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Material discovery and development drives innovation and is a key component for almost all cutting edge technologies
today. With progress in computing power and numerical methods, multiscale modeling has been a rapidly growing
requirement in the science and engineering of materials. However, unresolved challenges in true multiscale modeling
have thus far prevented engineers and scientists from realizing its full potential and, as a result, its success in produc-
tion applications is not widespread. Particularly difficult challenges to multiscale simulations are the vastly different
physics at different scales among different materials manufactured with different procedures and used in different
applications with different performance indicators. To help address these challenges Dassault Systémes has brought
together the power of multiple software brands to combine the expertise in multiphysics simulations from quantum
and molecular to continuum and system scale with a purpose to promote the production usage of multiscale modeling
to design, develop, and validate sustainable and programmable materials. In this paper, the key multiscale modeling
and simulation technologies from Dassault Systemes will be introduced with a focus on the realistic industrial appli-
cations via an end-to-end digital thread on the SDEXPERIENCE Platform. Our goal is to provide a fundamental and
general framework to allow engineers to construct microscale models, and deduce the macroscale laws and the consti-
tutive relations by proper homogenization, with seamless integration to our native material modeling capabilities, for
quantitative, rigorous analysis of the overall response and failure modes of advanced multiphase materials.

KEY WORDS: multiscale, mean field homogenization, representative volume element, FE2, microme-
chanics informed, coarse graining, phase field, periodic boundary condition

1. INTRODUCTION

Over the past 50 years, tremendous progress had been malde bgi¢ntific and engineering communities in the
field of computer simulation of physical systems at the maorovisible, scale. This progress is due to a number
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of factors including advancements in our understandindnefunderlying physics, improved modeling techniques,
development of robust numerical methods for solving reiéefiald equations, and of course the exponential increase
in computing power and memory. As a result, the availablernengial software tools for product design simulation
based upon the finite element method and computational flidrdics are well developed for many industries.

Part of the value of virtualization of structures is to reeldice time and cost associated with physical testing,
but there is a far greater value in the insight that engineansgain into how a component or subsystem behaves
(upper right of Fig. 1). For the simulation of structurests tacroscale (FEA/FEM) there have been decades of
development of phenomenological material modeling, base@sting and observation of material behavior.

Over roughly the same time period, the field of computatichaimistry has been developed to study materials at
their most basic electronic, atomistic, and molecularledewer left of Fig. 1). From an industrial perspectiveg th
software tools of computational chemistry can help the deeamd material scientist gain insight into fundamental
material behavior in an effort to design and create new ampidred materials. The related field of computational
metallurgy helps the metallurgist and material scientstadop better metal alloys. A common idea in metallurgy and
materials science is understanding fiecess-structure-properfPSP) relationship. It is fairly easy to grasp that the
manufacturing process of a metal alloy affects its micrattre (grain size, etc.) and this microstructure will effe
the overall mechanical properties (stress-strain cunedding, failure, etc.).

Traditionally, these two domains of engineering (produesign) and materials science (material design) have
worked independently, communicating needs/requirenamsavailabilities. These two domains work at extremely
different length and time scales. Significant advances baes made as the engineering domain looked at smaller
scales in order to better understand the microstructureatérmals and the materials science domain looked at larger
scales to better understand a material’'s macro behavioecknt years, the concept of ICME, integrated computa-
tional materials engineering, has gained considerabd¢idra especially at the research level and within academic
programs. The goal of ICME is to advance the computationaledge and infrastructure so that scientists and
engineers can work together, across all length and timestaldevelop better materials and thus better products. In
the USA, the Materials Genome Initiative was launched inl2@lspeed the discovery and use of advanced materials
across industries. This is just one example of the statedritapce of advanced materials, all the way from chemistry
and materials science to their engineering use in design.

At Dassault Systemes, we have brought together brandsahddlogies that play key roles in product design,
CATIA; simulation for design, SIMULIA; and computationdiemistry and materials science, BIOVIA. The Dassault
Systemes vision is to bring together all the required pgysf simulation, across all scales, for use in innovation in
product, nature, and life. Dassault Systemes is uniquetjtipned to deliver these technologies in a single-bssine
environment, th&DEXPERIENCE Platform. By working within a single, integrdtplatform, we can integrate the
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tools that materials scientists use to develop new and imggkonaterials, along with all the tools that engineering
communities use to develop new and improved products. Agctbepin Fig. 2, the goal is to bring together and

integrate all of the technologies for the creation of newernats and the innovation of new products based on
advanced material modeling.

2. MATERIAL MULTISCALE METHODS IN DASSAULT SYST EMES

The virtual design and simulation is done according to madelssumptions needed to reduce the complexity of the
system. These assumptions aim to solve for different levedietail of an equivalent system. In the case of material,
significantly different levels of detail may be obtained deging on the modeling assumption: a metallic material
can be assumed as a uniform homogenized volume with a glebavior measured from physical tests, or as an
aggregate of microstructural constituents (grains, gagj combination of multiple phases), with local conitu
behavior tested physically or calibrated numerically.sTibiver scale modeling provides a higher level of detail (for
example, the ability to identify which component is leadfirgt to plasticity or failure). To ensure the lower scale
model is representative of the global behavior, the rightime must be considered and defined. Such volume is
named the representative volume element (RVE). RVE depemdse microstructure of the material or the size of
the substructure to consider. As an example, in the casengpasite materials, dependent on mechanical properties
of the fiber-matrix combination, including a greater numdfdibers in the volume will generate a more representative
response of the aggregate. Therefore minimum RVE size riedus determined to ensure the computed properties
are representative for macroscale response.

RVE in itself corresponds to the smallest size scale me&umiagcontinuum scales. Its size, however, is gigantic
in comparison to the atomistic scale which is used for mdé&auodeling in BIOVIA applications. The two scales
can be connected at the level of microstructure descrippibase-field modeling is used in BIOVIA tools to simulate
microstructure based on the fundamental properties of thienal (mainly thermodynamic properties and elastic
coefficients). Such material characteristics are infefreth atomistic simulations using a selection of tools from
the molecular modeling toolbox. The choice of simulatiocht@ques is determined by a number of factors: which
properties are of interest, what are the accuracy requimeane&hat are the computational resources available.
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The most detailed representation of materials is based amatgm mechanical description of the ensemble of
interacting electrons and ions. This is the necessary tétbeory when material properties of interest are deteechin
by electrons in crystal: e.g., optical properties, semiluantor properties, and electron transfer reactions. Céapu
tional effort required for quantum mechanical simulatidyysically scales with the number of atoms AS, or at
bestN?log N. Rare implementations that offer linear scaling have a tagi crossover point relative to the typical
N2 codes, so realistic applications of these techniques muiteti by hundreds, at most thousands, of atoms. This
translates into volume elements with linear dimensionsfef\ananometers, far below the RVE size scale. Similarly
simulations of time-dependent processes using quanturhanass do not cover more than 10-100 ps.

The size of the system and simulation time can be increasedd®rs of magnitude by using a potentially less
accurate description of interatomic interactions. Thisiglemented in classical simulations where atoms areddeat
as particles that interact using predefined force fields;efdield parameters are often derived so as to reproduce
properties computed with quantum mechanics. The next Ghadbstraction brings us to mesoscale modeling, where
atoms are no longer treated individually but instead areed into interacting beads with their own force fields.

The subsections below give a brief overview of the techriekigoftware products available at the various scales
in Dassault Systemes.

2.1 Quantum Mechanics: Density Functional Theory (DFT) Des  criptions of Atoms and Electrons

The prediction of molecular orbitals and electronic stafagatter is the smallest-scale problem that can be addtesse
in a multiscale modeling framework for engineering applaas. The goal of such calculations in a multiscale frame-
work is to analyze intrinsic material behavior such as alyslasticity, the in-depth description of molecules inithe
surroundings, or chemical reactions.

In small molecules, electronic orbitals typically extengnthe entire molecule. In metals they can be completely
delocalized waves. In both cases we need to model the eléschrehavior by solving an approximation to the quantum
mechanical Schrodinger equation. As additional comptoa the Pauli exclusion principle requires that no two
electrons can occupy the same quantum state, which mearalltbkectrons in a material are aware of each other.
For macroscopic crystals witk 10?2 atoms, it is not possible to treat each electron indiviguall

This challenge is solved by noting that one can describdetdti®ns in terms of their total density (Hohenberg
and Kohn, 1964). The corresponding Kohn-Sham (KS) equsi{tB865) provide a practical way to solve for the
density and are the foundation of the density functionabth¢DFT) approach to electronic structure theory. We do
not cover DFT in depth, but aim to give a high level overviewndfat calculations look like from a practitioner’s
point of view and introduce the basic terminology requiredihderstand multiscale simulation workflows. Readers
interested in having a deeper understanding of electranictare theory should consult some of the excellent texts,
for example, Martin (2012). The Swiss army knife for DFT eddtions is Materials Studio, which provides access
to a number of different implementations—each with thein®et of advantages and application areas.

The main approximation in DFT introduced in the KS equat®mhiat the correct description of the electron-
electron interaction requires a potential that can accéomthe exchange effects (e.g., the Pauli principle) and
electronic correlation. An entire hierarchy of thesechange correlation (XC) functionales been developed, as
summarized by Burke (2012). This topic remains an activa aferesearch. The suitable specification of the XC
functional is an essential ingredient in a DFT calculation.

In solid systems, we typically assume that crystals areitefand symmetric and apply periodic boundary con-
ditions. Depending on the lattice symmetry, we might getyawith modeling only a few atoms per asymmetric unit,
also called theinit cell. The price for this change in perspective is that we needrpkathe entire Fourier space of
the crystal lattice waves (called the Brillouin zone, sdmes alsok-space), and we need to solve the KS equation
at each of the points. THespace samplings a numerical choice, which should be converged explieitid needs
specification in any periodic DFT calculation.

The third major ingredient is the choice of the basis on whahepresent the Hilbert space accessible by the
electrons. Implicit in the choice of basis set is a selectiban implementation of DFT. A few common choices for
basis sets, their advantages, and their respective impltatiens in the BIOVIA software portfolio are the follow-

ing:
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1. Plane waves, as implemented in CASTEP (Clark et al., 209&je the electronic density is represented
by Fourier waves with a specifieitoff energywhich determines the quality of the basis. Plane waves are
ideally suited for simulating periodic lattices of matdsiauch as metals, semiconductors, and other crystals.
They are frequently used to study surfaces and heterogsmatalysts.

2. Numeric atomic orbitals are centered on nuclear postieimd describe the electrons in similar terms to
the single-atons, p, d atoms that are well known in high school chemistry. They aedl suited to study
molecules, larger crystals, and reaction rates, and atdmibeterogeneous catalysis applications. The Mol
module (Delley, 1990, 2000) in Materials Studio provideshbust and scalable implementation of numeric
atomic orbitals.

3. Gaussian basis functions are also centered on atoms ahel glectrons as superpositions of analytic func-
tions. This implementation is suitable for the highly aatarcalculation of molecular and solvation proper-
ties, as a lot of integrations involving the Gaussian ofbitan be achieved analytically. Gaussian basis sets
are implemented in TURBOMOLE (TURBOMOLE, 2020; Balasubeaniret al., 2020).

4. Nonorthogonal generalized Wannier functions (NGWF)jate a way to overcome the unfavorable scaling
with the system size that is implicit in the basis set choitissussed above (Skylaris et al., 2002). Their
implementation in the ONETEP module (Skylaris et al., 20@2Yaterials Studio is particularly suited for
studying the electronic structure in systems of many thedsaf atoms, which can easily become out of
reach for commonly available computational resourceshemethods.

A final choice, often made together with the basis set, isectieh of a suitabl@seudopotentialThese are often
used to describe the core electrons of heavier atoms, fheedbcing the computational cost.

To sum up, a practitioner needs to focus on three things: §liffecient theoretical description of the electrons
via a suitable exchange correlation functional and a remtesion of nuclear core electrons, (2) a suitable basis to
describe the electrons at a singglpoint, and (3) sufficienk-space sampling for periodic crystals. The pseudopoten-
tials and basis convergence depend on the actual impletioentd DFT, with multiple different options available for
different purposes.

As described so far, DFT can compute the total energy of aniateystem with known nuclear positions and unit
cell. Forces on the nuclei are available and are used in t&ssical equations of motion where electrons are treated
guantum mechanically and nuclei are point particles. Fotig the forces to find energy minima and saddle points
enables the simulation of stable structures and reactiespgectively. A large number of property calculations are
possible to understand materials and drive product desgisidns. These include basic thermodynamic properties,
molecular and lattice vibrations, elastic coefficientdyation properties, and chemical reaction rates, as wedl as
wide variety of spectroscopic data. Materials Studio ptesia straightforward tool to run and manage DFT calcula-
tions across the entire spectrum of materials scienceagtigins, to analyze them correctly, and to build workflows
on top of individual calculations.

In practice, a DFT calculation proceeds as follows. First,up the molecule or lattice with atoms in approxi-
mately the correct position. Next, select an implementedoDFT, and suitable computational settings as described
above. The calculation will proceed by self-consistendyedmining the electronic structure of each set of lattiwe ¢
ordinates and then typically follow the atomic forces to fihe point where the energy is minimized. This structure is
the basis for computing physical properties as discussedeal®ne can build workflows by successive calculations
on different lattices and molecules in a high throughpuhifas, for example, to obtain phase diagrams directly from
guantum mechanical calculations.

2.2 Molecular Dynamics

While being able to predict the electronic states of matieesya very accurate representation of a molecule or of
a crystal, the limitations in terms of system size requiterahtive methods that can still capture the chemistry of
a system. Simulations based on classical potentials rett@/eomplexity of interactions of electronic states and
replace them by a model where the atoms are treated as sphgyes can interact with other atoms by a bonded,
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or valence term, if they are connected, or a nonbonded tttera if they are not directly connected, or a mixture of
the two interactions. By simplifying the interaction betmeatoms, classical potentials enable the simulation ohmuc
larger system sizes, up to millions of atoms, thus inconrmganore chemical complexity than is possible with DFT.
Through molecular dynamics, the use of classical potentitdo enables the simulation of longer time scales than
DFT and the incorporation of the effect of temperature inginaulation.

In order to predict the properties of a system using clabgiotentials, a set of parameters which describe
how the atoms interact is required. This parameter set isvkras a force field and there are many different force
fields available in the literature. Generally, force fields developed to model a specific problem. For example, if
a user wanted to develop a new drug, they might use the CHARNUmarfg and MacKerell, 2013) force field. The
CHARMM force field includes different elements for organiolectules but has been parameterized focusing on
ligand-protein interactions and cannot be used to modeltalrakboy where a user may choose a very specific force
field that has been parameterized for the elements of interes

The interactions between atoms of the same element are e@mdent on the local environment of the atom.
For example, a carbon atom in a hydrocarbon chain will noghlag same bond length distance to an adjacent carbon
as it would if it was attached to a benzene ring. To solve foize field types are used to differentiate between the
same elements in different chemical environments. Fortgsfier modeling a wide range of systems can be very
large and complex and extending them requires significdatteThe COMPASS lll force field (Akkermans et al.,
2020), provided in Materials Studio, uses equivalencingsto minimize the number of force field types but still
contains 281 different types.

Force fields also vary in terms of the interactions that actuogled. COMPASS Il is known as a class 2 force
field and includes simple valence terms to represent boetches, angles, torsions, and advanced cross terms to
capture relationships between the simple valence ternadsdtincludes explicit terms for nonbonded interactions,
capturing van der Waals and electrostatic forces.

A force field on its own is just a set of parameters and must beled with another method to enable investiga-
tion of material behavior. The most popular methods are leirapergy calculations, used to evaluate the energy of a
system; molecular dynamics, used to model the temporalitealof a molecule or crystal; or Monte Carlo methods,
used to calculate specific properties or build models of mese(Akkermans et al., 2013).

In Materials Studio, the two main solvers that use clasqcééntials for molecular dynamics are Forcite and
GULP (Gale and Rohl, 2003). Forcite, coupled with the COMBAISforce field, is used to study properties of a wide
range of condensed phase systems. For example, COMPASS&sIhden applied to predict properties of polymers
and resins such as glass-transition temperature, coeffiofehermal expansion, diffusion of penetrant molecules,
and mechanical properties. GULP includes many specialaeé fields and is focused on the prediction of properties
of solid state materials. Classical potentials are alsd usseveral Monte Carlo based solvers in Materials Studio.
For a review of these, please see Akkermans et al. (2013).

In a molecular dynamics simulation, different ensemblesused depending on the type of simulation required.
The microcanonical, or NVE, ensemble, where system volunteesergy are conserved, can be used to calculate
properties where thermal fluctuations are important, sicHitiusivity. The canonical, or NVT, ensemble where
volume and temperature are conserved by use of a thermestfién used during property prediction. The isobaric-
isothermal, or NPT, ensemble, where pressure and tempegticonserved by use of both a barostat and thermostat
closely resembles experimental conditions. In realitgdjmtion of a property such as yield stress requires nunserou
chained simulations with different ensembles. Initiathe system is equilibrated using a long NPT dynamics simu-
lation. This is followed by multiple cycles of NVT (to relatar a strain has been applied), NPT (to equilibrate to
the new density), and production NVT (to calculate the neess)). In BIOVIA software, these complex workflows
are automated in the BIOVIA Materials Studio Collection ilO®/IA Pipeline Pilot (2021), a workflow automation
and data science tool.

2.3 Coarse-Grain Molecular Dynamics

Access to today’s high performance super computers allowglations using representation of matter at the explicit
atom level to be performed for potentially millions of atans fact, Jung et al. (2019) recently reported the first
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billion atom simulation utilizing over 100,000 cores. Evarmore moderate atom counts there are challenges with
the volumes of data produced, for visualization and anglyesnd systems are not always suitable. For instance,
in simulation of dilute solvated systems it would make ditdense to spend so much effort in the calculation of
many explicit solvent molecules. For the study of soft matendensed phases such as polymer phase separation
or surfactant self-assembly, representation at a coagelrik a pragmatic choice that provides convenient access t
insights and property predictions at scales of 1-1000 nimsvitaller demands on the computer. This is often referred
to as the mesoscale regime (though the term mesoscale issaldavithin engineering scales to mean something much
larger, which can cause confusion).

Coarse-graining approaches have long been used to simptifyeduce computational requirements of molecular
dynamics simulations. Early representations of polymdisnoused united atoms (UA), since the fluctuations of
hydrogen atoms are of secondary interest and are negléddedkll as substantially reducing the number of particles
in the simulation box, the time steps used to progress atasitiguas can usually be doubled from 1 to 2 fs. Despite
the approximation UA simulations have been reasonablyessfal in reproducing nondynamical properties (Chen
et al., 2006) when compared to atomistic models.

