

Γl(d) =
∫

Ω

γl(d,∇d) dV with γl(d,∇d) =
1
2l

d2 +
l

2
|∇d|2, (8)

based on the crack surface density functionγl per unit volume of the solid and the fracture length scale parameterl
that governs the regularization, as plotted in Fig. 1. To describe a purely geometric approach to phase-field fracture,
the regularized crack phase-fieldd is obtained by a minimization principle of diffusive crack topology

d = Arg{inf
d

Γl(d)} with d = 1 on Γ ⊂ Ω, (9)

yielding the Euler equationd − l2∆d = 0 in Ω along with the Neumann-type boundary condition∇d · N = 0
on ∂Ω. Figure 2 demonstrates a numerical solution for Eq. (9) in two-dimensional setting using an efficient virtual
element method (VEM). TheΓl(d) limit of the above variational principle gives forl → 0 the sharp crack surfaceΓ,
as depicted in Fig. 2(f) for theVE-shape specimen with a Voronoi mesh. Evolution of the regularized crack surface

FIG. 2: A purely geometric approach to phase-field fracture based on virtual element method (VEM). (a) Geometry and dis-
cretization of the specimen usingVoronoi meshes. (b)–(f) Solutions of the variational problem (9) for a circular specimenΩ with
a givenVE shape for the sharp crackΓ, prescribed by the Dirichlet conditiond = 1 onΓ ⊂ Ω for different fracture length scales
lb > lc > ld > le > lf .
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functional (8) can be driven by the constitutive functions as outlined in Aldakheel et al. (2018b) and Miehe et al.
(2015a), postulating a global evolution equation of regularized crack surface as

d

dt
Γl(d) =

∫

Ω

δdγl(d,∇d) ḋ dV :=
1
l

∫

Ω

[(1− d)H− ηf ḋ ] ḋ dV ≥ 0, (10)

whereηf ≥ 0 is a material parameter that characterizes the artificial/numerical viscosity of the crack propagation.
The crack driving force

H = max
s∈[0,t]

D(X, s) ≥ 0, (11)

is introduced as alocal history variablethat accounts for the irreversibility of the phase-field evolution by filtering out
a maximum value of what is known as the crack driving state functionD. Then the evolution statement (10) provides
the local equation for the evolution of the crack phase field in the domainΩ along with its homogeneous Neumann
boundary condition as

ηf ḋ = (1− d)H− [ d− l2∆d ] with ∇d ·N = 0 on ∂Ω . (12)

The above-introduced variables will characterize the ductile failure response of a solid, based on the two global
primary fields

Global Primary Fields: U := {ϕ, d}, (13)

the deformation mapϕ, and the crack phase-fieldd. The constitutive approach to the phase-field modeling of ductile
fracture focuses on the set

Constitutive State Variables: C := {be,α,H, d,∇d}, (14)

reflecting a combination of elasto-plasticity with a first-order gradient damage modeling. It is based on the definition
of a pseudo-energy density per unit volume contains the sum

W (C) = Welas(be, d) + Wplas(α, d) + Wfrac(H, d,∇d) , (15)

of a degrading elasticWelas and plastic energiesWplas and a contribution due to fractureWfrac, which contains the
accumulated dissipative energy in line with Aldakheel (2016) and Miehe et al. (2016a). The elastic contribution is the
neo-Hookean strain energy function for a homogeneous compressible isotropic elastic material

Welas(be, d) = g(d)
[
ψvol(be)+ψiso(be)

]
with ψvol =

κ

4
(I3−1−ln I3) and ψiso =

µ

2
(I−1/3

3 I1−3), (16)

in terms of the bulk modulusκ > 0, the shear modulusµ > 0, and the invariants:I1 = tr be andI3 = det be. The
plastic contribution is assumed to have the form

Wplas(α, d) = g(d) ψp(α) with ψp = Y0 α +
H

2
α2 + (Y∞ − Y0)

(
α + exp[−δα]/δ

)
, (17)

with the initial yield stressY0, infinite yield stressY∞ ≥ Y0, the isotropic hardening modulusH ≥ 0, and the
saturation parameterδ.