Another strategy for simulation at the mesoscale is to usmtireious field representation describing the spatial
distribution of species. Materials Studio MesoDyn empldysamic density functional theory to evolve the fields
with constraints that capture the random chain nature ofrpets and drivers of phase separation between unlike
chemical species. MesoDyn is particularly suited for exippordered phases in block copolymers and a connection
with Flory-Huggins polymer theory is key in connecting thesmulations to experimental characterization of the
component materials. Groot and Warren (1997) also idedt@iki parameters as a simple route to parameterizing
another coarse-grained approach, Dissipative ParticteaBycs (DPD).

DPD is a soft-particle based approach with overlappingrdtscinteraction sites, associated with the position
of particles, or beads, representing groups of atoms intthraiatic system. A DPD bead can also be interpreted as
a region of fluid rather than a distinct particle and, as si#f?D beads can overlap and indeed pass through each
other. Consequently, mixtures of several components skoyfast reorganization to the thermodynamic equilibrium
configuration on the nanometer scale compared to all-atamited atom simulations. However, the trade-off for fast
structural equilibration disconnects from physical kicgtand this limits the properties that DPD can be expeated t
reproduce reasonably.

An increasingly popular approach is a compromise betweet/thand DPD methods, known as coarse-grained
molecular dynamics (CG-MD) which retains a relatively s@arepresentation (several atoms to a bead). CG-MD
uses force fields (usually including Lennard-Jones, Cobldmonds, angle terms, and sometimes dihedrals). Several
specific parameter sets for treating material types havegaddut undoubtedly one of the most popular has been
the approach of Marrink et al. (2004), known as the Martincéofield. Martini uses a reasonably small set of
interaction sites to represent a full range of chemistrygpintermediately polar, apolar, and charged species wit
subtypes for electron donors, acceptors, both, or nonejtdras enabled a wide range of materials to be studied
with a limited amount of time-consuming re-parameter@atiParameterization of the beads is primarily achieved
through matching with experimental octanol/water andmditaater partitioning free energy values. This succelysful
provides the necessary driving forces for aggregationjtipaning, and self-assembly processes. Though initially
derived for biomolecular simulations, Martini has beenvghao be transferable to a diverse set of systems in soft
materials science. Nevertheless, as the materials scappiations have grown, the introduction of special cases
and terms to provide better agreement with experimenta Has been needed. The authors have recently taken
the opportunity to revisit the parameterization of the iattion matrix and have introduced Martini3 (Souza et al.,
2021). Martini3 is expected to better capture relative ibty, self-assembly, and aggregation propensitiesl ian
set to become even more widely adopted. While CG-MD is irginggin popularity, it is worth pointing out that in
common with other mesoscale methods dynamic propertiesds®o easily recovered. This is explained in terms of a
smoothing of the potential energy surfaces in a coarsexgdaiepresentation allowing molecules to move more easily
past each other. In the four atoms to one bead representditiba Martini approach, an approximate acceleration of
bead dynamics of four times compared to all-atom simulatisrobserved due to this effect. In fact, this increases
the time scales accessible to a CG-MD simulation, but aldemsa more difficult to make predictions for properties
such as diffusivity and viscosity.
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2.4 Phase Field

Theoretical modeling and prediction of microstructurehiamd materials is dominated by the phase-field method.
Phase-field models, sometimes also called diffuse interfamdels, are characterized by the use of a diffuse interface
between different phase regions. The phase-field variatstate function which distinguishes between the different
phase regions is made to vary rapidly but continuously,dirgiany discontinuities. The system can then be solved
as a set of partial differential equations avoiding exptrgatment of the boundary conditions at the interface.®)ig
The BIOVIA multiphase-field tools are based on the OpenPlase library provided by OpenPhase (OpenPhase,
2021).

In the multiphase-field implementation each grain is atteld its own phase-field variabdg,,. The governing
equations for the evolution of the phase fields and the cdratén are given below:

N N 2
b, — § MK _ ™
br = lzz:l i {mz_:l [O1m — Okm] L + 8r|h Agkl}a 1)
2
I = V20 + = b, ()
n
N N
=V bk [DeVer + > du g 3)
k=1 k=1

Herek, [, andm are the phase-field indexas,; is the interface mobility, an@ is the number of nonvanishing
phase-field parameters at a given poinis the interface thickness, is the shape function related to the phase-field
contour, and\ gy, is the thermodynamic driving forcé.is the generalized curvature terif;, is the diffusion matrix
in phasek, andjy; is the anti-trapping current. For further details aboutrttethod, see Steinbach and Apel (2006).

Other effects such as latent heat, heat diffusion, and nmécdisstrain can be included in the simulations. The
time evolution of the problem is solved by integrating theadgartial differential equations on a regular grid stagti
from a defined starting condition and including appropratendary conditions. Calculations can be performed using
a 2D or 3D grid. Naturally the 2D setup allows for larger latesize and a longer simulated time range. To speed up
the calculations the code is parallelized using OpenMP.

Phase field value

0 4 l—
0 20 40 60 80 100 120 140
X (um)

FIG. 3: Example plot of phase-field values along the red horizoirtelih the above simulated microstructure
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Grains can be specified as part of the initial starting cémlior nucleated from a set of nucleation seeds during
the cooling of the system. Phase-field simulations requiaege set of input parameters. Some of the parameters can
be found in the literature or material databases, whilersthigch as interface energy, interface mobility, and diffius
can be harder to find or are found to have large errors attachtb@ém. For qualitative or phenomenological studies
accurate values for the latter parameters might not be deedgle if quantitative predictive studies of a specific
materials system are desired, accurate values are regualke@s can sometimes be improved by fitting to known
experimental results.

2.5 Solvation Chemistry: COSMO-RS

The conductor-like screening model for realistic solMati€@OSMO-RS) is a predictive, generally applicable, and
efficient computational model to handle fluid phase propsitklamt et al., 1998). In short, COSMO-RS combines
guantum chemical information with macroscopic thermodyitgroperties via an efficient statistical thermodynam-
ics approach. In this context, COSMO-RS might be considasea multiscale model on its own: solving problems
which have important features at both the atomistic scalarftum chemical properties) and macroscopic scale (ther-
modynamic properties) at the same time. In several blindiptien challenges and benchmark studies, COSMO-RS
has been proven to be one of the most accurate tools for tldécpom of the free energies of molecules in solu-
tion (Bannan et al., 2016; Zhang et al., 2015), and thus fogalilibrium distribution properties, such as partition
coefficients, solubilities, vapor pressures, reactionildgium constantspKa values, phase diagrams, and related
properties.

COSMO-RS is a combination of the dielectric continuum stiidramodel COSMO (Klamt and Schiiiirmann,
1993) with an efficient statistical thermodynamic model afrwise molecular surface interactions. For the quan-
tification of the surface interactions, it uses the surfaglanzation charge densities of each solute arising from
guantum chemical COSMO calculations. As most importantecdbr interaction modes, electrostatics and hydro-
gen bonding are taken into account in this way. The less pelispersive interactions are described to first order
based on element-specific surface energies. The stdtidteranodynamics itself is performed using a coupled set
of nonlinear equations for the activity coefficients of theface segments, the so-called COSMOSPACE equations
(Klamt et al., 2002). This results in a solvent-specific feeergy response functiqns (o), called theo-potential,
which gives the chemical potential of a surface segment tripp o in a particular solvent. Finally, the chemical
potentials of the compoundsy in a pure or mixed solvent are calculated by summation ofotip®tentials of the
surface segments in a compound, and corrected by a combaha¢éom.

An extension to the COSMO-RS bulk phase method is the COSM®pwodel for the prediction of partition
coefficients and permeabilities in complexinhomogenegsiems, e.9., biomembranes (Schwobel and Klamt, 2019).
It uses information about the structure of the system inmimeepresent it as a layered liquid of varying composition
with respect to the COSMO polarization charge densitiesree energies of solutes in such a layered liquid system
are calculated by sampling over all relevant positiongrdgtions, and conformations of the solute in this system
(Klamt et al., 2008). Biomembrane to water partition co@fits of neutral and ionic species are predicted with
an accuracy of about 0.7 logarithmic units (Bittermann et 2014) with the inclusion of a membrane potential.
Diffusion coefficients are calculated via COSMO-RS basea@paters from entropic and enthalpic contributions.
More specifically, the entropy is gained by placing the pemténto a specific solvent system—here a membrane
layer—which is responsible for the diffusive pattern in sodgus environment. Interactions in the solvent envirortmen
provide a resistance opposing diffusive molecular motiaasCOSMO-RS electrostatic, hydrogen bond, or van der
Waals interaction enthalpies.

The extended model COSMOplex allows one to generate andainthhese complex inhomogeneous systems
in a fully self-consistent way (Klamt et al., 2019), only v&#ing COSMO information as input. This method ex-
tends the application range to the prediction of micellarcttires and critical micelle concentrations, finite |loadi
effects, interfacial tensions, and surface tensions, fphesenergies and structures of liquid interfaces, susfazed
microemulsions.

Generally, statistical thermodynamics COSMO-RS bulk ptedculations are very efficient with typical calcu-
lation times of a few seconds, being predictive and meckiaras the same time because of its quantum chemical
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fundamentals and physical interaction terms. Similar@SBMOperm simulations are performed within a few min-
utes, and self-consistent, iterative COSMOplex calonitetiwithin a few hours per CPU core.

The methods COSMO-RS, COSMOperm, and COSMOplex are impidén the BIOVIA COSMOtherm soft-
ware (BIOVIA COSMOtherm, 2012). Workflows can be automatiedtire BIOVIA Solvation Chemistry Collection
for BIOVIA Pipeline Pilot.

2.6 Semianalytical Approaches—Mean Field Homogenization

Mean-field homogenization (MFH) is a semianalytical hommogation approach for composite material modeling. It
can be used to model composites with one matrix phase and omgltiple inclusion phases with uniform properties
for each phase. It is based on Eshelby’s solution of a simgletsion problem and only requires partial information
of the microstructure such as inclusion volume fractiopeas ratio, and orientation. Multiple inclusion shapes are
supported such as prolate, oblate, penny, sphere, cyliadérelliptic cylinder. Custom shapes are normally approx-
imated by multiple families of ellipsoids with differentabes and alignments. Such as in the case of weaves and
braids, we use multiple elliptical cylinders to represér weft and warp. As the name suggests, MFH gives predic-
tion of volume-averaged fields per constituent and the ssmtation of the microstructure is much cruder compared
to FE-RVE.

MFH is computationally efficient and can often be used in corent nonlinear analyses through a linearization
process. MFH can capture complex behaviors in compositeral that otherwise cannot be properly represented
by existing phenomenological models. MFH also allows usdaare the material state at the matrix and inclusion
level to further understand behaviors leading to damagdaihale. It can be used in parts modeled with both solid
and shell elements. The fundamentals of MFH are describEdyird.

Alternatively, the FE-RVE computed concentration tensor lse defined by the user to specify customized strain
partitioning (Section 2.9.1). In a high volume fraction quusite example, MFH give more accurate results using the
RVE obtained concentration tensor directly. The RVE-al®diconcentration tensor can also be used for modeling
microstructure damage. We can obtain different conceatraensors for different damage statuses and define a
damage variable-dependent concentration tensor for iakf@ture modeling. Proper formulation and isotropipati
for homogenization in MFH can be determined and validatetth WE-RVE (Section 2.9.1). For example, using
isotropic projection to compute the Eshelby tensor givétebeesults after onset of plasticity in the matrix complre
to general isotropization.

The implementation of MFH in structural applications usasltformulation to partition the elastic strain for
linear composites and incremental formulation to panrittrain increment for nonlinear composites (Ji et al., 3017

Coarse-scale problem

Finite elementlevel

+ +
— N
(e); = A;: (&) + + _
@ = v,
AiCOncentraﬂon tensor Loop over Gauss integration points i=1
Concentration tensor
p——— + Constituent material Material level
properties Example: Mori-Tanaka
- * Volume fraction Fine-scale problem A=B :I:v B 4 (17 v )I:'_l
o e » Aspect ratio 2| e J
* Fiber dispersion B, =[E (eic —I)Jrl]i1

FIG. 4: Fundamentals of mean field homogenization
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Although the MFH gives good prediction for composites wittebar behavior, for nonlinear composite materials it is
often required that the model be validated or calibratednsg&E-RVE results or experimental results before it can
be used with confidence in a full-size FE analysis. The calibn of constituent properties can be achieved with the
calibration app in th@DEXPERIENCE Platform with standard test data performedeattimposite level.

The implementation of MFH is native to the Abaqus solver,chfoptimizes the performance. When using MFH
we can use most of the material models already implementataqus as the constituent material. Microlevel dam-
age can be modeled with constituent level damage criterig.eXisting Abaqus damage model can be used to model
damage in each constituent. In addition, macrolevel dancagebe modeled by querying the constituent material
state through a utility included in the Abaqus solver. Daemagolution at the macro level can be captured through
homogenization using the damage response at the constiéueh These capabilities allow the user to customize the
damage criteria both at the micro and macro level to caphgelamage behavior of the composite more accurately.

Another important application of MFH is to model chopped fibginforced composites manufactured through
the injection molding process. As shown in Fig. 5, fiber aiddion calculated with an injection molding simulation
can be imported into the subsequent structural analysisuaaed to specify the microstructure of the composites
modeled with MFH.

MFH material is available in theDEXPERIENCE Platform, which allows it to be seamlessly cateé to our
composite design and manufacture simulation tools, thogiging end-to-end solution.

Next we present two examples with MFH. In the first example day@ér laminate under tension is modeled
with MFH. In the MFH material model, tensile, compressived ahear failure criteria are specified in the matrix,
and tensile and compressive failure criteria are specifigtie fiber. For comparison the Hashin model is also used.
Figure 6 shows good agreement between the MFH results asd tomnputed using the Hashin model.

The second example is a boss part manufactured throughjédotiagm molding process and subjected to a rigid
body load through the middle in the subsequent structuialais. First, the injection molding analysis is performed
with the plastic app in th@ DEXPERIENCE Platform. Figure 7 shows the fiber orientaticsuhes at six different
gate locations. Next, a rigid body is driven through the rfedaf the boss in the structural analysis. MFH material
is used to model the chopped fiber reinforced compositesr [eitientation is imported and used as part of the MFH
material specifications. Ductile damage is specified in th&isnmaterial. Figure 8 shows the matrix damage clearly
influenced by the manufacturing process (gate locatione)wilV further discuss the mapping of the fiber orientation
in Section 3.4 and the end-to-end solution workflow in Sectio

Import fiber orientation

[7Orientatiofn unit vector

B
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FIG. 5: Fiber orientation modeling with mean field homogenization
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Force
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— shell

Displangement

MFH composite solid model Hashin shell model

FIG. 6: Comparison of damage results between MFH and Hashin madelfiber failure; right: reaction force)

FIG. 7: Fiber orientation computed with different gate locations

2.7 Homogenization Methods for Porous Flow

Porous media (PM) properties related to single-phase ardtipimase fluid flow are critical to understanding many
macroscopic transport phenomena. Simulated fluid flow ptigseof interest are (1) permeability, the proportional-
ity constant between single-phase fluid flow rate and presgtadient; (2) capillary pressure, the sequence of pair
values of pressure and saturation (fraction of wetting fiigore) obtained when nonwetting/wetting fluid displaces
wetting/nonwetting fluid, named drainage/imbibition,estively; (3) relative permeability, the fraction of therp
meability archived for each of the fluids (wetting/nonwagli when both flow simultaneously at a given saturation.
See Fig. 9 for an illustration.

These properties represent effective macroscopic cotigéitrelationships for flow, which directly depend on
the internal pore structure, as illustrated in Fig. 10. Nmyk& property model is good for all PM types, thus the need
of laboratory measurements or simulation on the actual 3@yaof the particular PM. Samples that belong to one
PM type will share similar constitutive relationships. $h$ the reasoning behind PM sampling per rock type in
subsurface rock studies.
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FIG. 8: Matrix damage results in the part manufactured with difiegate locations

In some of the challenging applications of fluid flow simuatin natural and manufactured materials, the trade-
off between model resolution and representative elemegataime is too extreme for a single-scale model to capture
the minimum requirements for both aspects. For instanabooate reservoir rocks fall into this category, where
large pores are connected by microporous structures thatdraorder of magnitude smaller pores, as illustrated in
Fig. 11 (left). In these cases a multiscale digital rock apph is needed. A recently developed lattice Boltzmann
method (LBM) extension introduces numerical models for flowmnder-resolved PM regions (Otomo et al., 2021).
This approach allows for local variability of porosity aratigration in under-resolved PM regions, while fluid forces
are applied locally satisfying the constitutive relatibips of the corresponding under-resolved PM rock type. Some
representative PM rock type samples can be imaged at highuties), then simulated and constitutive relationships
collected systematically into an under-resolved PM lijararsegmented image (pore/PM/solid) and a local porosity
image can be estimated from an X-ray microtomography 3D @ndtpe standard LBM approach is used in the
pore regions, while the new extension is applied to the PNbregy These two images can be sufficient input for a
complete description of flow behavior of the PM pixels; assunthat a PM library of constitutive relationship curves
is accessible for the LBM solver to fetch the correspondiagy flesponse of each PM pixel given its pair values of
PM rock type and subresolution porosity. This multiscal@fflow workflow is illustrated in Fig. 11.

2.8 Homogenization Methods in Electromagnetic Applicatio ns
2.8.1 From Atomic Interaction to Macroscopic Model

Macroscopic volumetric material properties describe Hmwﬁ andﬁ fields (electromagnetic fields) interact with

theﬁ andﬁ fields (electromagnetic displacements). The functionatienship we support is quite general and can
be described as
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D=F(w® 7,6 T(7) B=F(wF H7 t 7(7), @)
which encompasses a dependency on

e w frequency, to describe the spectrum dispersion;

e k wave vector, dependency on tﬁpropagatlon direction and other nonreciprocity effects;
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FIG. 11: Multiscale fluid flow workflow

. EZ (ﬁ, respectively) field, to account for anisotropy (i.e., pidation) and for nonlinearity (i.e., second and
third harmonics, Kerr and Raman effects) (Glahn et al., 2011

e 77 pointin spacet time andZ’(7’) temperature.

The functional relationship in Eq. (4) offers a macroscoéw of the material properties anchamogenization
of the underlying stochastic interaction of the electronsdig field with matter at the molecular or atomic level.

Under some ideal simplifying assumptions analytical sohg can be derived, for instance, for the dispersion
properties. This leads to a macroscopic description wittdaiced set of parameters such as relaxation time (Debye
first and second order), resonance (Lorentz), and plasttisitwo frequency (Drude). Further models we support
are the gyrotropic model and the Kerr and Raman nonlinearein&@r magnetostatic and quasistatic calculations
we also provide nonlinear soft (e.g., electrical sheets) laard (i.e., permanent magnets) temperature-dependent
magnetic materials.

An additional nonlinear and hysteresis based Drude matandel is used in the simulation of plasma reactors
(Fig. 12).

However, for all the above described material models, ambare cases is an analytical approach applicable, as
the material data stem from data sheets or, at best, fromusehmeasurements. For such cases, we provide signal
processing tools to perform data smoothing (to filter mesrseint noise) and vector fitting of the data,

FIG. 12: Geometry and electromagnetic field of plasma chamber
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leading to a robust reduced order model which enforces\ygssiausality, and the Kramers—Kronig relationships.

The decomposition in Eq. (5) not only allows an efficient dation (in the sense of computational memory
and time) but also an additional insight into the materialg@rties which can be further utilized during the design
process. This is especially true for optical materials dredselection of their transparent/blocking region andrthei
resonance frequencies (Fig. 13).

Available (even if partly)a priori information can still be used for a better model calibratiod more accurate
results. To this category belong, for instance,

e The Djorjevic Sarkar model (Svensson and Dermer, 2001;dpgwic et al., 2001) and an optimized logarith-
mic pole expansion for the constaian 6 = ¢ /¢’ of lossy dielectrics such as FR4.

e The graphene plasmonic models for optical resonators {Big.lenses, and optical waveguides.

e Cole-Cole relaxation models and other human and biologialels for magnetic resonance imaging simula-
tion and related specific absorption rate measurements.

A final mention is required for the metamaterial family, wiiinds application in the field of antenna radomes,
frequency selective surfaces, cloaking devices, and raess section reduction. Thead hoc(random or peri-
odic) assemblies of 3D structures made, e.g., of micrastnpetal loops, and dipoles (Fig. 15) can be treated in our
simulations by an equivalent volumetric material.
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FIG. 14: Graphene-plasmonic resonator at 7.8 THz (based on Yan 204R)
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FIG. 15: Example of metamaterial layout and assembly—compact hadrclbaking device

We propose a three-step procedure (Fig. 16), whighosteriori due to its generality, is not limited to the
metamaterial class only.

Step 1. Perform a simulation of 3D metamaterial structurg-ess either a whole or as a periodic unit cell
(Fig. 17) with the Floquet modes. This simulation provides teflection/transmission property of the material, e.g.,
in the form of S-parameters.

Step 2. Apply via VBA macro reverse engineering and vecttngjtof the S-parameters to extract the complex
permittivity e.¢ and permeabilityi. to define the equivalent volumetric material (Fig. 18). Adgtively, the S-
parameters can be used to generate a compact model (semn32e81R).

UNIT CELL S-Parameters S-Parameters
SIMULATION Extraction Validation

FIG. 16: Metamaterial modeling workflow

FIG. 17: Definition of resonator unit cell
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FIG. 18: Modeling of double-negative metamaterial as 3D equivalehtmetric material
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Step 3. Validate the obtained model with measurements ailable. Apply the material to the geometry and
perform the complete simulation (Fig. 19).

Most of the mentioned models can also be enriched, accotdiig. (4), with an additional temperature, space,
and time dependency by means of the following:

e anindirect mapping, i.e., describing the functiafT’), () and importing a temperature field(7) from
our thermal solver or from Abaqus;

e adirectmapping, i.e., importing the entiedw, 7, t) andp(w, 7, t) field. This field can be either generated
by other modules in our suite, e.g., by a low frequencyfstailver or imported from external tools.

This allows multiphysics and coupled simulations in whibkrinal, mechanical, and electromagnetic solvers
jointly run iteratively up to a steady-state solution.

2.8.2 Transparencies and Multilayer Model

Nowadays, thanks to the massive increase in computationaip to evaluate the antenna field propagation inside a
car or the radar signature in thg- K, band of an entire airplane (Fig. 20) is not exceptional amgmstill, the huge
differences in scale between the entire model and some dé¢ftsls—e.g., layered composites, gaps between panels,
paint coating—represent a challenge to the simulatiore@afty for the CAD design and for the mesh generation.

The goal of an efficient and robust modeling is to replace suochplex multiscale-multilayer structures with
surface materials that are equivalent in terms of the etéielld behavior. To this purpose, we introduced the scedall
compact model material. This enforces an electromagnedid dliscontinuity, even if attached to a zero-thickness
sheet geometry, and accounts for both reflection (e.g.aftarrapplications) and field transmission through the &yer
(for electromagnetic compatibility applications).

o If each layer material is known by its electromagnetic prtips, a stack-up definition is generated by assigning
athickness to each layer and, in the case of anisotropyaghdoordinate rotation angle. Our material module
determines the scattering properties for electromagmeties impinging on the material by computing the
theoretical S-parameters and a reduced order model thraajbr fitting.

o If the multilayer material is only available through dataeshor measurements, the S-parameters can then
be imported into our tool as a function of frequency, acawgdio several different formats, e.g., CSV or

FIG. 20: GPS far field from car at 1.5 GHz. Radiated field from antennship and on aircraft.
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Touchstone (Fig. 21). Isotropic and anisotropic materdas both supported and additional unsymmetrical
setups can be further exploited. For ray tracing or very lifghhuency (geometrical optics) applications a
dependency on the propagation angle or wave polarizatiomeapecified.

The original data can be used as directly imported. How@v@mactice, we recommend a preprocessing step to
filter out measurement noise, to smoothen and fit the data(dbd volumetric materials, see Section 2.8.1) and to
ensure causality and passivity of the final model.

The generated material model can be then applied to the ggotogerform the complete simulation (Fig. 22).

The very same approach can be applied when the materialdapaiare not measured but are given as the result
of a previous numerical simulation. This multiscale/nddtinain approach enables a deeper insight into the building
blocks, first considered as independent and then as inteected, and results in a more efficient design with faster
optimization cycles.

2.9 Numerical Approach—Representative Volume Element Mod  eling and Simulation

Representative volume element (RVE) modeling with finiematnts (FE-RVE) encompasses the use of specialized
constraints to subject a finite element model of a repreteateolume of material to an “average” field history to
determine the local fields that arise in the RVE.

2.9.1 RVE Definition and Modeling

The characteristic length scale of an RVE has a broad rargma,dubmicron resolution of nanocomposite inclusions
to millimeter-scale structures such as additively manuf®d lattices, honeycomb core panels, or textile tows, and
potentially even larger. The distinguishing characterist that there is generally an orders-of-magnitude déifee
between the length scale of features in the RVE and the lesmgtle of the larger-scale engineering structures for
which the “average” field in the RVE corresponds to a locadlfielue.

FE-RVE modeling can be applied in a variety of ways to muftiscsimulation. These are a few examples of
workflows in which FE-RVE simulation plays a part:

1. Predicting an RVE's linear volume-average responsemnypaiticular average deformations and thermal load-
ings to obtain its fully anisotropic elastic stiffness ahdrmal expansion behavior.
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FIG. 21: Multilayer definition dialog—general import assembly
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FIG. 22: Radiated field of phone device at 28 GHz with radome
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2. Subjecting an RVE to a particular volume-average deftiondistory and calculating its average nonlinear
stress response, including many kinds of complex nonlipeanomena at the scale of the RVE (self-contact
of voids, microbuckling, fluid cavities, microscale plat, and damage, fracture, etc.) (McLendon et al.,
2019).

3. Predicting failure initiation in engineering-scaleusstiures based on the relationship between the average field
in the RVE and the resulting local field solution (McLendom &hitcomb, 2013).

4. Determiningin situ constituent material properties through a calibratiorr@se in which the properties of
an RVE’s constituents are optimized to cause the RVE to yaetdsponse matching tests of a composite.
In this way, properties which may not be tractable to disenteasure (e.g., transverse properties of carbon
fibers) can be inferred through simulation (Fish and Gh@@@1; Oskay and Fish, 2008; Ballard et al., 2014;
McLendon and Whitcomb, 2016).

5. Determining relationships between designable matpashmeters (e.g., volume fraction in a composite
or void fraction in an additively manufactured lattice) ahe effective response of the resulting materials
(McLendon et al., 2017).

6. Predicting effective section behavior of complex siyghe structures such as corrugated and honeycomb
panels.

7. Evaluating the accuracy of the assumptions in mean figlddgenization for a given material system based
on the uniformity of the local fields in each constituent.

8. Calculating the mean strain concentration tensors fcin eanstituent in a composite for use in linear mean
field homogenization material models.

9. Developing reduced order homogenization models (OshkdyF#sh, 2007) or surrogate models to facilitate
nonlinear multiscale analyses.

The advanced design capabilities of CATIA (including Gextige Shape Design, Part Design, xGenerative De-
sign, etc.) provide users the ability to model complex shampécrostructures, taking into account the variability
of the microstructure, which is a result of the manufactyipmocess variability. This need to accurately model the
microstructure is due to the level of detail expected to besiered. This complex modeling remains particularly
significant for composites application with a real fiber agament or the weaving of fiber tows. The minimum dis-
tance between fibers or the tow profile can massively charggstthss concentration distribution. Porous materials
can be modeled also with a random distribution of pores dveRVE. One of the key challenges of RVE modeling
is the ability to generate periodic morphologies. To satikht requirement a combination of geometric constructs
and specialized periodic boundary conditions is employed.

2.9.2 RVE Boundaries and Loads for Multiscale Analysis

The SIMULIA Abaqus finite element solver has long included thchnology required to perform FE-RVE anal-
ysis. However, the correct imposition of constraints arefllbistories, and performing homogenization and post-
processing is a tedious process. To aid in this, in 2016 tleedvtiechanics Plugin (Fig. 23) was created for Abaqus/
CAE to automate many of the more challenging aspects of FE-Rddeling (McLendon, 2017).

The plugin allows the user to create their own FE-RVE moddllaegin in theLoadingscreen to impose con-
straints and loads. The plugin also offers functionalitypwrametrically create FE-RVE models of a number of
common geometries, including hexagonal arrays of unitoral fibers, arrays of ellipsoids, and various lattice ge-
ometries (Fig. 24).

One of the key aspects the plugin handles is the definitioronbtraints on the RVE. A number of different
constraints are possible for FE-RVE modeling as shown in Z5g Among the simplest is the so-called Taylor or
Voigt constraint (Taylor, 1938) in which the RVE is subjette uniform deformation throughout its entire volume.
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FIG. 24: FE-RVE geometries

A somewhat less restrictive option is to constrain the dispinents of only the FE-RVE boundary to conform to the
“average” deformation field. This is referred to as theiform Surface Gradientonstraint in the plugin, although
various names are used in the literature suchimasar (Nguyen et al., 2011)Jniform Displacemen{Geers et al.,
2017),Rigid (Mesarovic and Padbidri, 2009)inear Displacemen{Saeb et al., 2016), arfeissential(Fish, 2014).
Both this and théfaylor/\oigt type constraint can be imposed using the plugin {i&agor/\oigt type by manually
specifying that all the nodes in the model be constrained)additional type of constraint that can be applied is the
Uniform Surface Fluxalso commonly calleédNeumanror Natural) type boundary condition in which the average
flux field (stress or heat) is uniformly applied to the RVE bdary as a traction or surface flux. The plugin sup-
ports this constraint only for certain types of geometried with a number of limitations compared to constraints
based on displacement or temperature. One benefit of alftheraentioned constraints is that they are appropriate
for nonperiodic RVE models, such as those originating frans8ans of actual material microstructures. All RVE
boundary conditions provided by the plugin assume that ¢heisn gradient considered at larger scales (e.g., the
far-field solution gradient) is uniform, making this a fistder homogenization method.
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For the case of RVEs exhibiting repeating pattepesjodicconstraints allow the recovery of the response of an
infinite array of repeating unit cells through the analysia single unit cell by assuming the solution field in the RVE
varies in a periodic manner according to the following emumat

wi( Xk + pr) —ui(Xk)+<§;;>pk7 (6)

whereu; is the field assumed to vary in a periodic manner (in forcgldsement simulations, this is displacement),
X}, is the reference coordinate in the RVE, andis a vector of periodicity that runs between equivalent {min
adjacent unit cells. The term in angle brackgls; /0X}) is the volume-average gradient of the solution field in the
unit cell corresponding to the uniform field gradient coesat! at larger scales. In the case of force-displacement
simulation, this is the volume-average displacement gradiThis constraint is imposed using linear equation con-
straints applied to the unit cell boundary and global degddreedom (DOFs) corresponding to the components
of the average solution field gradient for the RVE. Volumerage loading is applied to the FE-RVE through these
global DOFs. For periodic FE-RVEs with a hexahedral unit-sleape and faces that are flat and aligned with the
global axes, the plugin automatically identifies the nodesanstrain and imposes the constraints. For models that
are not hexahedra (such as hexagonal prisms, truncatduedcta or any other shape that translationally tessellates
in 3-space), the user can manually identify the pairs offdleat are related by a vector of periodicity for the unit.cell
For models that exhibit periodic geometry but not periodidepositions (perhaps due to the use of a free tetrahedral
mesher), the plugin uses a novel approach leveraging tloemistraint functionality in the Abaqus solver to impose
the periodic constraints.

In addition to constraints for RVEs embedded in a theorllyidgafinite medium, the plugin provides so-called
solid-to-shellperiodic constraints that are applicable to structures fiiiite thickness and in-plane periodicity (such
as corrugated or honeycomb panels). Such constraintgjlksd detail in work by Karkkainen et al. (2007) subject
the RVE to an average shell-type deformation and permit #terchination of shell section stiffness properties (i.e.,
the so-calledABD matrix) relating shell resultant forces and moments witlmbeane strains and curvature based on
an assumption of in-plane periodicity rather than in-plangormity inherent in laminated plate theory, permitting
these complex structures to be accurately modeled usingesshell elements in engineering-scale analyses.

In addition to automation of constraint creation, the phugjso automates the creation of analysis steps and loads
required to impose the average field history and perform lggmization as requested by the user. Field histories can
be defined manually or can come from history data at someidocaf a prior analysis. Finally, the plugin provides
functionality to post-process RVE simulations. The pluggificulates homogenized material properties such aselasti
stiffness, shell section stiffness, thermal expansiod,thermal conductivity, and writes these to new materiat def
initions or general shell section definitions in Abaqus/CAEe plugin also calculates average field histories (e.qg.,
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volume-average strain and stress) in each constituenautide whole RVE, and calculates histograms of field quan-
tities within constituents and the whole RVE at particuiargs. Displacement, steady-state heat transfer, andewdupl
temperature-displacement analyses are supported. Ariewesf the capabilities is shown in Fig. 26.

2.10 Material Multiscale at Larger Scales

To take full advantage of the micro- and mesoscale chaiaatems it is critical to have efficient and scalable macro-
modeling features that incorporate small-scale respoasdsehaviors in component sized (macroscale) models.
SIMULIA offers a complete range of efficient and complemeptaacromodeling features.

2.10.1 Materials

SIMULIA offers a wide range of advanced material modelingiaps for applications across many industries. Most
SIMULIA constitutive models support a full range of elemésthnologies and dimensional domains including 1D,
2D (plane stress, plane strain), axisymmetric, 3D, andcgiral elements (trusses, beams, and shells). In addition,
many of the Abaqus material models are “micromechanicsinéal” which means they can capture some microscale
behaviors at the macroscale and have special output vesitiitht can provide valuable insight into the microscale
responses. “Micromechanics informed” materials are dised more in Section 2.11.

The SIMULIA concrete damage plasticity is an excellent egkmnof an advanced “micromechanics informed”
material model. Designed for modeling concrete and othasidpittle materials it supports separate damage mech-
anisms for both tensile cracking and compressive crushatg,dependence, tension stiffening for modeling rebar
reinforcement, stiffness recovery under cyclic loading] &ailure. It also supports a set of material-specific outpu
variables, that among other things, allows you to visualizeking patterns in the concrete.

2.10.2 Element Technology

SIMULIA has an extensive element library (Fig. 27) to pravia powerful set of tools for solving many different
problems.

In addition to a full set of conventional continuum and stanal elements, SIMULIA supports a wide range
of special elements and functionality specifically desayte support the modeling of small-scale phenomenon in
large-scale modeling features.

e Composite solids and shellS€omposite elements allow for economical modeling of caxphyered mate-
rials. They inherently support both bottom-up (upscaliagyl bottom-down (downscaling) approaches (Fig.
28).
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FIG. 26: Overview of micromechanics plugin capabilities
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SIMULIA composite elements include 3D continuum, shellj aeam elements. The SIMULIA shell elements
support two modeling options: pre-integrated materigdoeses and material responses that are integrated dur-
ing the simulation. The pre-integrated shells offer a vaxyr@mical approach for composite modeling when
linear elastic behavior is acceptable. For simulationsriguire nonlinear material response, including plas-
ticity and failure within the composite layers, integratithe shell material response during the simulation is
required.

Meshed beamd he response of some structures is beamlike, yet the bezss-section geometry or the mul-
timaterial makeup of the cross section does not permit teetia predefined library beam cross section, e.g.,
Fig. 29. In these cases, a meshed cross section can be usediébthe beam cross section and to generate
beam cross-section properties appropriate for subsegsernh a 1D-beam analysis.

SIMULIA supports 3-DOF warping elements to model a meshedpusite beam cross section. These ele-
ments capture the effect of in-plane warping on the stiim@®perties of a composite beam element using
this cross section. The warping elements can be used witf Hie existing three-dimensional linear elastic
material laws, for example, to generate realistic modelafikinds of laminates in a wind turbine rotor blade.
In addition, you can recover the full three-dimensionadistiand stress in the cross-section planes given the
beam element deformations from subsequent analyses.
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FIG. 29: Sample composite beam cross section

Meshed beam cross sections can be used in both Abaqus fiaitee simulations or Simpack multibody
simulations (see Section 5.2).

e Rebar and embedded elememany important engineering structures are constructawyuginforced bulk
matrix materials. For example, in civil engineering stures, the high tensile strength of steel rebar comple-
ments the high compressive strength of concrete. In pneaitivas, the good wear and handling characteristics
of the rubber are supported by radial plies and belts whigiplstutensile strength (see Section 5.1).