The degradation functiong(d) = (1− d)2 models the degradation of the elastic-plastic energy of the solid due
to fracture. It interpolates between the unbroken response ford = 0 and the fully broken state atd = 1 by satisfying
the constraintsg(0) = 1, g(1) = 0, g′(d) ≤ 0, andg′(1) = 0.

In order to enforce a crack evolution only in tension, thevolumetricelastic energy is additively decomposed into
a positive partψ+

vol due to tension and a negative partψ−vol due to compression, outlined in the pioneering work of
Amor et al. (2009) as

Welas(be, d) = g(d)
[
ψ+

vol(be) + ψiso(be)
]
+ ψ−vol(be) with ψ±vol =

κ

4
(I±3 − 1− ln I±3 ), (18)
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in terms of the positiveI+
3 and the negativeI−3 third invariant defined as

I+
3 := max{I3, 1} = 〈I3 − 1〉+ + 1 =

1
2

[(
I3 − 1

)
+

∣∣I3 − 1
∣∣
]

+ 1

I−3 := min{I3, 1} = 〈I3 − 1〉− + 1 =
1
2

[(
I3 − 1

)− ∣∣I3 − 1
∣∣
]

+ 1,
(19)

as visualized in Fig. 3. Following the Coleman-Noll procedure, the Kirchhoff stresses tensorτ and the first Piola-
Kirchoff stress tensorP are obtained from the elastic strain energy functionWelas(be, d) in Eq. (18) for isotropic
material behavior as

τ = 2be
∂Welas

∂be
and P = τF−T . (20)

The fracture part of pseudo-energy density (15) takes the form

Wfrac(H, d,∇d) = 2
ψc

ζ
l γl(d,∇d) +

ηf

2∆t
(d− dn)2 + g(d) H, (21)

where∆t := t − tn > 0 denotes the time step,ψc > 0 is a critical fracture energy, andζ controls the post-critical
range after crack initialization. Following the recent works of Aldakheel (2016) and Miehe et al. (2016a,b), the history
fieldH is defined by

H := max
s∈[0,t]

D(be,α; s) ≥ 0 with D :=
〈

ψ+
vol + ψiso + ψp −ψc

〉

+

(22)

with the Macaulay bracket〈x〉+ := (x + |x|)/2, that ensures the irreversibility of the crack evolution.
The finite elasto-plastic model requires additionally the formulation of a yield function, a hardening law, and an

evolution equation for the plastic variables. The yield function restricts the elastic region. By assumingJ2-plasticity
with nonlinear isotropic hardening, the yield function has the form

χ =
√

3/2 |fp| − rp with fp := dev[τ] = τ− 1
3

tr[τ]1 and rp := ∂αWplas, (23)

in terms of the deviatoric plastic driving forcefp and the resistance forcerp. With the yield function at hand, we
define the dual dissipation function for visco-plasticity according to Perzyna-type model as

Φ∗(fp, rp) =
1

2ηp

〈√
3/2 |fp| − rp

〉2

+
, (24)

FIG. 3: Third invariant decomposition. (a) Positive part defined asI+
3 := max{I3, 1} and (b) negative part defined asI−3 :=

min{I3, 1}.
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with ηp being the viscosity parameter of the rate-dependent plastic deformation. The evolution equations for the
plastic variables are (Hackl, 1997; Simo and Miehe, 1992; Wriggers, 2008; Wriggers and Hudobivnik, 2017)

−1
2
Lvbe = γ̇nbe with n =

∂χ

∂fp
and α̇ = γ̇ :=

1
ηp

〈
χ

〉
+
, (25)

whereLv denotes the Lie derivative in time. The evolution equation (25)1 can be recast with Eq. (5) in an alternative
form