The rebar layer and embedded element technology in Abaauéderan efficient means for including the
small-scale details of many types of reinforcement in lesgale simulations.

Rebar layers are used to define layers of uniaxial reinfoecg#rim membrane, shell, and surface elements
(such layers are treated as a smeared layer with a constzhrigls equal to the area of each reinforcing bar
divided by the reinforcing bar spacing). Solid elementsraieforced using embedded element constraints
in which either shell, membrane, or surface elements regefbwith rebar layers are embedded in the host
matrix comprised of solid elements.

e Fracture technology and interface behavidiracture is inherently a small-scale phenomenon. At the mi
croscale forces are pulling or laterally moving two molesuapart; as soon as they reach a certain distance
the molecules are separated, and have consumed a certegty eegulting in a “micro” crack, or in metals,

a void. There are millions of molecules active in the formatof an observable crack; all of them have a
statistical variation in their bonding strength, and thls® an the energy needed to break them. Solving the
micromechanical problem directly, however, is very hardpBnding on this and other processes that happen
at the microscopic scale, and how they become observableeoma&cro scale, we “see” plasticity, cracking,
or possibly nothing directly at all and call the long terme#tive fracturing behavior, fatigue. The goal of
fracture mechanics is to relate observable macroscoptintam quantities to when and how fracture occurs.
SIMULIA offers a wide selection of macromodeling fractueehnologies for ductile, brittle, and fatigue frac-
ture. The features include continuum damage models, XFE®CV (Fig. 30), cohesive elements, cohesive
contact (Fig. 31), and fatigue. Recent research also pes\atternative technologies that do not require cohe-
sive technology to model intra- and interlayer damage (Yaraoh Fish, 2016) and may be used with Abaqus
via the user element subroutine interface.

Fourteen research teams (from academia, labs, and inyitstdy part in a fracture challenge organized by
Sandia National Labs (Boyce et al., 2016). In a clear testatoehe value of our failure and fracture capabil-
ities, nine out of the 14 participating teams used SIMULI#/glation technology—some of whom leveraged
the openness that our user subroutines offer to includedigi material and element technologies.

2.11 Micromechanics Informed Material Models

The analysis of large-scale structures with FEA requiresalfialance between solution accuracy and performance.
At this level, it is usually impractical to perform a full molithic multiscale analysis due to time and computational
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constraints. Instead, it is common to use a mathematicakmodconstitutive lawto describe the macroscopic re-
sponse of the material in an efficient way. These materias lean be purely phenomenological (or data-driven), or
they can be microstructurally informed, meaning that thelehéormulation and parameters reflect on the microstruc-
tural characteristics of the material. This latter clasmaferial models, usually callesdiructural constitutive models

is the focus of discussion in this section.

Many types of structural models have emerged during theilastdecades and have experienced a significant
level of adoption in commercial simulation packages. Fanegle, many structural models have been proposed to
describe the strong anisotropy that composites matenldlogical tissues exhibit when loaded along different
directions. Most of these models introduce in their forrtialathe concept of structure tensors to represent the
anisotropy of the material. (The structure tensor is uguddifined asM = Ay ® Ap, where Ay represents the
preferred direction of fibers in the material).
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The development of structural models has gained signifitaation in the field of biomedical applications. For
instance, the nonlinear anisotropic model of Holzapfellef2000) and Gasser et al. (2006) is a structure-based
model suitable for computational simulation of arterialllsyand other biological tissues. The model accounts for
collagen fiber orientations as well as dispersions. Sifgjléne model of Holzapfel and Ogden (2009) has gained
wide adoption for the simulation of the passive responseaddiac tissue. Today this model is a key component of
SIMULIA's Living Heart Project (Baillargeon et al., 2014).

More advanced tissue models include the Lanir and Sacksr(LlE#83; Sacks, 2003; see Section 4.5.1) mi-
crostructural model, which introduces fiber-recruitmerd fiber-orientation distribution functions charactedfem
statistical analysis of histological sections of the tessu

All these models make computational analysis and simulatidiological systems a reality, and they are readily
available in Abaqus as part of SIMULIA's portfolio of solatis for large-scale simulations.

In the field of composite damage modeling, many failure geteave been proposed using invariant formulations
based on structural tensors. For instance, the ply-fabddehfor woven composites in Abaqus (Johnson, 2001,
Sokolinsky et al., 2011) includes a set of structural falariteria to differentiate between fiber tension/compoess
failure, as well as matrix shear failure. Such models havegat to be very successful for the analysis of large-scale
aerospace structures, providing a high degree of preditfaldn example of a simulation of a bird strike impact on
the leading edge of an airplane wing structure is shown is.F3g and 33 (Al-Khalil et al., 2015). The J-Nose panel
is constructed from carbon-woven fabric with a honeycomie cdhe ply fabric damage criterion in Abaqus is used
to model the woven fabric composite. The simulation accafortnonlinear shear plasticity effects. As discussed in
the reference, the model captures the appropriate amoentodly absorption during the impact event. Figure 33 also
shows that the methodology is able to predict the onset obdarand penetration of the J-Nose structure. Overall, the
simulation results correlate well with the physical testules, demonstrating the predictive capabilities of theleto

Top Cover

J-Nose

Bottom Cover

FIG. 32: A composite sandwich wing structure with a fixed leading edge

time

1.8 ms 3 ms 4.8 ms

FIG. 33: Damage to J-Nose with bird penetration (top: Abaqus reddtsom: test results)
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In addition to the applications for composite materials liadbgical tissues discussed above, in recent years there
has also been a widespread development of advanced midnamies informed constitutive models for the analysis
of cross-linked polymers. Cross-linked polymers are wideded across many industries (automotive, consumer
products, medical devices, etc.), and have gained a signiflevel of attention from a modeling perspective. These
materials consist of a three-dimensional network of rargi@mriented molecular chains that can tangle and cross-
link (resulting in elastomeric or hyperelastic propeftiaad can exhibit a time-dependent nonlinear viscoelastic
response often associated with the relaxation of danglirains in the network. The addition of fillers can lead to
stress softening (Mullins effect) as well as permanentAeiimber of models have been proposed inspired by the
physical response of the polymer microstructure, usuatipducing the concept of multiple networks connected in
parallel. Examples include the three-network model of B&ag and Bischoff (2010) and the parallel rheological
framework (PRF) model in Abaqus (Hurtado et al., 2013). €rasedels provide more physically accurate predictions
than traditional phenomenological models. For instarfee RRF model has been used successfully for the analysis
of filled elastomeric materials that exhibit permanent Bkillins effect, and nonlinear viscous behavior under large
deformation (Govindarajan et al., 2008). An example of tR&Phodel can also be found in Section 4.2.1.4 (Oancea
et al., 2017) in the context of multiscale modeling of a podaicopolymer melt.

2.12 All: From Ab Initio to Continuum-Linked Scales

The vision of multiscale modeling is to use information geed at one scale to provide knowledge that improves a
simulation at a different scale. There are three main waysafiding this connection:

e Structure—at its simplest level, this means being able ¢caustructure generated at one scale directly in a dif-
ferent scale. For example, a polymer may consist of botheswfthard blocks. This can be represented through
coarse-grained molecular dynamics or another mesoscakamgs method. However, at the mesoscale, it is
not easy to calculate the overall mechanical propertiesicii & system. If the structure can be passed to an
RVE model, and the mechanical properties of the soft and blaaks are known, then the overall mechanical
properties can be calculated. Materials Studio enablex#faion of an Abaqus input file containing structures
generated using coarse-grained simulations that can beletbdsing the RVE method in Abaqus.

e Property—nanoscale models are used to estimate the pespeftsome materials. These are used to help
calibrate material models for larger scale simulationgif@&zting by property has the advantage that multiple
scales can be bridged in a single connection (e.g., fromsta®to FEA). However, challenges remain in the
overall accuracy of the nanoscale calculations as the toales used in nanoscale simulations are orders of
magnitude faster compared with real experimental dataed&tekers are using different approaches to work
around this time-temperature superposition limitatiarghsas elevated temperatures (Park et al., 2018) or
machine learning (Park et al., 2021).

e Cosimulation—execution of different simulations conde@ly or simultaneously where information from
one directly links to another. This has most successfulgntapplied when coupling different domains at sim-
ilar size scale; for example, coupling structure-basetefieiement solvers with computational fluid dynamics
solvers.

Choosing the most appropriate methods for solving a malésproblem will depend on the modeled material
and the property being predicted. There is no “silver btiletution to the general multiscale challenge and Dassault
Systemes provides a tool box of solvers that are all becgrairailable on th68DEXPERIENCE Platform. For
specific problems, out of the box multiscale solutions agglalle and they will be discussed in further examples in
this paper.

2.13 Uncertainty Quantification in Multiscale Modeling

Computational developments that culminate in the ICME aapih have multiple goals, two of which are discussed
here. On one hand, there is the traditional approach of impgajualitative understanding of material properties and
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processes, generating trends, and focusing on screenthg bést candidates. On the other hand, ICME promises a
guantitative contribution as well, so that more decisiongdvelopment and optimization of materials can be informed
by computations in addition to experiments. This quartatlaim often requires a deeper understanding of the
uncertainty of calculated results than current methodspcavide; an additional problem in the multiscale picture is
that uncertainties propagate from one scale to another liinthtely generate distribution of answers rather than a
single result.

What are the main sources of errors? Atomistic simulatidnaaterials that are based on quantum mechanics
usually employ DFT, and this generates an inherent unogytaiexchange-correlation effects are described only
approximately, using one of the steps of Jacob’s ladded@®eand Schmidt, 2001). It is well known that the sim-
plest formulation, the local density approximation (LDAyerestimates the strength of interatomic bonds, while the
next level up in terms of accuracy, the generalized gradipptoximation (GGA), underestimates it. More accurate
schemes such as meta-GGA often get intermediate answevedrethese two extremes. The bottom line is that
LDA and GGA tend to, respectively, under- and overestimadé&enil density by 3-5%, and over- and underestimate
compressibility by 10-2%. Those errors become even moneopriaced for the individual components of the elas-
tic coefficients tensor for crystals. On top of this, DFT cddtions typically describe the zero-temperature state of
the system, and hence are difficult to compare to experincafdulations that include thermal effects can be orders
of magnitude more expensive. There are numerous otheresoofcerrors that are related to DFT and can be par-
tially corrected by introducing additional approximatsofior example, lack of description of dispersion interaasi
between atoms and inaccurate representation of systeindowdlized electrons (compounds @f and especially
f-shell elements).

Molecular modeling with interatomic potentials, such asMIASS |II, relies on the transferability of potential
functions. When those potentials are fitted to DFT datababkesDFT errors mentioned above propagate to the
empirical functions. The finite size effectis present inhoquantum and classical simulations—computational models
mostly use periodic boundary conditions to describe clystad polymers, so they include unphysical interactions
between periodic images of atoms and defects. The time sfaienulations is also limited, so that, for example,
the deformation rate or a cooling rate in either atomistiplise-field simulation can be significantly higher than in
experiments.

Certain material properties are derived from atomisticdations using empirical models, which introduces an
uncontrolled error. One example is the estimation of hassgliaad of fracture toughness based on elastic coefficients
and on information about ionicity and metallicity of intesenic bonds (see Mazhnik and Oganov, 2019). We show
our DFT results obtained with the Materials Studio CASTERduaie, using the hardness model from Tian et al.
(2012) and the fracture toughness model from Mazhnik anch®gé019). These data fer 60 inorganic materials
illustrate typical scatter of calculated results relativéhe measured properties; see Fig. 34. Uncertainty inted
by the use of empirical models does not show the same systetnesids as, for example, DFT uncertainty (LDA vs.
GGA), which reduces the predictive power of the calculation
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FIG. 34: Correlation between calculated (CASTEP, GGA exchangeetaiion functional PBESOL) and experimental mechanical
properties of inorganic materials
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Uncertainty in macroscale simulations has both technmaices (approximations and assumption used by finite
elements or phase-field solvers) and physical origins. ¥&amg@le, porosity in solids or random distribution of phases
can be simulated by using random fields; the homogenizappnoach to simplify simulations of polycrystalline
assembly of grains is popular, but does represent a sourgeceftainty.

Propagation of uncertainty between length and time scalas iessential part of multiscale modeling and it is
its major challenge; an excellent review of the topic is jided in Wang and McDowell (2020). We currently do not
address uncertainty quantification in cross-scale contiputd studies. There is a clear need to improve this sitnati
by using probabilistic methods, sensitivity analysis, Etarther progress requires a combination of experimental a
calculated data to build better models and to direct desigmeriment using computations.

3. CRITICAL TECHNOLOGIES FOR THE PRACTITIONER

While material multiscale technologies as outlined in thevpus section can be considered as critical building
blocks for ICME, in practice material scientists/engirseeften rely on additional technologies to advance their
work. Microstructure parametric modeling, calibratiopsualing, and results mapping techniques are almost always
required techniques to accomplish a tool chain despite @iagltechnologies associated exclusively with the ICME
practice. Microstructure parametric modeling allows pagterized modeling of microstructure characteristicdisuc
as grain morphology, porosity and inclusion shape andilligion, and the study of their effects on the material
properties. Calibration often makes the connection betwéatual methods and physical testing; aggregated mégeria
are no exception. Upscaling technologies, such as coaasging, are sometime mandatory in order to assess RVEs
of meaningful size. Mapping techniques often make the cctiorewith manufacturing process simulations. In this
section we review briefly a few of these techniques.

3.1 Microstructure Parametric Modeling

Exploration of various material microstructures (throungicroscopic images) demonstrated the complexity of such
microstructures (Bargmann et al., 2018). Moreover, thosalapendent on the manufacturing process. For example,
composites have an inhomogeneous distribution of the fiheh® resin, regarding the curing process. In the case of
metallic structure, the way the material is cooled down s$et@dsignificant change in the microstructure. It remains
massively complex to predict the shape of the microstrecaacording to the manufacturing process (due to the
material state change). Therefore, it is more relevantaetroff on a parametric modeling of the microstructure to
measure the effect of slight variations on the mechanicagnties.

The challenge is to be able to model and parameterize a lange rof microstructures for the various materials.
A few key microstructures can be highlighted (see Fig. 35):

e Grain structure, which is observed in metallic (steel, ahum) or ceramic materials;
e Porous structure, which is relevant for resin with defeoidqy or porous foam;
e Long fiber random microstructure with a variable amount cfiffhinto space.

All those microstructure are defined via a reduced numbemddpeters for efficient trade-off studies. More-
over, the chosen parameters should be defined with a rangéfiiele to ensure that the trade-off delivers realistic
microstructures. In the case of composite materials, thewe fraction of fibers in various applications varies from
50% to 60%. Such high volume fraction of fibers is challengimgnsure a sufficient compaction of fibers in the
RVE. On the3DEXPERIENCE Platform, microstructure parametric model@mpances the realism of produced
microstructures including constraints for symmetry andqukcity.

3.2 Material Calibration

A key ingredient to an accurate finite element solution afctires is the mathematical model of the material. One of
the earliest, and simplest, successful material modelslid siechanics is linear elasticity. A linear elastic mater
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(© (d)

FIG. 35: View of various microstructures and their main parameterséveral types of structures. (a) Long fiber structure:lmem
of fibers, volume fraction of fibers, minimum distance betwébers; (b) porous structure: volume fraction of pores psiseof
pores; (c) grain structure: number of grains, thicknessraingjoint; (d) woven structure: two section shape, numbeows,
volume fraction of tows.

models the stress field as being linearly proportional tostnein field. While very effective for small strain defor-
mations, it soon became clear to engineers that a linediaafaaterial model has a limited range of application, and
over the years, many advances have been made in the developimeore sophisticated material models. Much of
this work is based on testing of material samples and thelai@wveent of phenomenological material models. Some
of the earliest work on metals, investigating elasto-ptagt behavior under cyclic loading, and behavior acress-t
peratures, strain rates, etc., showed the need for morelermyaterial models as the metal was subjected to more
complex loadings. For a constitutive model to be useful inaarical simulation it must be an appropriate material
model for the intended applications. In other words, themoit “one best” material model for any given material.

As more advanced material models, e.g., math models, werdageed for FE simulations, the need arose to
have software to calibrate these material models. Most naht@odels are a mathematical representation of how
the stress relates to the strain, strain rate, time, terhypetaetc., in the material. In the material models, theee ar
typically several, or perhaps many, parameters that cbiftese relationships. In this context, we are still thirkin
of materials that, as engineers, we think of as homogenddwese may be an underlying microstructure, such as
the grain structure in metals, but at the engineering lesgéte (millimeters and up) we can treat the material as
homogeneous. We can test specimens of the material to deteitsproperties. There is a material model calibration
app in the3ADEXPERIENCE Platform that allows us to determine these r@tparameters. It does so by using an
optimization-based framework to compare the material rhicponse to the underlying test data. Figure 36 shows
an example of the material calibration app, performing ication for Drucker—Prager plasticity. Once the material
model is calibrated, it can be promoted for use by any siroratarried out in the8DEXPERIENCE Platform.
Since this is occurring within a PLM environment, the unyieig test data are stored and archived in a database; the
resulting material model is also stored and archived. Hiitity and version control are natural parts of the PLM
system in which we work.

As we progress to materials that are heterogeneous, niatté are really made from different underlying
constituents, one approach might be to model each corstitliscretely. Figure 36 shows a multiscale example
based around a pneumatic tire in an automobile. The rubbauich of the tire is a complex mixture of rubber and
polymeric or metallic reinforcing fibers (plies). As dissesl in Section 2.10 you can model the plies in Abaqus
using rebar layers. A continual theme running through thishe question of “How much detail can | afford to
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FIG. 36: User interface of material calibration app, Drucker—Prau@sticity example

model?” With each successive generation of computing paiweradvent of HPC resources, etc., the answer to this
guestion changes. And yet, today, we cannot afford to modet imeterogeneous materials by discretizing their entire
subconstituency (in the macrostructural simulation).

We can take the FE-RVE approach, where the morphology of ¢terdgeneous material is discretely repre-
sented with finite elements and the constituent elementasasigned their respective known material properties. This
approach often leads to a macro material model that we sagicgsdmechanics informed.” The FE-RVE can be used
in the material calibration app to determine the materishpeeters of a macro phenomenological material model to
capture the overall behavior (if the required level of coexjtly exists in the macro model).

Or, one can take the mean field homogenization (MFH) apptaelclre a “material of materials” is defined and
the homogenization is performed in the Abaqus FEA solvee iaterial calibration app supports the calibration of
an MFH representation of an elastic fiber embedded in an@lalststic matrix. In these situations, one typically has
some information about the constituent properties, sorfeerimation about the fiber morphology, as well as some
information from more macroscopic testing. The calibnatgp can take in all of this information and determine the
best constituent material parameters to provide the betstnb@the macroscopic testing.

3.3 Coarse Graining

A knowledge of underlying material microstructures, sushheetal grains or phase separated polymers, can poten-
tially add extra fidelity to FE-RVE representations of thetenial. Use of simulation to predict microstructure implie

the use of course-grained methods, either field-based dribesed. Where phase-field simulation is used to produce
microstructural textures of hard materials such as md@lslthe allocation of components and phases to use for the
simulation input is straightforward. Although potentjalomplex phase landscapes need to be encoded (for exam-
ple, by use of CALPHAD databases), the coarse grainingsanagurally from the different possible discrete crystal
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phases occurring in the material. In soft materials anddg(polymers, solvents, emulsions), however, the alloca-
tion of chemical constituents of each coarse-grained k&adti unique. There are constraints through a convenient
choice of length scale, but even once this is fixed it is theazhof the practitioner as to how to represent the different
chemistries involved. Thereafter careful justificatioattthe coarse-grained system is representative of the lyidgr
material is required. The success of the Martini force figigraach is largely due to it providing a simplification to
this process—with the practitioner able to refer to a listlteémical functional groups with known water/octanol and
water/alkane partitioning free energies that correspondigtinct Martini bead types. To a first approximation the
partitioning behavior can be relied upon to capture the s&amy physics driving the development of microstructure.

A variety of coarse-graining strategies have been expldredse commonly start from an underlying atomistic
representation of the molecules, where conversion intd bélacation is the first task. In general the procedures to
assign the topology and parameters can be quite laboricaterldls Studio contains a range of coarse-grained builder
tools that streamline the activities associated with eograining (see Fig. 37). Bead strings can either be sketched
directly or documents containing molecular templates eanded to automatically identify and convert the atomistic
sequences into the equivalent bead representation. Thadeatajor step is to parameterize a Hamiltonian that can
reasonably represent the atomistic level geometry ovesaéhef coarse-grained coordinates with a minimum loss of
information. One such route to the Hamiltonian is to sampdenfan ensemble of states in the atomistic molecular
trajectory and employ iterative Boltzmann inversion (1BI)

From a distribution of stateB(q) from a set of potential& (¢) in the canonical ensemble,

P(q) = Z Yexp (—BU(q)), (7
the potential/ (¢) can be constructed by inverting the equation.
U(q) = —kpT'In P(q). (8)

To achieve this simultaneously across all degrees of fradddhe challenge and an iterative approach provides
a numerical method to move towards a solution.

Uiyi(z) = Ui(z) + akpT In [M}, 1=0,1,2,.... (9)
Ptarget(w)
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FIG. 37: lllustration of tools aiding coarse-grained model buitglin Materials Studio
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Scripts to convert atomistic trajectories, apply IBI, andput the coarse-grained force-field file are available to
run within the Materials Studio environment which signifitlg reduces this burden of coarse graining. Extensions
of these schemes, IBI, and generation of potentials usirghima learning algorithms are a topic of ongoing research
(e.g., Joshi and Deshmukh, 2021).

With complex molecular geometries constructed and an gjate Hamiltonian generated, a further task is
to create a starting condition for the condensed phase.thartgres such as bilayers, micelles, and vesicles, self-
assembly during coarse-grained molecular dynamics oipdisge particle dynamics could be used. In practice this is
slow and leads to imperfectly ordered structures. Toolsdmstructing arbitrarily complex mesostructures from-tem
plates are an efficient way to create starting configuratiBash former template can be filled with any combination
of coarse-grained particles using the graphical interfgut®ns or by automated procedures.

3.4 Results Mapper

Mapping is usually an essential step in the workflows, mogetiomposites with multiscale approaches. Character-
istics of the microstructure can be the result of the manufawy process and need to be taken into account in the
subsequent analysis. For example, fiber orientations indh®osite can be computed in a flow simulation that uses
boundary layers to capture the sharp gradient near the flamdaries. The subsequent structural analysis usually
uses a more uniform mesh and the mesh resolution is detatrbased on the mechanical response of the part under
a particular service load. Due to the focus on different pisyslissimilar meshes are usually used in the two analyses.

Abaqus has a built-in mapper that automatically maps fiedd&den dissimilar meshes. Both scalar and tensor
fields can be mapped and invariants of the tensor fields asewed during mapping. Figure 38 shows the mapped
fiber orientation in an injection molded engine cover pahe Thjection molding simulation is performed with the
plastics app in theDEXPERIENCE Platform and the subsequent analysis is pegdnwith Abaqus.

4. MULTISCALE MATERIALS APPLICATIONS BY MATERIAL CLASSES

Itis not the purpose of this section to perform a comprelverrsiview of the existing literature regarding the commer-
cial software packages leveraged in materials scienceA@Ntleavors. Quick Google Scholar searches show tens of
thousands of pieces of research work, some attached totpéited based on them.

Instead, we review a few representative applications grdyfoosely) by the type of material. As usual with
software vendors we are most often not allowed to presentsinidl applications that we have worked and hence
the examples below, while representative, are a subseeqfuhlic domain literature that we were engaged in. We
start with a brief and nonexhaustive review of examples eéaechers across the world utilizing some of our general
purpose software packages (e.g., Abaqus, Materials StisgitCME activities. Some examples in polymers, metals,
porous natural materials, and biological materials areflgrieviewed afterward.

Original Mapped
726,269 elements 22,224 elements

FIG. 38: Fiber orientation mapping between subsequent analyses
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4.1 Comprehensive Research Activities (Using Dassault Sys temes Tools)

Abaqus and Materials Studio are important and heavily usadlation tools for multiscale material studies. A quick
search orAbaqus multiscalén Google Scholar yields almost 14,000 hits, while a searchaterials Studioyields
over 9000 hits.

Following are a few examples from the literature.

The use of Abaqus for nanotechnology applications was exgloy Li et al. (2008). Atomistic RVEs were linked
to a continuum model via a generalized mathematical honipgton (GMH). GMH was extended to support many-
body potentials and was seamlessly integrated with Abamusdarse-scale computations with molecular dynamics
code.

Fish and Yuan (2005, 2007) used Abaqus for the developmemiudtiscale enrichment based on partition of
unity (MEPU) with an objective to extend the range of apglitity of mathematical homogenization theory to prob-
lems where scale separation may not be possible. MEPU esrRBEs with fine-scale features and quasicontiuum
formulations with relevant atomistic data. Boundary lay@onperiodic fields, and nonlinear systems were accounted
for, extending the range of applicability of MEPU to nonkmaonperiodic systems with inseparable fine and coarse
scales.

Li et al. (2021) used Abaqus as part of a general computdtfoamework, along with the generalized finite
element method (GFEM) and iterative global-local cosittiata(IGL), for multiscale analysis of localized defects in
large complex structures. The IGL component provides awag-coupling between the macroscale Abaqus model
and the local GFEM models. They showed examples of locafitasticity around the holes in plates, a hat-stiffened
panel, and a welded T-joint with a propagating crack.

In a study of parameter uncertainty for integrated companat materials engineering (ICME) workflows, Whe-
lan and McDowell (2019) established guidelines for usingugss of statistical volume element (SVE) simulations to
cope with uncertainty in the calibration of material prdjees. In this workflow, a crystal plasticity model of Ti64 tha
took into account small-scale 3D slip geometry, dislocastructure, and crystallographic texture was implemented
in an Abaqus UMAT. A careful calibration study, including arameter sensitivity analysis was performed and the
simulation results were compared to a baseline from theatitiee.

Lu et al. (2021) studied the slurry flow of compressible bismparticles in Abaqus/Explicit. They implemented
an eight-parameter continuum material model to capturk b quasistatic shear and dynamic flow behavior of
the slurry. The material response was implemented in an éb&&MAT. They chose a continuum approach over
a particle method, such as DEM, because of the computatgavathgs the continuum approaches offered. They
validated their model against experimental results foraswatic shear flow and dynamic flow through a hopper.

Some researchers have combined the capabilities of AbagliMaterials Studio for sophisticated multiscale
simulations.

Saavedra Flores et al. (2011) paired Abaqus and Materiatiicsto study the tensile response of single-walled
carbon nanotubes (SWCNTSs). Materials Studio was used &rdate material constants for a hyperelastic strain-
energy density potential for a subsequent Abaqus simulatio

In Shi et al. (2009) the authors used Abaqus and MaterialliGin a vibration analysis of single-walled carbon
nanorings. For the simulation, the authors implemented bag#s user-defined element (UEL) based on the so-
called atomic-scale finite method (AFEM). The UEL took intttaunt the microstructure of the carbon nanotube.
Abaqus was used to carry out the vibration analysis and thétsscompared to another set of results computed using
Materials Studio.

4.2 Polymers

4.2.1 Bridging the Scales: From Molecular Dynamics to Product

Most materials have some complexity of structure at the nananicroscale that influences their behavior at the
continuum level. To enable continuum models to be built tlagture this complexity it is necessary to bridge the gap
between molecular scale models and the continuum. The apipislikely to be particularly helpful for simulations of

composite materials and materials involved in additive of@acturing processes. Classical and mesoscale simwation
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based on molecular structure can be used to predict key piegeincluding cohesion and wetting, mechanical
behavior, diffusion, adhesion at surfaces, and phaseat#marSuch simulations can be leveraged in finite element
(FE) simulations through homogenization of the predictatiamal structure and through use of the simulated material
properties for FE input. In this section, we will work thrdugnd extend one particular multiscale workflow starting
with the construction and characterization of a thermdjglapolymer at the atomistic level and ending with a
macroscopic part level simulation.

4.2.1.1 Background

There is a long history of trying to understand continuunelewnaterial behavior by looking more closely at the
material’s nanostructure. Molecular and mesoscale dycgsimulations based on classical equations of motion are
ideally suited for studying the structure and propertiethest scale, but it is not entirely straightforward to use the
results directly within finite element models. Our goal isd&scribe a suitable workflow for bridging the gap be-
tween the very fine-grained work at the atomic/moleculaglleworking through a “meso” scale simulation level, and
finally obtaining continuum level material behavior for ueefinite element (FE) simulations of real components.
Mesoscale, or coarse-grained, representations of thersgsdre required as part of the scheme to enable structural
information to be captured at the 10-100 nm level, since stigrlevel simulations normally operate at smaller
scales. We will highlight the process of moving from molecullynamics (MD) simulations to mesoscale, to FE
scale using a polyurea copolymer melt as a concrete examplkecent years, polyurea has been studied extensively,
at the molecular level (Gruijicic et al., 2010, 2011; Ferméangnd Prici, 2009), as well as at the continuum level
through traditional testing of material specimens (Yi et2006). Gruijicic et al. (2010, 2011) outlined many of these
ideas and tied together the significant scales for the pedyaraterial. We follow the general methodology of Gruiji-
cic et al., using some of the conclusions, but also extendigmission around finite element modeling through the
use of FE-RVEs, homogenization methods, and the derivafiancontinuum-level material model. A key reason to
study polyurea, as observed by Grujicic et al. (2010, 201jat it possesses a complex hanometer-scale material
structure. This consists of hydrogen-bonded discrete thandains, with high glass-transition temperatufg)( and
domains of soft (lowl’,) matrix. The mechanical properties of this and structynallated thermoplastic polyurethane
materials are determined by the details of the distributibnard and soft segments. In the first instance we will fo-
cus on the individual mechanical behaviors of the hard aftdsegments and on the prediction of phase separation
between hard and soft segments to form the combined mioadste, also called morphology, or texture. By study-
ing materials at all of these length scales a whole new fietddmaerged, termed ICME—integrated computational
materials engineering. The goal of ICME is to enable the ldg@raent of new materials, with superior performance,
by tailoring the microstructure and processing with knalgle at each length scale.

4.2.1.2 Molecular Scale

The most accurate simulation of matter at the moleculai kexgiires the determination of electronic structure using
guantum mechanical theory. However, for treatment of pelgthis level of detail is not often required. This is the
case here, since the first objective is to predict elasticuti@hd yield strain of the polymer constituents, which
depends more on the statistical sampling of the polymer gordtions and the average forces experienced by each
atom, than the internal electronic configuration. The respoof each atomic center is instead approximated by a
combination of classical potential energies which prowde averaged atomic forces. This simplification allows
tens or hundreds of thousands of atoms to be simulated watl8D periodic simulation cell that represents the
polymer melt. To start with, hard and soft polymer segmeumtsife polyurea structure were sketched within BIOVIA
Materials Studio (2021) modelling software, as outlined=ig. 39, and then amorphous cells of each component
were constructed by packing multiple chains into cells sagBhown in Fig. 40. These form the basis for prediction
of the elastic response of domains of hard segments andegpftents (treated separately). This is carried out with
the goal of furnishing the nodes within an RVE or continuunmdelavith input based on this first principles property
prediction of the material present at each node.

To sample representative polymer configurations Newtogssons of motion are used to evolve the system.
This method, termed molecular dynamics (MD), can be coupl#termostats and barostats to sample configurations
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FIG. 39: Molecular structure of (a) hard segment (b) soft segmenéniat

FIG. 40: Amorphous boxes (5 nm per side) of pure component (a) hardesegy (b) soft segment material

from a range of statistical thermodynamic ensembles, anbttin a range of thermomechanical property predictions.
Here the cells were subjected to constAnfnumber of atoms), constafit (pressure), and constdfit(temperature)

MD which equilibrates the system to a natural density basedhis case, atmospheric pressure and room temper-
ature. The quality of the model depends critically on thessilzal potential energy describing interactions between
atoms. In this work we applied the COMPASS |l force field (Strale, 2016) which is extensively validated for
prediction of a wide range of properties and materials vidiclg polymers.

4.2.1.2.1. Mechanical Property Prediction

Once equilibrated amorphous cells were constructed, agdwe to extract the yield strain and Young’s modulus was
applied. The methodology chosen was to strain the simuléiox and extract the resulting stress in order to construct
a stress-strain response curve. This was achieved thrgypdjbation of a scripted procedure to apply compression at a
strain rate of 2« 10’ s™1. Engineering stress was computed using components ofrtres gtarallel to the compression
direction and collected every picosecond in simulatiomsing for 1 ns per strain. Stress/strain response curves for
each system were averaged over eight separate amorphdigucations in order to reduce the standard error in
stress at each strain. Figure 41 shows consolidated stiress-curves for both segment types.

It is important to recognize that the equivalent strain fatethis compression is significantly higher than an
experimental procedure. Consequently we do not expect @titptdze prediction of the Young’s modulus and yield
stress and strain until a strain rate dependence is explohedvalues here were used to provide a first estimate in the
optimization procedures outlined in the following sectiomhey also provide an order of magnitude estimate for the
difference between hard and soft segment properties.
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Compression Stress Vs Strain for PolyUrea Hard and Soft Segment
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FIG. 41: Average stress-strain response in compression for theamatdoft segments

An alternative to use of mechanical property averages toriesthe properties of the RVE node is to generate
the average Cauchy stress at each node directly from thecolatesimulation as described in more detail in Choi et
al. (2016). This will be explored in future work.

4.2.1.3 Mesoscale

The second objective of the molecular level simulation weagrovide a first principles prediction of the underlying
morphology of the copolymer. The size of such textures isctlly on the order of 10-100 nm, which precludes
the use of atomistic level simulations. The number of plgithat would need to be incorporated and the relaxation
times required to reorient polymers into their thermodyitatty preferred configuration is prohibitively large com-
pared to that accessible by atomistic level calculatiom®sgquently it is necessary to coarsen the representation
of the material. Several methods exist for achieving thasging from united atom treatment, where heavy atom
centers simply incorporate the effect of attached hydragems, to dynamical density functional methods, in which
the polymers are represented as density distributionsrgtatkeby idealized Gaussian chains exposed to external po-
tentials. Coarse-grained molecular dynamics has recgnakyn in popularity, where typically four heavy atoms are
represented at each center. This allows time steps to beaised 10- or 20-fold from a typical 1 fs in atomistic cal-
culations. However, we have chosen a dissipative partighaushics (DPD) methodology, which uses soft potentials
as opposed to those with highly repulsive hard-core pakntit close contact. This delivers time steps of several
picoseconds and morphology predictions that evolve irtivelg few iterations.

In DPD calculations the key driving force for phase separabietween polymer components is an interaction
parametetx;; that according to Groot and Warren (1997) is closely relatetie Flory—Hugging parameter via Eq.
(10).

aap(p = 3) = 25+ 3.50. (10)

In a Flory—Huggins treatment, larger valuesyofirive stronger phase separation. In this work Hildebrara-so
bility parameters were used to provide an estimatg a$ per Eq. (11).

v

— kBT(éA —5p)%, (11)

X
where Hildebrand solubility parameters are related to sivkeenergy density by = /E./V. The cohesive energy
density of each of the hard segments (273 MPa) and soft sagridh MPa) was measured from the atomistic
amorphous cells described in the last section and resultgedd 5.2 and consequently;; = 44.

The definition of a mesoscale bead followed Gruijicic et a1 2011) in assigning the equivalent of three
C4H80 units (a mass of 73 amu). This results in a bead raditiswof, defining the length scale of a simulation cell.
The polyurea molecule is represented by the simplified sgpration of Fig. 42. The DPD morphology prediction is
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FIG. 42: Mesoscale bead representation of polyurea molecule. Hgmients in red (lighter) and soft segments in blue (darker).

shown in Fig. 43 and shows the minority hard segment phaseatel into domains of several nanometers across.
Although difficult to see from the pictorial representatitime phases are elongated and somewhat interconnected.
This detail potentially introduces new information into &&culations described below which must otherwise assume
idealized hard segment inclusions.

4.2.1.4 Continuum, FE, or Macroscale
4.2.1.4.1. FE-RVE Macroscale

The idea of a representative volume of material has beemdréar decades and predates FE codes. There is a
Wikipedia entry on “Representative elementary volumet thiges a reference to a 1963 paper by Hill (1963). Work
in the 1920s on estimating the elastic modulus of an aggedmataveraging elastic stiffnesses (Voigt, 1928), or
by averaging elastic compliances (Reuss, 1929), is alstectto the idea of a representative volume of material.
Researchers and engineers have been studying the mictastrof materials under a microscope (and X-ray, and
MCT scan, etc.) for decades (Boyce et al., 2001; Schrad@g)2a8nd using that insight to help determine material
properties based on constituent behaviors. With the adfdfiE software, researchers have been studying the effect
of microstructure, or morphology, by using RVEs (sometirnalied the RUC representative unit cell) for the last
several decades.