Ċ−1
p = −2 γ̇F−1 nF C−1

p , (26)

which will be used later for the algorithmic treatment of plasticity within the numerical solution algorithm (Korelc
and Stupkiewicz, 2014). The Kuhn-Tucker conditions for the elasto-plastic model are

χ ≤ 0, γ̇ ≥ 0, and χ γ̇ = 0. (27)

The development of the virtual element formulation for the phase-field ductile fracture in elastic-plastic solids
can start from a pseudo-potential density functional instead of using the weak form. This has advantages when the
code is automatically generated using the software toolACEGEN (Korelc and Wriggers, 2016). The pseudo-potential
density functional depends on the elastic and the fracture parts andkeepsthe plastic history variables and the crack
driving forceconstantduring the first variation. The pseudo-potential density functional can then be written as

Π(U,h) =
∫

Ω

W (C) dV − Πext(ϕ) with Πext(ϕ) :=
∫

Ω

f ·ϕ dV +
∫

∂Ωt

t̄ ·ϕ dA . (28)

Hereh := {C−1
p ,α,H} is the history field array for the plastic strain measures and the crack driving force.

3. FORMULATION OF THE VIRTUAL ELEMENT METHOD

Following the work of Brezzi et al. (2009), the main idea of the virtual element method is a Galerkin projection of the
unknowns onto a specific ansatz space. The domainΩ is partitioned into non-overlapping polygonal elements which
need not to be convex and can have any arbitrary shape with different node numbers, as plotted in Fig. 4 representing

FIG. 4: Polynomial basis function for the virtual element ansatz with verticesXI
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a horse-likeelement withXI vertices. Here a low-order approach is adopted (Wriggers and Hudobivnik, 2017;
Wriggers et al., 2017), using linear ansatz functions where nodes are placed only at the vertices of the polygonal
elements. Furthermore, the restriction of the element shape functions to the element boundaries are linear functions.

3.1 Ansatz Functions for VEM

The VEM relies on the split of the ansatz space into a partUΠ representing the projected primary field defined in
Eq. (13) and a remainder

Uh = Uh
Π + (Uh −Uh

Π) with Uh
Π := {ϕh

Π, dh
Π} . (29)

The projectionUh
Π is defined at element level by a linear ansatz functionNΠ as

Uh
Π =



ϕΠX

ϕΠY

dΠ


 = a ·NΠ =



a1 a4 a7

a2 a5 a8

a3 a6 a9







1
X
Y


, (30)

with the unknownsa. The projectionUh
Π is now defined such that it satisfies

∫

Ωe

∇Uh
Π dV

!=
∫

Ωe

GradUh dV, (31)

which yields, with the linear ansatz in Eq. (30) that∇Uh
Π is constant as

∇Uh
Π

∣∣
e

!=
1
Ωe

∫

Ωe

GradUh dV =
1
Ωe

∫

∂Ωe

Uh ⊗N dA, (32)

whereN is the normal at the boundary∂Ωe of the domainΩe of a virtual elemente, see Fig. 5. Thus label¤|e
represents element quantities that have constant value within an elemente. A direct computation of the projected
gradient yields with the linear ansatz in Eq. (30) the simple matrix form

∇Uh
Π

∣∣
e

=



∇ϕΠX

∇ϕΠY

∇dΠ


 =



ϕΠX,X ϕΠX,Y

ϕΠY,X ϕΠY,Y

dΠ,X dΠ,Y


 =



a4 a7

a5 a8

a6 a9


. (33)

FIG. 5: Virtual element withnV nodes and local boundary segment of the horse-like polygonal element
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The boundary integral in Eq. (32) has to be evaluated. To this end, a linear ansatz for the primary fields along the
element edges is introduced as

(Uh)k = (1− ξk) U1 + ξk U2 = Mk 1 U1 + Mk 2 U2 with ξk ∈ [0, 1], (34)

for a boundary segmentk of the virtual element. The local nodes:➀–➁ are chosen in counter-clockwise order and
can be found in Fig. 5. In Eq. (34)Mk 1 is the ansatz function along a segmentk, related to node➀, ξk is the local
dimensionless coordinate, andU1 is the nodal value at that node. The ansatz functionMk 2 is defined in the same
way. From Eqs. (32)–(34), the unknownsa4–a9 can be computed from the normal vectors of the boundary segments
in elements and the nodal primary fields as



a4 a7

a5 a8

a6 a9


 =

1
Ωe

∫

∂Ωe

Uh ⊗N dA =
1
Ωe

nV∑

k=1

∫

∂Ωk



ϕX(X)NX ϕX(X)NY

ϕY (X)NX ϕY (X)NY

d(X)NX d(X)NY


 dA, (35)

where we have usedN = {NX , NY }T andU = {ϕX ,ϕY , d }T , furthermorenV is the number of element vertices
which coincides with the number of segments (edges) of the element, for first-order VEM. Note that the normal vector
N changes from segment to segment. In the 2D case it can be computed for a segmentk as

Nk =
{

NX

NY

}

k

=
1

Lk

{
Y1 − Y2

X2 −X1

}

k

, (36)

with {Xi, Yi}i=1,2 being the local coordinates of the two vertices of the segmentk. The integral in Eq. (35) can
be evaluated for the ansatz functions (34) exactly by using the trapezoidal or Gauss-Lobatto rule. By selecting the
vertices as the Gauss-Lobatto points it is sufficient to know only the nodal values

Ue = {U1, U2, . . . , UnV } (37)

at thenV verticesV in Fig. 5. Since the ansatz function in Eq. (34) fulfills the propertyMI(XJ) = δIJ , the actual
form of the functionM does not enter the evaluation of the boundary integrals, which makes the evaluation extremely
simple. Finally, by comparing (33) and (35) the unknownsa4 to a9 are obtained by inspection, for further details
(Wriggers et al., 2017). The projection in Eq. (32) does not determine the ansatzUh

Π in Eq. (30) completely and
has to be supplemented by a further condition to obtain the constantsa1, a2, anda3. For this purpose we adopt the
condition that the sum of the nodal values ofUh and of its projectionUh

Π are equal. This yields for each elementΩe

1
nV

nV∑

I=1

Uh
Π(XI) =

1
nV

nV∑

I=1

Uh(XI), (38)

whereXI are the coordinates of the nodal pointI and the sum includes all boundary nodes. Substituting (30) and
(34) in Eq. (38), results with the three unknownsa1, a2, anda3 as



a1

a2

a3


 =

1
nV

nV∑

I=1

[
UI −∇UΠI ·XI

]
=

1
nV

nV∑

I=1



ϕXI −ϕΠX,X XI −ϕΠX,Y YI

ϕY I −ϕΠY,X XI −ϕΠY,Y YI

dI − dΠ,X XI − dΠ,Y YI


. (39)

Thus, the ansatz functionUh
Π of the virtual element is completely defined.

3.2 Construction of the Virtual Element

The VEM relies on the projectionUh
Π of the deformation map and fracture phase field. This was approximated in the

last section by a first-order polynomial leading to a gradient which has a constant value. This is called the consistency
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term, but it does not lead to a stable formulation once the number of vertices is greater than3. Thus the formulation
has to be stabilized like the classical one-point integrated elements developed by Belytschko and Bindeman (1991),
Flanagan and Belytschko (1981), Korelc et al. (2010), Krysl (2015b), Mueller-Hoeppe et al. (2009), Reese et al.
(1999), and Reese and Wriggers (2000).

In the following development of the virtual element for the phase-field modeling of ductile fracture, the plastic
variables and the crack driving force are computed from the consistency term. These variables are then used as given
and fixed history values in the stabilization procedure.