Our work using MD tools has given us some insight into the raaatal behavior of the soft and hard segments,
and the morphology of the material. Figure 43 shows how wecoamert the morphology, as determined from DPD,
into an FE-RVE. With the RVE, and some appropriate periodigriglary conditions, we can subject the FE-RVE
model to one or more types of loading (uniaxial tension, #ngompression, etc.) (Oancea et al., 2016). If we have
high confidence in the soft and hard segment material pregethe RVE macro response ought to match some
traditional macro test data. Following the lead of Grujietcal. (2010, 2011) we will compare to the test data from
Yi et al. (2006). Alternatively, we might use the materiabperties determined from the MD simulation as an initial
guess and perform some parametric optimization to deterthimfinal constituent material behaviors. Grujicic et al.
(2010, 2011) proposed that the soft segment material shmittbnlinearly elastic (hyperelastic), and that the hard
segment should be viewed as elasto-perfectly-plasticy @ls® gave specific material model parameters for the soft
and hard segments.

4.2.1.4.2. Parametric Optimization Using the FE-RVE

While the Gruijicic paper concluded that the soft segmentishbe modeled as hyperelastic and the hard segment
as elasto-perfectly-plastic, there is plenty of room tauarthe merits of that conclusion. For instance, polyurea has

—
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FIG. 43: Conversion of mesoscale morphology into FE mesh
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been studied extensively because of its ability to attenslabck waves from blasts (Gruijicic et al., 2010, 2011), and
macro level testing has shown the material to be very ratsitben(Yi et al., 2006). At this point in time, the MD
and mesoscale tools provide insight into the constituelnabier, though they are perhaps open to interpretation. We
still need to use all available information, including tlesttdata from the macroscale, to guide us in developing the
best material representation. We also make use of an idestfre papers by Qi and Boyce (2004, 2005), “Based on
the concept of amplified strain, Mullins and Tobin (1957)gested that the softening in rubber vulcanizates was due
to the decrease of volume fraction of the hard domains witiirstas a result of conversion of the hard domains to
the soft domains.” For the current work, we will follow theat of Gruijicic for the constituent behaviors, with the
small addition that we will allow the elastic-plastic belmwof the hard segment to exhibit strain softening. Within
this context, we then perform a parametric optimizatiomgghe general purpose Isight optimization tool to best
define the underlying constituent material models. Thenogttion tools drive many Abaqus runs of the RVE model,
with the material parameters of the soft and hard segmentsiradesign variables. The RVE stress-strain result is
compared to the macrolevel test data, and the differencsgeid to construct our objective function for minimization.
The result of this optimization process is shown in Fig. 4de RVE response matches the test data quite well. The
resulting material parameters for the soft and hard segreatalso shown in Fig. 44.

The beauty of the FE-RVE is that it captures the morpholodii®mmicrostructure with good accuracy and allows
us to investigate “what-if” scenarios with the underlyiranstituent behaviors. The downside to the FE-RVE is that
it is still not useful for performing component FE analyses.

4.2.1.4.3. Homogenization to Macroscale

Using the RVE, with its accurate portrayal of the microstoue, we can study how the constituent behaviors influence
the macro response. But in order to perform FEA at the compudeeel it would be difficult to use the RVE. We
can approximate the macro behavior by analytical mean fighldyenization (MFH) methods. There has been over a
decade of work putting MFH methods into FE frameworks. Régghe Abaqus software has been extended natively
to include a few types of mean field homogenization. A conmtpasiaterial can have one level of recursion, defining
itself through a hominization of other materials, with aweyd interface such as shown in Fig. 45.

The above example says that the material named polyureads omof two constituents; the homogenization
method is Mori-Tanaka, and the inclusion shape is proldlipgeidal). Hopefully, one can see the similarity with the
earlier RVE approach. In each approach we define the coastifwoperties explicitly. In the RVE, the microstructure
is defined explicitly with individual elements. In the MFH@pach, the microstructure is approximated by saying that
the hard segment inclusion is ellipsoidal in shape and majescertain volume fraction (in the case of our polyurea,
the volume fraction is 0.287). There are a number of studidke literature that compare the RVE, with its exact
microstructure depiction, to various mean field homogediunaechniques, for example, Klusemann and Svendsen
(2010). The mean field homogenization based material matehow be used in component level simulations. A
future activity is to study the relative performance of thigproach.

4.2.1.4.4. Developing a Macroscale PRF Model

So far, we have gained insight into the macrolevel behafipotyurea from testing and the microlevel from MD level
investigations. Following Grujicic, we have postulatedttthe soft segment and hard segment constituents might be
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FIG. 44: Results of parametric optimization of the soft and hard sagrRE-RVE model [experimental data: Yi et al. (2006)]
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FIG. 45: Definition of the polyurea material by mean field homogerndarafexperimental data: Yi et al. (2006)]

modeled as hyperelastic and elasto-plastic, respectiéyk with both an FE-RVE and mean field homogenization
have established some reasonable constituent material pacmeters. For practical applications, we may want to
have a traditional continuum-level material model. Grigjgpeaks to this, but says “Derivation of such a homogenized
material constitutive model is beyond the scope of the prteserk” (Gruijicic et al., 2011).

As we look at possible native continuum-level material nisde Abaqus, a likely candidate for modeling the
combination of behaviors we see in polyurea is the pardileblogical framework (PRF) model. This material model
is intended for polymers and is a two- or more network modat thay include nonlinear elasticity, plasticity, and
viscoelasticity in the various networks (Fig. 46).

The depiction shown here of the PRF model shows two netwotke-zeroth network is elastic-plastic and the
first network is elastic (in general the additional netwomkay also be viscoelastic, but in this case we will set the
viscous parameters to near zero. Our target material medelcombination of an elasto-plastic network, and an
elastic network. We do some basic math on the initial slopb@fttress-strain curve to determine the total elasticity
(input as *Hyperelastic), and the network 0 and network Itrioutions to that total. In the Abaqus key word line we
have

*VISCOELASTIC , NONLINEAR , NETWORKID = 1, SRATIO = s1,LAW = strain

The SRATIO value of s1 gives that fraction of the total el@stiin network 1. Using the incompressible relation,

E =6*C10, the network 1 contribution to the initial stiffreeis 9 MPa. Since the total stiffnessis65 MPa, then the
network O contribution must be about 56 MPa. SRATIO is the®/65 = ~ 0.14. Our first guess at the plasticity
yield stress is 5 MPa. After a bit of fine-tuning of the paraangtwe can achieve a PRF macromodel that matches
the polyurea test data quite well; see Fig. 47.

4.2.1.5 Summary and Next Steps

Researchers have studied the microstructure of mateoratietades to get a better understanding of the macrolevel
mechanical properties. There is a growing capability usitagnistic modeling of materials to study both the mi-
crostructure and constituent behaviors from first priresplrhis paper has taken an earlier work on polyurea, regpeate

FIG. 46: Target PRF material model, two networks
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some aspects of that work, and extended the story. We hawendimw to use MD simulations to investigate the mi-
crostructure and the constituent behavior. Then we hawarshow one can bridge the gap between the microlevel
and macrolevel. Using an FE-RVE, we can bridge the gap andrEdeols to further investigate and optimize the
constituent behavior. The FE-RVE captures the morpholdglgeomicrostructure with good accuracy and allows us
to investigate “what-if” scenarios with the underlying stituent behaviors. The downside to the FE-RVE is that
it is still not useful for performing component FE analys@sie can also use FE-based mean field homogenization
methods to bridge the gap between micro to macro levels.yfheai MFH methods idealize the inclusions as simple
geometries such as spheres, ellipsoids, etc., so detaftadiation about microstructure may be lost. We imaginé tha
if the actual microstructure is relatively simple, thenthmgrs the MFH technique can render reasonable accuracy and
reasonable computational performance for component &valyses. For the polyurea, the hard segment inclusion
was of a relatively simple geometry, so the MFH has been sgtige

Future work will include studying the performance of the MEdhnique for component FE simulations, and
may include revisiting the original assumption about thastibuent behavior. Since we know that polyurea is a
highly rate-sensitive material, it would seem natural tpmuse that one or both of the constituents contribute a
viscous behavior. It would be quite interesting to see if @e postulate some viscous contribution at the constituent
level and repeat the process outlined in this paper, theshating to match the macrolevel testing that shows the
rate-sensitive behavior.

4.2.2 Polymer-Based Laminate Composites

Composite materials are widely used in a various range afstis for their relevant stiffness and strength perfor-
mances. Polymer-based composites typically include §jlzess (glass fiber reinforced polymers—GFRPS) or carbon
fibers (carbon fiber reinforced polymers—CFRPs). Recenfagtipns in the aerospace industry make heavy use of
CFRPs for structural components. A variety of manufactutecthniques are used, including hand-layup processes
for prototypes and automatic process such as AFP, ATL, anill A& production. The different processes can lead
to significant differences in the performances due to thditguend homogeneity of the microstructure created for
each layer. Numerous studies have been conducted on cdmpagtiscale modeling and simulation. In fact, mi-
crostructure of composites can be easily modeled and mbehiit first sight. Throughout the 1970s, the emergence
of composites led to various studies to propose homogéniizatethods using the Eshelby inclusion solution. The
Mori-Tanaka model or composites cylindrical assembly (§QAashin, 1983) have been suggested and considers
the microstructure as a resin material containing an immtugpherical or cylindrical). Those analytical modelfeof

the ability to be immediate with no simulation delay (FEM ggation/solver computation).

However, such analytical model does not provide stressllision between resin and inclusion, which makes it
difficult to identify the strength properties of the micnasiture. FE-based RVESs are then suggested with representa-
tion based on the real microstructure.

The idealization can be then used in a finite element study. @8). The hexagonal packing model is the most
used for the orthotropic transverse behavior (E2 = E3). SEERVE provides results in agreement with the Eshelby
inclusion analytical approach for homogenized propedias the stress distribution between fiber and resin and the
interface between fiber and resin. For strength propesiesss distribution between fiber and resin is highly smesit
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FIG. 48: View of idealization of microstructure for hexagonal, sgpiand diamond microstructures

to the distance between fibers. Therefore, advanced madslirequired to take into account the variability of the
distance between fibers due to real arrangement. Variodgestexist to model the microstructure using random
algorithms to distribute the fibers into the space. One okthechallenges is the ability to randomly distribute the
fibers with a high volume fraction of fibers (usually varyirmgrh 50% to 65%). This type of modeling challenge
has been partially responded to by several studies (Badtadl, 2014; Omairey et al., 2019). Using the advanced
modeling capabilities of theDEXPERIENCE Platform, the random distribution of fibers otrex microstructure is
carefully considered. The fiber diameter for carbon fibeebisut 5 pm. A baseline RVE model distributes the fibers
in the volume randomly. This baseline defines a referenesstistribution between fibers and resin. According to
the literature, it has been observed that the fiber diametees slightly. The diameter variation is used to update
the random RVE. Stress concentration changes accordvighgover, regarding the supplier, the shape of the fibers
can be different with an elliptic section. This leads to angigant variation of the stress concentration and failure
propagation. All three types of structures are shown in £8g.

Both the analytical model and the FE-RVE models use matpraerties which are defined from lower-scale
studies (for example, for the resin at nanoscale using ddeBtudio) or from physical tests. On the other hand, for
the fiber, physical tests are mostly impossible for a ceramount of properties (transverse stiffness and strength,

(@) (b) (c)
FIG. 49: Automatically generated fiber arrangements—diameter hagedorientations. (a) Baseline with single fiber diameter
(b) variation with variable fiber diameter; (c) variationtivelliptic shape orientation.
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in-plane shear stiffness,strength, etc.). For advancedigtions of the behavior of composite structure, multesca
must be considered for analysis. This is the case for comipeestrength which is due to the buckling of fibers due to
the initial misalignment (Mechin et al., 2019, 2020). Thigidh misalignment is due to the curing process leading to
different thermal expansion of material (fiber and resirthatcooling step. The initial misalignment accelerates the
buckling of fibers, but the buckling is contained by the reJime stiffer the resin, the later the buckling occurs. Such
real defect can be modeled in RVE microstructure. The usevéf omplex modeling helps to accurately identify
the effect of the curing process and the residual propg$ies et al., 2017).

4.2.3 Defects and Damage in Composite Laminates

Composite materials exhibit a significantly higher energgaaption capacity per unit weight than metallic struc-
tures. This has contributed to the increased adoption ofpcsite materials as energy absorbers in the aerospace,
automotive, and railway industries. The ability to simalatcurately the crushing response of composites (and their
energy absorption mechanisms) can reduce significantlgribguct development cycle and cost, avoiding laborious
and costly experimental testing. The work in Sokolinsky le{(2011) describes a physics-based Abaqus/Explicit
simulation of a corrugated carbon—epoxy fabric compodégepsubject to quasistatic crushing. The corrugated plate
was developed and tested by the CMH-17 Crashworthinessikgp€roup (CMH-17, 2008). The objective of the
simulation was to predict the specific energy absorptiorA)SE the material using a microstructure informed finite
element model that accounts for both delamination andanepfailure of fabric-reinforced composite plies. The Ply-
Fabric model in Abaqus (a structured-based constitutivdehimr woven reinforced composites) was used to model
the in-plane response of the fabric-reinforced plies, ardtrfaced-based cohesive contact capability in Abagas wa
used to describe the delamination response of the compaiaite

Sokolinsky et al. (2011) shows different views of the defedhshape of the corrugated plate at the end of the
simulation. The simulation reproduced important charéstte features of the crushing response of woven compos-
ites, such as the frond formation in the composite plateptbpagation of the main delamination through the plate,
and the accumulation of debris between the loading rig aactctimposite plate. The images in Fig. 50 show very
good qualitative correlation between the experimentalranderical results.

(@) o (b)

FIG. 50: Different views of the deformed shapes of the corrugatedpasite plate. (a) Experimental result; (b) numerical resul
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Figure 51 shows a comparison of the load-displacement suB@th the peak and average crush forces were
predicted accurately. A comparison between the experahent numerically predicted specific energy absorption
(SEA) of the corrugated plate is also shown in Fig. 51, anavsdmod agreement, especially in the second half of the
crushing process. The largest discrepancy between thiésrissobserved at the early loading stages when the chamfer
part of the plate is crushed. Taking into consideration thieeenely complicated nature of the crushing process, the
overall correspondence between the measured and sim@&t#durves is judged to be acceptable.

The results of the Abaqus/Explicit simulations show vergpdguantitative and qualitative agreement with the
experimental data, thus demonstrating that the methogi@ad tools are applicable for realistic crush simulations
of composite structures. This enables substitution oflg@stperimental testing with numerical simulation for the
crashworthiness design of composites.

The LaRCO05 criterion is one of the overall top rated damagera by the World Wide Failure Exercise via
blind prediction benchmarks for unidirectional fiber-feirted composites (Kaddour and Hinton, 2013). LaRCO05 is
a micromechanics-based damage initiation criterion agexl by Pinho et al. (2012) which distinguishes between
many crucial damage mechanisms, including matrix cracKibgr kinking, fiber splitting, and fiber tension. The
matrix cracking happens during matrix compression anddaan$he criterion includes a built-in search for the catic
fracture plane. The fiber compression mode includes stogatians to the fiber kinking plane and misalignment
frame. Failure evaluation is then based on the kink-barm#tion, traction computations, and fracture plane search
(Fig. 52).

The LaRCO05 damage criterion was implemented in Abaqusdatanand can be applied generally to polymer-
matrix fiber-reinforced composites for damage evaluatimed for fiber-reinforced composite lamina similar to the
Hashin criterion, or combined with crack propagation tedbgies such as XFEM. Gouskos and lannucci (2018)
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FIG. 51: Comparison between experimental and numerically predliictad-displacement curves (left), and specific energy ab-
sorption (right)
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FIG. 52: Mircomechanics damage model for kink-band formation
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used the LaRCO05 damage criteria in Abaqus with XFEM for cgxcipagation for a compact tension test of noncrimp
fabric laminates. A promising agreement was found in thd4diaplacement curve and initiation toughness between
the experimental results and simulation using Abaqus LaR@ilure criteria.

4.3 Metals
4.3.1 Lattice Design

New manufacturing techniques such as additive manufactailow the creation of new sorts of structures using
metamaterials such as lattices. These lattices can beeibmth in terms of their topology and their infill fraction
to yield structures with more optimal combinations of weighd mechanical response than could be realized using
traditional manufacturing methods. Not only can latticesubed to reduce structural weight, but they can be used in
applications such as shock absorption and energy dissipaibration damping, and heat exchange due to their large
surface area.

Due to their complex structure, in many cases it is not tidetto discretely model the detailed geometry of
lattice infill in an engineering structure. In such casesRME provides a means to predict an effective response for
the lattice, both in terms of linear stiffness and potehtial terms of nonlinear behavior.

The plugin provides a variety of methods to generate cettdtice meshes parametrically, including body-
centered lattices, as well as functionality for definingi¢atconnectivity to create a beam-type lattice model. Tigro
the use of these sorts of tools and the homogenization dajeabof the plugin, one can perform homogenization
calculations with lattices of varying infill fractions to emine a polynomial fit of the relationship between infill
fraction and effective elastic properties of the lattichisTrelationship can then be utilized in topological optation
workflows to design structures with optimal spatially-viagylattice infill fraction (Fig. 53).

Lattice FE-RVE models are able to leverage a broad array pfimear physics modeling capabilities in the
Abaqus finite element solver. One notable example is usimgdhtact modeling capabilities of Abaqus to predict the
crush behavior of lattices. In periodic lattice models, onest account for both self-contact within a single unit cell
as well as periodic contact between adjacent unit cells.dpying surface facets from a unit cell to adjacent unit cell
locations and using the FE-RVE plugin to periodically coaist the motion of the surface elements to the original
unit cell, it is possible to account for this periodic corttabile only actually modeling a single unit cell of the lati
(Fig. 54). Such models are capable of accounting for thfestifg effect that self-contact has on lattice response as a
lattice is crushed.