To this end, the potential density functional defined in Eq. (28) can be rewritten by exploiting the split in Eq. (29).
Thus we have, by summing up all element contributions for thene virtual elements

Π(U,h) =
ne

A
e=1

Π(Ue,he) with Π(Ue,he) =
[
Πc(Uh

Π,h)
∣∣
e
+ Πstab(Uh −Uh

Π,h)
∣∣
e

]
, (40)

based on a constant partΠc and an associated stabilization termΠstab. Here the history fields arrayhe are local
variables evaluatedonly onceat the element level and used in both parts of the potential density functional. A summary
of the algorithmic treatment for the finite strain plasticity and the crack driving force is outlined in Box 1, for further
details we refer to the work of Wriggers and Hudobivnik (2017). The first part in Eq. (40)2 can be computed as

Πτ
c (Uh

Π,h)
∣∣
e

=
∫

Ωe

W (Ch
Π) dV −

∫

Ωe

f ·ϕh
Π dV −

∫

∂Ωe

t̄ ·ϕh
Π dA with Ch

Π = {bh
e Π,α,H, dh

Π,∇dh
Π}. (41)

The projected elastic left Cauchy-Green tensorbh
e Π can be computed from the projected deformation map and

the plastic part of the right Cauchy-Green tensor as

bh
e Π = F h

ΠC−1
p F h

Π

T
with F h

Π = ∇ϕh
Π. (42)

The primary fieldsUh
Π are linear functions and their gradient∇Uh

Π is constant over the area of the virtual element
Ωe, as a consequence, the pseudo-energy density per unit volumeW is integrated by evaluating the function at the
element centroidXc as shown in Fig. 5 and multiplying it with domain sizeΩe analogous to the standard Gauss
integration scheme in FEM

Box 1: Algorithmic treatment of the history field array for the plastic strain measures and the crack driving force

Given:F h
Π , dΠ, C−1

pn , αn, Hn Find:C−1
p , α, H

bh
e Π = F h

Π C−1
pn F h

Π

T

Welas(bh
e Π, dΠ) = g(dΠ)

[
ψ+

vol(b
h
e Π) + ψiso(bh

e Π)
]
+ ψ−vol(b

h
e Π)

Wplas(α, dΠ) = g(dΠ) ψp(α)

fp := dev[τ] with τ = 2 bh
e Π

∂Welas

∂bh
e Π

rp = ∂αWplas(α, dΠ)

χ(fp, rp) =
√

3/2 |fp| − rp

C−1
p = F h

Π

−1 exp
[
−2(α− αn)

√
3/2

fp

|fp|
]

F h
Π C−1

pn

α = αn + ∆γ

∆γ =
∆t

ηp

〈
χ(fp, rp)

〉
+
≥ 0

H := maxD(bh
e Π,α) ≥ 0 with D :=

〈
ψ+

vol + ψiso + ψp −ψc

〉

+
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∫

Ωe

W (Ch
Π) dV = W (Ch

Π)
∣∣
c
Ωe, (43)

where the label¤|c refers to quantities evaluated at the element centroidXc. The pseudo potential is still a non-linear
function with respect to the deformation map and the crack phase-field nodal degrees of freedom and the history field
array.

Next, the stabilization potential has to be derived for the coupled problem based on the potential (28). Following
the recent work of Wriggers et al. (2017), we introduce a non-linear stabilization procedure that takes the form

Πstab(Uh −Uh
Π,h)

∣∣
e

= Π̂(Uh,h)
∣∣∣
e
− Π̂(Uh

Π,h)
∣∣∣
e
. (44)

For the stabilization density function̂W , we propose a similar function to the original density function (28),
however scaled by a constant valueβ as: Ŵ = βW . In Eq. (44), the stabilization with respect to the projected

primary fieldsΠ̂τ(Uh
Π,h)

∣∣∣
e

can then be calculated as Eq. (43), yielding

Π̂(Uh
Π,h)

∣∣∣
e

= β W (Ch
Π)

∣∣
c

Ωe, (45)

whereas the potential̂Π(Uh,h)
∣∣∣
e

is computed by applying standard finite element method (FEM) procedure, i.e.,

by first discretizing the virtual element domainΩe into internal triangle element mesh consisting ofnT = nE − 2
triangles as plotted in Fig. 6 for thehorse-likepolygonal element. Then the integral overΩe is transformed into the
sum of integrals over triangles. By using a linear ansatz for the primary fieldsU, an approximation can be computed
for the constitutive variablesC within each triangleΩi

m of the inscribed mesh (Wriggers et al., 2017). This gives

Π̂(Uh,h)
∣∣∣
e

=
∫

Ωe

Ŵ (Ch) dV = β

∫

Ωe

W (Ch) dV = β

nT∑

i

Ωi
e W (Ch)

∣∣
c
, (46)

whereW (Ch)
∣∣
c

is the potential density function evaluated at the triangle centroidXi
c andΩi

e is the area of theith
triangle in the elemente, as plotted in Fig. 6.

To compute the stabilization parameterβ, a connection to the bending problem was imposed regarding the bulk
energy as outlined in Wriggers and Hudobivnik (2017). By limiting the element sizeΩe toward 0, the difference
between the potentials of projected valuesΠ̂(Uh

Π,h) and the true valueŝΠ(Uh,h) will also approach toward 0, thus
stabilization will disappear in limit. Due to the finer mesh requirements of the fracture phase-field problem compared

FIG. 6: Internal triangular mesh of the horse-like polygonal element
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with Wriggers and Hudobivnik (2017), the choice ofβ factor term is less relevant, since it is only relevant for coarse
meshes. In this regard we propose a constant value forβ taken from the interval:

0 < β ≤ 1. (47)

Note that forβ approaching zero, the potentialΠ(Uh,h) in Eq. (40) will depend only on the projection part
Πc(Uh

Π,h), leading to rank deficiency. However, whenβ = 1 the FEM results related to the internal mesh will
be reproduced. Following our previous work on VEM for phase-field brittle fracture Aldakheel et al. (2018a), we
chose a value for the stabilization parameterat fractureasβ = 0.4 in all the simulations in Section 4, in which
VEM coincide with FEM results. In case of apure elastic-plastic state, the stabilization parameter follows the same
procedure introduced in our previous works Aldakheel et al. (2019) and Hudobivnik et al. (2019) and takes the form

β = min
{

0.4 ,
σV M

E α

}
, (48)

whereσV M =
√

3/2 |fp| is the von Mises stress,E is the Young’s modulus, andα is the equivalent plastic strain
providing an approximation for the tangent of the hardening curve.

All further derivations leading to the residual vectorRe and the tangent matrixKe of the virtual element were
performed with the software toolACEGEN. This yields for Eq. (40) along with the potentials (41) and (44)–(46) the
following:

Re =
∂Π(Ue,he)

∂Ue
and Ke =

∂Re

∂Ue
, (49)

where the history variables are treated as fixed fields in Eq. (49)1, i.e.,∂Uehe = 0. With these expressions at hand,
we adopt a global Newton-Raphson algorithm for the coupled problem, resulting in the following linearized system:

R + K ∆U = 0 with R =
ne

A
e=1

Re, K =
ne

A
e=1

Ke and U =
ne

A
e=1

Ue, (50)

that determines at given global primary fieldsU their linear increment∆U in a typical Newton-type iterative solution
step. This system of non-linear equations has to be solved in a nested algorithm, where the deformation map and the
crack phase field are the global unknown variables.

4. REPRESENTATIVE NUMERICAL EXAMPLES

We now demonstrate the performance of the proposed virtual element formulation for the phase-field modeling of
ductile fracture at finite deformations by means of two representative numerical examples. For comparison purposes,
results of the standard FEM are also demonstrated. All computations are performed by using a nested Newton-
Raphson algorithm. Load stepping is applied when necessary. Because all formulations are linearized in a consistent
manner usingACEGEN, quadratic convergence is achieved within a load step. The material parameters used in this
section are the same for all examples and given in Table 1. They are used by many authors in the literature as
a reference for metals (Hallquist, 1984; Simo, 1988). In Section 4.1, we compare VEM and FEM results for the
standard single-edge-notched shear test of Aldakheel (2016), Ambati et al. (2015), and Miehe et al. (2017). Finally,
an axial stretch of a bar is investigated in Section 4.2.