In addition to lattices filling space in three dimensionssitalso possible to use FE-RVE simulation to pre-
dict the section stiffness properties of shell-type stices with lattice-type geometries (Fig. 55). Structureshsas
lattice-core panels, corrugated panels, or even strigtueh as textile composites exhibit in-plane periodicity b
lack the in-plane uniformity assumed by laminated plat®theThrough the use of appropriate solid-to-shell type
periodic boundary conditions, these structures can bedgieglly subjected to shell-type deformations which will
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yield the so-called “ABD” matrix relating shell section t@s and moments to the effective membrane strains and
shell curvatures so that these structures can be modelegl sisiple shell elements at larger scales.

4.3.2 Polycrystalline Metals

Advanced high strength steel (AHSS) is widely used in themotive industry for vehicle lightweighting for their
high strength and ductility due to their multiphase micrestures. As a common class of AHSS, dual phase (DP)
steels are composed of relatively soft ferrite and reltikard martensite: the martensite enhances the strengtle of
material but unfortunately also makes the microstructoin@mogeneous, with a resulting strain partitioning betwee
the two phases (Qin et al., 2018). It is widely agreed thattleehanical properties depend on the stress state, the
volume fraction, distribution, morphology, and the straardening behaviors of the phases, but research continues t
identify which mechanisms dominate as a function of strese s

FE-RVE modeling provides micromechanics insight as it é&mathe inspection of local stresses, strains, and po-
tentially damage mechanisms in the material during defaomarwo-dimensional microscopic images (Fig. 56) can
be used to reconstruct the microstructure directly in Alsagging spline curves to ensure smooth phase boundaries
(Fig. 57).

Generalized plane strain elements in Abaqus which usearderpoint/points to control the out-of-plane behavior
can be used to model plane stress on average, but allows reoozeof-plane stress at each individual node. A
calibration exercise is conducted using only single umibténsion experimental data to calibrate ferrite properti
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FIG. 56: Left: Optical micrograph in the rolling plane (DP600 — fégrbright regions martensite dark regions). Right: EBSD map
of the rolling plane (no preferred orientation) (reprinfezim Qin et al., 2018, with permission from Elsevier, Cogyti 2018).
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FIG. 57: RVE models with different approximate mesh sizes as notelanupper corners (reprinted from Qin et al., 2018, with
permission from Elsevier, Copyright 2018)

within experimental uncertainty. The RVE is then able todiremultiaxial macroscopic behavior of the multiphase
material with reasonable accuracy (Fig. 58).

Use of RVE technology provides additional insights in therall deformation mechanisms. For example, the
highest local strains are developed at closely situatetiemsite particles; shear bands become clearer with inogeas
shear loading connecting highly localized deformationdrrife between closely packed martensite particles, indi-
cating the arrangement of the martensite particles imgagtsficantly the overall localization behavior (Fig. 59).

Nevertheless, quantitative predictions of evolving mianmage and impact on macroscale behavior remain an
art with plenty of research going on. Prediction of ultimsteength and strain remains largely out of scope of RVE
technology as typically necking behavior is involved atitegspecimen scales. A calibration exercise at macroscale
of a Swift (power) law accomplishes the mission (Qin et @1&) as shown in Fig. 60.

4.3.3 Grain Microstructure from Phase Field

The Materials Studio Collection (MSC) in Pipeline Pilot feaset of protocols that support modeling of metal alloys.
These protocols target prediction of stable phases, piep@f random alloys, creation of CALPHAD databases, and
phase-field modeling.
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strain (reprinted from Qin et al., 2018, with permissiomir&lsevier, Copyright 2018)

Prediction of stable low temperature phases is done bydittie formation energy to a cluster expansion (CE)
using the ATAT toolset (van de Walle et al., 2002a,b). Therfation energies for the fitted structures are calculated
using the MS CASTEP DFT tool. The cluster expansion is exddnahtil the energy convergence criteria are met and
the convex hull predicted by the CE agrees with the one piedliesing DFT data. Multiple CEs that use different
base lattices can be combined into a single convex hull.drAlkNi example in Fig. 61(a), because of their larger
size, the known AJNi, and AgNi structures are not in the predicted convex hull. Sincerthmber of structures
rapidly increases with the number of atoms, it is not possiblinclude phases with large unit cells. Phases with
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special lattice structures are also unlikely to show up éxdbnvex hull; only special structures that can be accessed
by relaxing a regular lattice structure can be found.

A set of stable structures can be used to create a thermodtynamdel in the form of a CALPHAD database.
The protocol is built around the ATAT toolset, and in partaauthe sqs2tdb CALPHAD database fitting tool (van
de Walle et al., 2017). A set of special quasirandom stresty&QSs) is created and used as a composition grid
for each phase. Formation energy and optionally vibratifnee energy for each structure is then evaluated and
fitted to a CALPHAD model. There are two options when evahgthe energies: either use the cluster expansions
created during the convex hull prediction, or carry out getsynoptimization using the CASTEP DFT tool. The use
of the cluster expansions as a source of energies supplestinstant energies but with a lower accuracy compared
to the more expensive DFT optimized energies. Figure 61{byvs the phase diagram generated from the Al-Ni
CALPHAD database produced by the protocol. The Ni-rich sitihe phase diagram agrees well with existing phase
diagrams, while the description of the Al-rich side suffisesn the missing AINi, and AkNi phases.

Microstructure prediction for metal alloys can be inveategl using a phase-field method. The MSC collection
currently supplies two phase-field protocols: one for sfitidtion, and one for grain growth. General parameters such
as grid size and temperature are defined through the pratgmal parameters. Component- and phase-dependent
properties such as interface mobility and composition peified in a study table. The thermodynamic input for
the alloy can be supplied either as a linearized phase dragrahrough a CALPHAD database. The protocol can
use either ThermoCalc or OpenCALPHAD as a thermodynaméfexte to a CALPHAD database. The database
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can come either from external sources or from a prior caliculavith the Materials Studio Collection protocol.
The ThermoCalc interface also offers an option of using ailitpllatabase, which supplies diffusion parameters.
The simulated microstructure is returned as a trajectocya@nt with field data, while the numerical properties are
returned in a study table. The final microstructure can aéseeburned in Abaqus format for further analysis using
SIMULIA tools; see Fig. 62(c).

Figure 62 shows a phase-field modeling example of periteotidification of Fe—C. In this example liquid Fe—C
with a 0.012 mole fraction of carbon is cooled down, firstdiffing into 5-ferrite. As it passes into the peritectic
regime,y-austenite nucleation sites start to nucleate and grovgdhmliquid-ferrite interface. In Fig. 62 a directional
dendrite growth is modeled with an imposed temperatureignadlong the growth direction. Initially onl§-ferrite
is growing, enriching the melt with carbon. As the tempematit the base of the dendrite drops below the peritectic
temperaturey-austenite begins to nucleate and grow up along the surfate diquid-ferrite interface consuming
both the ferrite and liquid phase. Once the ferrite surfaaelieen covered by austenite, the liquid-ferrite interface
no longer available and the austenite growth in this arearbes diffusion limited. The results from the calculations
agree well with both experimental findings (Phelan, 2008) @ther simulations (Tiaden, 1999).

4.3.4 Metallurgical Solid Phase Transformation

The input needed for such a sophisticated model is propatfipcomplex. The user systematically defines all possi-
ble transformations that can take place via a parent-@lgaradigm (e.g., austenite to martensite); the temperatu
conditions when transformations can occur with associtited-temperature-transformation (TTT) diagrams, Fig.
63(a); and whether the transformations are reversibl&giinal, or nondiffusional. An example of the algorithm
leveraged to predict martensitic transformations is shiowig. 63(b).

The reliability of additively manufactured (AM) parts istef less than desirable as they suffer from manufac-
turing defects. Material multiscale techniques as implat@@ in Abaqus in a generic metallurgical phase transfor-
mation framework for metal alloys provide valuable insgyahd can help the practitioner with assessing the success
of a quality print. The multiscale process includes evaduet of phase transformations from raw materials (e.qg.,
powders) via melting/solidification followed by metallizgl solid-state phase transformations associated wtitleei

@)

FIG. 62: (a) Ferrite dentrite growing in a thermal gradient, follalW®y peritectic austenite growth along the liquid-solickifidce.
The red sections are carbon rich. (b) Peritectic austerutgty along the surface of ferrite grains. (c) 3D micro stowe in Abaqus
format.
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FIG. 63: (a) TTT diagram input into the metallurgical phase transfation framework (Abaqus, 2021); (b) algorithm to model
martensitic transformations (reprinted from Zhang et2019a, with permission from Elsevier, Copyright 2019)

rapid heating or cooling events in typical 3D printing seaees or slower-rate temperature evolutions associatéd wit
heat treatment applications (Zhang et al., 2019a).

Figure 64 provides a quick overview of the multiscale nucerpredictions against experimental data starting
from melt pool size/shape predictions, unfused powdersfo/olume fractions of solid phases resulting from the
highly complex thermal histories, and grain thickness etioh after heat treatment.

Grain morphology is critical to overall prediction of matdmproperties of additively manufactured parts. While
Cellular Automata methods have been explored succesgfighgdicting grain aspect ratios and lamellar thicknesses
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FIG. 64: Overview of numerical predictions across multiple scdfiesn melt pool sizes to volume fraction of the various sdieti
phases to metal grain sizes for a Ti-6Al-4V alloy (reprinfezin Zhang et al., 2019a, with permission from Elsevier, @aght
2019)
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the expense of the methods to cover a large enough area togeroglsonable statistical output in multilayer prints
is still reserved for the researchers rather than for thetpianers. Figure 65(a) (Zhang et al., 2019b) shows an
EBSD-measurex lamellar thickness which we take as input in the computafionodel. Figure 65(b) (Abaqus,
2021) compiles from experimental solidification maps gsiie and aspect ratio predictions, thermal gradieand
solidification rateR space.

Can one predict material properties for a printed speciraegely based on material multiscale methods? To
the authors’ knowledge, while reasonable progress has ineele worldwide, a pure virtual highly predictive tool
chain is not quite achievable. Instead we have relied inghidy on micromechanics informed phenomenological
models that predict Young modulus, yield stress, and utémstrength based on volume fractions of solid phases and
grain sizes/thicknesses. Combining all these micromeachaeces of information we have calibrated from those a
Ramberg—Osgood plasticity model which predicts yield darehgth behavior reasonably well for both as printed and
heat treated specimens (Fig. 66).
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FIG. 65: (a) Histogram of measured thickness from image processing of EBSD (reprinted fromrighet al., 2019b, with
permission from Elsevier, Copyright 2019). (b) Solidificatmap for{3 grain morphology prediction (Abaqus, 2021).
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4.3.5 Metal Surface and Roughness Model for Electromagnetic Simulation

In Section 2.8.2 we described the concept of compact mode&fitiently model reflection and transmission from a
material setup by means of equivalent surface elementswithickness. In many applications, the field transmission
is actually of less (or no) interest compared to the reflecfiis is the case for dense or high conductivity materials
where, due to the skin effect, the electromagnetic field petes the structure only to a very small extent.

For these scenarios—encountered virtually in any midgstrcuit, filter, or antenna design—we developed the
lossy metal and the general surface impedance materiallmddese release the ideal perfect electric conductor as-
sumption in favor of a more realistic modeling of metal aratléo a more accurate simulation result for S-parameters,
circuit insertion losses (Fig. 67) (Tao and Scharf, 20163y factor, and radiation patterns.

The material model for metals can either be described doallyt (when conductivity is given) or imported from
measurement and previous simulations. To smoothen measntenoise and ensure causality and passivity of the
final model a vector fitting algorithm is applied as a prepssagg step.

With the increasing application frequency (e.g., high hatson radar, 5G, electro-optical devices) more complex
models have to be considered which also take the metal sudaghness into account.

There are some classical approaches to deal with metal nesghsuch as the Hammerstad—Jensen (Hammerstad
and Jensen, 1980) and the Huray snowball formulation (H@@39), which are also available in our material module.

But even if widely used, the underlying hypotheses for thrasdels are not always met in current applications.
This is true especially for the operating frequency and thehness root mean square, resulting in nonrealistic
saturation effects.

To overcome these limitations we adopted a modern fornmuathe so-called gradient model (Gold and Helm-
reich, 2017). This senianalytical model starts from a sasth representation of the rough surface and still only
requires a few input parameters which are generally fouttidérvendor datasheet.

The obtained surface impedance result is guaranteed taisal@nd passive. In comparison to the nonroughness
case it shows a change in both the real and imaginary parteointpedance. The former is responsible for the
increased losses, the latter for a resonance frequendy Bbih effects have been inspected and confirmed from
measurement up to the 100 GHz range (Gold and Helmreich,)2017

4.4 Rock/Porous Media Characterization

As a major application of porous media (PM) fluid flow simudati digital rock applications have been developed
over the past years based on X-ray microtomography (micy@@adging technology that allows capturing pore-scale
3D structures of reservoir rocks at the micrometer scalewRimulation methods, such as the lattice Boltzmann
method (LBM) for single-phase and multiphase flow, have lened (Jerauld et al., 2017) a valuable addition to
conventional laboratory rock characterization, in terrh8roe, cost, and to improve planning, such as enhanced oil
recovery scenario analysis. A multiscale fluid flow workfloBM extension, as described in Section 2.7, is needed
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FIG. 67: Printed loadboard design and insertion loss (based on Séegnd McMorrow, 2011; based on Moreira et al., 2006)
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to enable fluid flow simulation in cases of genuine multisgalee structure, as found in certain rocks. Here, we show
two examples of such cases: a carbonate rock, and a shale rock

The application of this multiscale workflow to an Indianadistone carbonate sample is detailed in Fager et al.
(2021); here we only present a summary of the main resutst, Bismall subvolume of the microCT model is selected
in order to compare with a registered model. A registeredehisda fully resolved dual porosity model, in this case
constructed by scaling the microCT model by a factor of 10wl @eplacing the PM regions by copies of a 3D PM
model, using periodic mirror boundaries that enforce fatiiectivity of the PM pore structure. We show the images
in Fig. 68, bottom from left to right: standard single-sc@le PM regions), registered-synthetic, registered-coaifo
and multiscale-PM confocal porosity, where syntheticfooal correspond to two choices of possible 3D PM models
used in the PM regions. The simulated fluid flow property is sewail capillary pressure imbibition curve, shown in
Fig. 68 (top), where our multiscale results show agreeméhttive fully resolved registered models, and all of them
are quite different from the single-scale result that dasdake into account the additional connectivity for fluidilo
provided by the ignored PM regions, considered impermesdiid in this case.

Next, a larger volume for this carbonate sample is used fimtiibition simulation. Registered models become
impractical at this point, and only results from singlelecand multiscale simulation are shown in Fig. 69, where
again we observe that the addition of the PM connectivityplsathe injected water to better mobilize the oil in the
resolvable pores. These results are in agreement with fheriexental measure value 6f, = 62% atP. = 0. We
also show separately the pore/PM contributions to the &@lration and capture in Fig. 69 (insets) four sequential
time snapshots in the water/oil displacement, water beijagied from the bottom.

A second illustration of our multiscale digital rock work#ias to predict shale matrix permeability (Zhang et al.,
2020), that combines first-principles molecular dynamiB) and LBM multiscale flow simulations, as illustrated
in Fig. 70. Inputs are molecular models for the organic sbaigent, shale 3D microscopy images, fluid composition,
pressure, and temperature. By complementing the flow imtlagé resolved pore regions with flow in the unresolved
pore organic regions, also referred to as PM regions, theathestimation of the shale matrix permeability can be
improved.

The molecular modeling is summarized in Fig. 71. A simulati@x containing a number of kerogen molecules
is used to construct an organic matter condensed struttyimulating the NPT ensemble using MD. Density and
porosity of the condensed kerogen structure obtained anpamble with published data. Gas adsorption isotherms
of methane in these kerogen structures are computed atetfifferessure and temperature conditions using the grand
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FIG. 68: Carbonate subvolume multiscale simulation and compatissingle-scale and registered models
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FIG. 70: Multiscale workflow combines LBM flow with molecular simuiats for unresolved pore permeability in PM regions
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FIG. 71: Molecular simulation of Kerogen structure, methane adsmmpand diffusion coefficient

canonical Monte Carlo (GCMC) method on the uVT ensembleeBas the configurations obtained from the GCMC
simulation, a MD simulation in the NVE ensemble is used to pota the self-diffusion coefficient of methane

through kerogen from the resulting trajectories.
Finally, as illustrated in Fig. 72 (left), considering sealerealizations and model size convergence, an effec-

tive kerogen permeability to methane is computed from thiedéfusion coefficient and used as input in a LBM
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FIG. 72: Diffusion coefficient (left) and overall shale permealilitight) simulation results from multiscale LBM

multiscale flow simulation model to predict overall shaletrixapermeability; see Fig. 72 (right). Results for the
overall shale sample permeability are more realistic whenodren permeability is included, which is only possible
by using a multiscale workflow.

4.5 Biological Tissue
4.5.1 Micromechanics Informed Biological Soft Tissue Modeling

Biological tissues are anisotropic. Collagen fibers areikgyedients in the structure of arteries. For the arterymas a
example, in the middle layer, they are arranged in two higfickstributed families with a small pitch and very little
dispersion in their orientations (i.e., they are aligneidegclose to the circumferential direction). By contrastthie
adventitial and intimal layers, the orientation of the agkn fibers is dispersed.

To model anisotropic tissues, phenomenological modelsraastructural approaches can be used. Phenomeno-
logical models describe macroscopic behavior but provieet fidelity for practical design applications. The mi-
crostructural approach determines the macroscopic maaiaesponse of the tissue from its underlying components
and provides higher fidelity to elucidate structure and fiamcrelations. The Lanir and Sacks microstructural con-
stitutive model (Lanir, 1983; Sacks, 2003) is implementedbaqus which considers fiber recruitment and fiber
orientation in a fiber network embedded in an incompressitagix.

The total strain-energy potential is decomposed into aoetaf fibers consisting of fibers with varying waviness
and orientation and an incompressible matrix. We start withactual mechanical strain calculation for a single
fiber by undulated initial assumption and straightened bstch. The single fiber starts to transmit load after it
stretches beyond a certain straightened strain. Streakidated with linear elastic behavior when stretchedd@Gah
recruitment of straightened fibers with different wavinsssmodeled with a recruitment density distribution funatio
D which attributes to a nonlinear stress strain behavioe ftruitment density distribution function describes the
varying degrees of undulation of individual fibers and theegnble strain-energy potential is described as the sum of
individual strain energies weighted by the distributiorstafck strains. Last, the ensemble response is homogenized
to the tissue level by defining the network fiber strain enagthe sum of strain energy of fiber ensembles, weighted
by an orientation distribution functioR (Fig. 73).