To illustrate the capability and the flexible choice of the number of nodes in an element for VEM, various animal-
shaped Voronoi cells (bird, horse, snake, frog, koala, fish, kangaroo, ...) are employed in the undamaged as well as
the damaged zones (i.e., an area of interest) for the virtual element formulation in the following sections.

4.1 Single-Edge Notched Shear Test

The first benchmark test considers a square plate with a horizontal notch placed at the middle height from the left
outer surface to the center of the specimen. The geometrical setup and the loading conditions of the specimen are
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TABLE 1: Material parameters used in the numerical examples

No. Parameter Name Value Unit
1. E Young’s modulus 206.9 GPa
2. ν Poisson’s ratio 0.29 —
3. H Hardening parameter 0.13 GPa
4. Y0 Initial yield stress 0.45 GPa
5. Y∞ Infinite yield stress 0.45/1.165 GPa
6. δ Saturation parameter 16.93 —
7. ψc Critical fracture energy 0.025/2.0 GPa
8. ηp Plastic viscosity 10−8 GPa.s
9. ηf Fracture viscosity 10−8 GPa.s
10. l Fracture length scale 0.008/0.02 mm
11. ζ Fracture parameter 8.0/1.0 —

FIG. 7: Single-edge notched shear test. (a) Geometry and boundary conditions, (b) VEM with Voronoi mesh, and (c) triangular
finite element mesh.

depicted in Fig. 7(a). The size of the square specimen is chosen to beL = 0.5 mm. We fixed the bottom edge of
the plate and applied shear loading to the top edge until the plate is fully broken. The specimen is discretized by
using different virtual elements in Fig. 7(b) and finite element formulations in Fig. 7(c). Here we use the following
notations:VEM-VO with a Voronoi mesh;VEM-T2 with 6 noded triangle representing afirst-order VEM (Note
that: T2 in this case implies that the triangle mesh used is the same as for the second-order FEM andnot second-
order VEM); FEM-T1 with linear triangle, andFEM-T2 with quadratic triangle, to test the robustness of the virtual
element formulation. A mesh refinement in the expected fracture zone is applied, this is based on the ratior := l/he

between the mesh sizehe and the fracture length scalel, as sketched in Fig. 7(a).
The evolution of the crack phase fieldd in comparison to the evolution of the equivalent plastic strainα for three

different deformation stages up to final rupture are depicted in Fig. 8. This was achieved by using the virtual element
formulations with various animal-shaped Voronoi cells, for fracture length scalel = 0.008mm and the length/mesh
ratior = 4. The crack phase field initiates at the notch-tip, see Fig. 8(e), where the maximum equivalent plastic strain
α is concentrated as shown in Fig. 8(a). Thereafter, the crack propagates horizontally till separation in Fig. 8(g), as
outlined in Aldakheel (2016), Ambati et al. (2015), and Miehe et al. (2017).

Load-displacement curves of the overall structural response are plotted for different elements formulations of
FEM and VEM for comparison purposes in Fig. 9(a). The VEM results are in a good agreement with the reference
works. Table 2 compares the different FEM and VEM discretization, related to F-U curves in Fig. 9(a), with respect
to robustness and efficiency. Figure 9(b) illustrates the convergence properties for the different element formulations
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FIG. 8: Single-edge notched shear test. Contour plots of the equivalent plastic strainα in (a)–(c) and the fracture phase-fieldd in
(e)–(g) for three different deformation states up to final rupture.

FIG. 9: Single-edge notched shear test. (a) Load–displacement responses for different VEM and FEM discretization. (b) Compar-
ison between the total number of iterations in each time step that required to achieve convergence for different discretization.

plotted in Fig. 9(a) at the final deformation stateū = 0.0048mm. We observe that virtual elements requiredfewer
steps and iterations for final convergence compared with FEM of higher order. Thus here, VEM is more robust than
FEM, however, this comes with extra computational costs.

4.2 Axial Stretch of a Bar

The second numerical example is concerned with analyzing the ductile failure behavior of a bar due to a prescribed
displacement̄u along the axial direction at the right side. It is a standard benchmark problem of finite plasticity and has
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TABLE 2: A comparison between different FEM and VEM discretizations, related
to F-U curves in Fig. 9(a)

VEM-VO VEM-T2 FEM-T2 FEM-T1
Number of elements 12,369 11,109 11,109 11,109
Number of nodes 24,744 22,291 22,290 5,591
Number of equations 74,195 66,826 66,826 16,749
Number of steps 280 234 305 232
Total number of iterations 2,372 1,504 2,610 1,599
Average iterations/step 6.1134 5.76245 6.97861 6.07985

been analyzed by many authors (Aldakheel, 2017; Aldakheel and Miehe, 2017; Miehe et al., 2014; Simo and Miehe,
1992). Experimental observation shows that a necking zone takes place before final ductile rupture. The localized
plastic strains in the necking area and the subsequent ductile failure response will be used to test the robustness of the
virtual element formulation. The geometrical setup and the boundary conditions of the bar with heightH = 2 mm and
lengthL = 10mm are illustrated in Fig. 10. To trigger localization and necking in the center of the bar, a geometrical
imperfection is introduced in the central zone. Here, a reduction of the specimen net section at the central zone is
applied, in which the height at the center is chosen to beHc = 0.99 H. At the left edge of the bar we applied a
Dirichlet boundary condition of̄u = 0 and applied a horizontal displacement at the right edge that has the magnitude
of 20% of the bar length, e.g.,̄u = 0.2L. A mesh refinement in the expected fracture zone is applied for all VEM and
FEM element formulations, see Figs. 10(b) and 10(c).

Figure 11 shows the contour plots of the equivalent plastic strainα and the fracture phase fieldd simulated using
the virtual element formulations with various animal-shaped Voronoi cells, for fracture length scalel = 0.02 mm
and different deformation stages up to final failure. We observed a huge plastic deformation as a necking zone with
concentration hardening in Figs. 11(b) and 10(c) at the specimen center, resulting with crack initiation at center
zone as demonstrated in Fig. 11(i). Thereafter, the crack phase field propagates outward following the equivalent
plastic strain path till the complete failure as shown in Figs. 11(j) and 10(k). Load-displacement curves for different
elements formulations of FEM and VEM are displayed in Fig. 12. All simulations show similar behavior before crack

FIG. 10: Axial stretch of a bar. (a) Geometry and boundary conditions, (b) VEM with Voronoi mesh, and (c) triangular finite
element mesh.
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FIG. 11: Axial stretch of a bar. Contour plots of the equivalent plastic strainα in (a)–(e) and the fracture phase-fieldd in (g)–(k)
for five different deformation states up to final rupture.

FIG. 12: Axial stretch of a bar. Load–displacement responses for different VEM and FEM discretization

initiation. Thereafter, all elements show almost closer results, except the FEM-T1 which exhibit a stiffer response. As
a consequence, the capability of VEM element with Voronoi mesh is comparable to using finite elements of higher
order.
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5. CONCLUSION

A virtual element scheme for the phase-field modeling of isotropic ductile fracture was outlined within this work.
It represents an initial contribution to the use of the VEM for numerically solving fracture-mechanics problems. In
contrast to the projection of the deformation map field as the only global field being sought in most virtual element
method applications up to now, this work further extends VEM toward multi-physics problems. To this end, we
proposed a minimization of a pseudo-potential density functional for the coupled problem undergoing large strains.
The key aspect of development was the extension toward the virtual element formulation due to its flexibility in
dealing with complex element shapes that can even be non convex and arbitrary number of nodes. We examined the
performance of the formulation by means of two numerical examples.
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