This multiscale material model is implemented in Abaqusmiariant-based strain-energy potential user subrou-
tines (UANISOHYPERSTRAIN) (Kaul et al., 2014). The model can be used togeth#r Mullins effect to include
stress softening (damage) behavior, and viscoelastilgydiude rate effects. We define the strain-energy potentia
of an anisotropic hyperelastic material as a function ofd@r&rain and volume ratio. The component of strain is de-
fined by *ORIENTATION, where the fiber mean orientation infation comes in. Given the following inputs to the
multiscale material model—matrix as an incompressibleldeokean material, linear modulus of fiber, and param-
eters to describe fiber-recruitment distribution and filméentation distribution—we are now able to investigate th
macroscopic effects from microstructural properties. Weutated the suture stretch test and compared fiber orienta-
tion prediction to measurements from small-angle lightteciag (SALS) (Billiar and Sacks, 1997). Good agreement
was achieved about the reorientation of the preferred filbectibn towards the direction of stretch, and the amount
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FIG. 73: Implementation of Lanir and Sacks microstructural modat ttonsiders fiber recruitment and fiber orientation in a fiber
network embedded in an incompressible matrix in Abaqus
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FIG. 74: Simulation result of suture stretch test using the mictmstral model in good agreement with experimental measure-
ments

of increase in the degree of fiber alignment (Fig. 74). Theegrpentally determined mean preferred fiber direction
increased about 48°; the simulation predicted increasetdits with 12% differences (Waldman et al., 2002).

4.5.2 Skin Penetration Model at Molecular and Biological Tissue Scales

Skin barrier properties are essential in various fields séaech, in toxicology and risk assessment for preventiag th
uptake of harmful substances, in medical drug adminisinatia transdermal delivery, and in the design of cosmetic
products (Schwobel and Klamt, 201®).vivo andin vitro measurements are difficult to conduct; on the one hand
they are expensive and time consuming, and on the other hareladre ethical and regulatory reasons. A new area of
interest is the dermal penetration through variable sk#tesyis, which can be obtained by the COSMOplex method
in an efficient way (Klamt et al., 2019), not limited to the n@ skin, but including hydrated skin systems, systems
enriched by penetration enhancers, or even compromisadgg&iems (Schwobel and Klamt, 2019).

The mechanistic skin penetration model is constructed asaf parallel and serial resistors, bridging the micro-
scopic scale, with its three-dimensional interactions omadecular level, and the biological pathways on a cellular
level at micrometer scale, as shown in Fig. 75. The cellutatesreflects cell shapes, cell and tissue sizes, and tor-
tuosities from layered structures of cells and corneocyesgecular interactions between the penetrant and matrice
present in the different parts of the skin (lipids, phosidt, proteins, plasma, stroma, etc.) are calculated by th
statistical thermodynamics method conductor-like sareemodel for realistic solvation (COSMO-RS) (Klamt et
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FIG. 75: Biophysical tissue model of the pathways involved in thengb&netration process (left) and biochemical matrices
involved (right), with particular partitioning and diffisn related parameters predicted at the molecular scale@$MO-RS
therein

al., 1998). The particular matrices are shown on the rigimehside of Fig. 75, e.gstratum corneuntipid struc-
ture, cornified envelope, and phospholipid membranes ¢f aethe viable epidermis, plus mostly agueous media
in corneocytes, cell plasma, and the interstitial spacereMo detail, permeabilities related to matrix:water parti
tion coefficients and matrix-specific diffusion coefficieare calculated systematically by the efficient COSMOperm
method (Schwobel et al., 2020), capable of accountingdoall microstructures, with calculational times of a few
minutes despite its subatomistic nature at a quantum claéfeiel. The extended model in Fig. 75 contains the der-
mis and subcutaneous compartment in addition to the otigiodel. Here, absorption by the collagen fiber matrix
is predicted by partition coefficients to structural progeby protonation state-specific COSMOnoments (Bitter-
mann et al., 2018), corrected by the slightly lower affimitid typical organic molecules to collagen as compared to
structural proteins in muscles (Endo et al., 2012). Gegdtlat. (2015) showed that COSMO-RS is the most predictive
method to obtain the partitioning into storage lipids, esqley for complex compounds. Storage lipids are present
abundantly in white adipocytes of the subcutis, and arevaeleto describe the controlled release of drugs injected
subcutaneously.

Formulation related vehicle effects are directly accodrite via COSMO-RS ? = 0.94), i.e., the influence
of the topically applied formulation containing the actimgredient, which can alter the skin penetration rate by
several orders of magnitude. Diffusion coefficient$ £ 0.82) and free energies related to partitioningy £ 0.94)
are validated against molecular dynamics simulations @bang et al., 2018), and the resulting skin penetration rate
against experimentédg,,(K,) values, with an accuracy ase= 0.33 for thestratum corneurmembrane alone, or
rmse= 0.72 for the humaex vivdin vitro epidermis membrane. Even more, the model is able to captareftects
of various skin types, e.g., different levels of hydratiarhe effect of skin penetration enhancers.

4.5.3 Modeling of lonic Channels in a Heart

Drugs can induce lethal arrhythmias in the heart, such aaderde pointes. The risk evaluation of a new compound
is costly and can take a long time, which hinders the devedopirof new drugs. Multiscale ionic channel modeling
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can help quickly access the cardiac toxicity of new and eqgstirugs. The input of the model is the drug-specific
current block from single-cell electrophysiology and thutput is the spatiotemporal activation profile and assediat
electrocardiogram. The mechanism of electrophysioldgibaormalities propagation from specific channel block-
age, via altered single-cell actin potentials and prolan@@& intervals, to the spontaneous emergence of ventricular
tachycardia in the form of torsades de pointes can be reyealé studied.

First, the electrophysiology of the cardiac tissue is repnéed by the spatiotemporal evolution of the transmem-
brane potentiad following the reaction-diffusion governing equation:

¢ = div(D - V0) + f°. (12)

For the flux termdiv(D - V), we assume an anisotropic conductiviiywith a fast contribution parallel to the
myocardial fiber direction and a slow contribution perpentir to it. For the source ternf®, we use different ionic
models for different cell types and introduce the sourcénasdnic current scaled by the membrane capacitance. To
solve the governing equation [Eqg. (12)] we exploit the steed similarities of the electrophysiological problemnthwi
a heat transfer problem with a nonlinear heat source in Ababnified FEA (Abaqus, 2021).

The ionic currents are functions of the membrane potentidiaaset of state variable$6). The state variables
obey ordinary differential equations as functions of teeémembrane potentidland their current valueg

Bi-ventricular model of a healthy 21-year-old, 50th petdenJ.S. male human heart is used for this study
(Fig. 76). The O'Hara—Rudy model is adopted for the vergricklls, and the Stewart model is adopted for the
Purkinje fiber network. The O’Hara—Rudy model is based ondlbci currents, for example, the L-type calcium
current/q,r,, the fast and late sodium currerts,, the calcium sodium and calcium potassium currdats, and
Icak, etc., and 39 state variables. The fast sodium curfgptis replaced with the ten Tusscher model to model
the propagation in tissue scale simulations. The modelrarpeterized to account for regional specificity for three
different ventricle cell types: epicardium, midwall, antecardium cells. The Stewart model enables self-exaitati
without external stimulus based on 14 ionic currents andt@@ wvariables. Figure 77 shows the single-cell action
potential for ventricular cardiomyocytes on the left andkimje fiber cells on the right. The ventricle cell model
distinguishes between endocardial, midwall, and epiedodills (Fig. 77).

The finite element model solves the governing equations sgrelizing the transmembrane potential as nodal
degrees of freedom, and the ionic currents and gating yesas internal variables. Tissue anisotropy is included in
the flux term by fiber definitions and choice of isotropic anéatmopic conductivities. For the source term, a body
flux subroutine incorporates the ionic currents in the sel@nent formulation. To account for regional specificity in
cell type, a series of Laplace problems are simulated ukimgentricular model with three sets of essential boundary
conditions at the epicardial and endocardial surfaces. Aurkinje fiber network is created to densely cover the
endocardium using the user element for modeling the digextgoverning equations. The effects of the drugs on
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FIG. 76: Finite element model of left and right ventricles with veefined mesh, three layers, and the Purkinje fiber network used
for multiscale modeling (reprinted from Sahli Costaballet2018, with permission from John Wiley & Sons, CopyrigBt.8)
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FIG. 77: Single-cell action potential for human ventricular cardimcytes and Purkinje fiber cells implemented in Abaqus
(reprinted from Sahli Costabal et al., 2018, with permisgrom John Wiley & Sons, Copyright 2018)

single-cell potentials are modeled by selectively blogkilhe ionic currents. The degree of block of individual ion
channels is measured experimentally and fitted to Hill-tygeations to estimate fractional block.

Figure 78 shows the excitation profiles and electrocardiogrecordings for baseline and drug treatment with
ranolazine and quinidine from the multiscale simulatidBisck arrows in the electrocardiograms indicate the time
points of the ten excitation profiles of each sequence. Cosapa baseline with a return to the resting state within
460 ms, drug treatment with ranolazine delays the repaitioz period and the return to the resting state takes 505
ms. In both cases, excitation is driven by the Purkinje ndtywith repeated, similar depolarization patterns every
1000 ms. Drug treatment with quinidine triggers a sequehcapid, widened irregular QRS complexes with varying
activation fronts from right to left, from base to apex, frégft to right, and from apex to base, before the heart returns
to its resting state at 4750 ms (Fig. 78).

5. MULTISCALE MATERIALS—OTHER APPLICATION AREAS

It is often the case that engineered components or compteupts are made of many materials interacting in the
complex multiphysics/multiscale sense. In this sectiorreugew a handful of such applications, as in the previous
section, without being able to reference our industriatrpes.
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FIG. 78: Excitation profiles and electrocardiogram recordings fasddine and drug treatment with ranolazine and quinidine
(reprinted from Sahli Costabal et al., 2018, with permisgrom John Wiley & Sons, Copyright 2018)
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5.1 Tire Reinforcements

Tires are highly complex, mission critical composite stuues that routinely operate in extreme environmental and
loading conditions. They must be engineered to satisfy @ lishof challenging, and often competing, design criteria
Criteria include good wear and handling characteristiex arange of surface types and weather conditions, surviv-
ability during extreme events, e.g., hitting a pothole, folling resistance for improved gas mileage, quiet opergti
and economically feasible manufacturing costs.

In the tire industry, the phrase “magic triangle” refershie tompeting goals of minimizing rolling resistance
while at the same time maximizing traction and wear (Flamigigal., 2011).

To remain competitive, tire manufacturers continually ifydnd improve their designs. They must meet the
constantly shifting requirements from the automobileskriand aircraft industries and from safety and environiadent
regulations that exist in a wide range of global economi@meg Tire engineers rely heavily on numerical simulations
to meet these design challenges.

SIMULIA is the recognized world leader in tire simulatiorckemology. We offer a wide range of advanced
material and friction models and specialized proceduresgfiickly generating complex tire models, including ply
reinforcement and tread designs. We support a wide rangeodelimg procedures for the manufacturing process,
footprint simulations, steady-state operating condgiflvoth implicit and explicit time integration), standingves,
hysteretic heat generation, extreme impact events, hiahioyy, and acoustics.

Most pneumatic tires are reinforced with embedded plieks bend beads, as illustrated in Fig. 79 (see https://
www.firestonecompleteautocare.com/blog/tires/whatshfferent-parts-of-a-tire/).

Abaqus offers a complete set of rebar modeling featuresaltat you to economically capture the small-scale
structural response of embedded reinforcements in a Eogle-model. These features include rebar layers in shell,
membrane, and surface elements. Solid elements are @adfoaising embedded element constraints. Rebar layers
have material properties that are independent of the hestagits and they can accurately capture shearing effects
that occur in large deformations. To simplify the modelingqess the ply geometry can be conveniently specified
with respect to the “green,” or uncured, tire configuratidhe tire lift equation provides mapping from the uncured
geometry to the cured geometry (see Fig. 80).

To improve tire wear characteristics, it is common practicadded silica to the rubber (Flanigan et al., 2011).
Embedded silica particles typically have a much higher nltihan the rubber matrix and thus increase the homog-
enized stiffness of the tire.

Figure 81 outlines a workflow in which a periodic unit cell aldober matrix filled with particles, modeling silica,
is used to generate a virtual global response of a filled niatesing the SIMULIA FE-RVE technology discussed in
Section 2.9. A Yeoh hyperelastic material with linear vislesticity is calibrated to the FE-RVE response data using
the Material Calibration app discussed in Section 3.2. Agddot and rolling analysis of a typical automobile tire
is subsequently performed using both the filled and unfilledemals. As expected, the stiffer response of the filled
material leads to a smaller tire deformation and modifieddidnt pressure.
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FIG. 79: Typical tire cross section
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FIG. 81: Sample multiscale calibration workflow for a filled rubbedaubsequent tire simulation

Steady-state rolling analysis

5.2 Helicopter Rotor Blades via Multiscale Materials

Multibody simulation (MBS) software systems are used acatiindustries for the design of wind turbines, aircrafts,
automotive and rail vehicles, in the field of general machjingnd for further purposes. Multibody simulation deals
with the dynamic behavior of complex mechanical system#ieiiniteractions of the components of these systems.
On the other hand, the finite element method (FEM) is the stahtb determine deformations, mechanical stress,
etc., of individual components of such systems. Incredgipgoduct development requires a concurrent use of these
simulation domains, since the deformation of individuahpmnents and the behavior of the entire mechanical system
might significantly influence each other.

This is especially true for helicopter rotor blades, whittiggrated into the mechanical system model of a
helicopter, are subjected to tremendous Coriolis forcestrifugal stiffening, and aerodynamic forces, and finally
the coupling of flap, lag, and torsional deformation makingdacessary to consider structural elasticities with high
accuracy at a low computational cost.
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In contrast to high-resolution finite element methods, i istrength of multibody system models to describe
complex mechanical systems with a comparatively small rerrobdegrees of freedom, which leads to a low com-
putational effort and suits it to the validation of variowes@jns. The increasing knowledge during the design process
can be accounted for easily by an increasing level of detdiileeMBS and FEM models.

For a wide range of application areas in which the assumptiemall deformation and linearized material laws
is sufficient, most MBS solvers use the floating frame of ifee formulation for modeling linearized structural
flexibilities, in which a modal deformation field is superioged on finite rigid body motion. The modal deforma-
tion field, inertia invariants, modal stiffness, and dangpéme generated in the FEM software and passed on to the
multibody system model. The setup of such flexible body regmeation is almost automated.

A nonlinear reduced order modeling technique has been ageeélfor use in multibody systems when compo-
nents of a mechanical system exhibit large deformatiorceffeSo far, this technique is available for wind turbine
rotor blades and torsion beam suspensions of automotivieleshHowever, such nonlinear reduced order models
cannot be used yet for rotor blades of helicopters due to suiffiniently accurate description of the inertia for-
ces.

The obvious abstraction level for a rotor blade is that of anbestructure. Composite beam theory offers an
alternative for modeling flexible helicopter rotor blad€his features in-plane and out-of-plane deformations ef th
cross sections and finite deformations of the axes of the laments (Han and Bauchau, 2015). The constitutive
equations of such a beam structure can be computed fromaa finde element model that represents the flexibility
of the different materials of a cross section such as woueng fiber-, core, and other materials, which enables
an automated transition to the logical scale. The accordiogs-sectional analyses yield the material matrix for all
directions of bending, torsion, and axial deformations geabvery relations allowing the computation of the three-
dimensional cross-section deformation from the deforomatif the beam axis and stress and strain from the stress
resultants after completion of the multibody system anslys

Based on a 3D model built with the CATIA apps on 8i2EXPERIENCE Platform a blade of the main rotor with
material assignments was converted into a beam represergta script, which has been implemented as a proof of
concept. To run this script the user specifies the beam dizatien of the blade model, parameters for setting up the
mesh for the cross-sectional analyses such as elementriglsize, and output requests such as the field variables for
which data shall be recovered in the post-processing of thiébndy simulation. The rotor blade generation script
first generates cross-section geometry in the middle of baeim element, meshes each cross section, triggers the
cross-sectional finite element analyses, and passes fthallyresults, the material law, cross-sectional ineréitad
and recovery relations on to the multibody system modelgieith a complete nonlinear beam representation. The
entire abstraction process from the 3D model towards a 1atstral beam model was fully automated (Fig. 82). The
beam representation has been validated against 3D finiteeatlemodels. Even accurate local stress and strain data
can be extracted for almost prismatic structures.

A multibody system model of the BO 105 multipurpose lightitebter was set up to demonstrate the workflow
for the validation of design variants of an entire mechdrégatem through simulation (Fig. 83). The mechanical
model of the helicopter was first set up in the CATIA apps ofaBEXPERIENCE Platform and then converted into
a multibody system model. The flap and lead-lag hinges of dhe domposite rotor blades are represented by the
elastic bending properties of the blade roots. Their cormmemeling in the multibody system model is prerequisite to
replicating the behavior of the helicopter with sufficientaracy. Finally, the multibody system model was coupled
with the comprehensive versatile aeromechanics simualdtol (VAST) of the German Aerospace Center (DLR)
by cosimulation. A total of 20 collocation points were distited over the radius of the main rotor to exchange
deformation, lift and drag forces, and the aerodynamicuerdPilot inputs are propagated to the pitch angles of
the main rotor blades through a detailed model of the mixeéwgl assembly and the swashplate. Similarly, rigid
representations of the tail rotor blades have been couptbdAST.

Trim calculations for various forward flight velocities std an acceptable match between simulation and flight
test data for the collective and longitudinal main rotodal@ontrol angle, whereas the lateral control angle fordrigh
flight velocities did not match the test data. A reason fori@&wns in the required lateral control angle at high flight
velocities is the influence of the fuselage on flow velocitieghe rotor, which is not yet included in VAST. Further
flight maneuver simulations are described in Mindt et al1@0
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The German Federal Ministry for Economic Affairs and Eneiigyded the work presented in this section under
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5.3 Battery Porous Electrode Theory Models

Li-lon batteries are at the core of the worldwide impetus leateification that is prevalent in many industries, partic
ularly in automotive and high tech. For engineering purgptee typical battery cell construction (Fig. 84) involves
scales from the submicron level as associated with activéc|es in anodes/cathodes, connected up to tens of mil-
limeters (or even a meter) as associated with the entire Reddictive simulation methods (Abaqus, 2021) solve
effectively and accurately the concurrent scales problgmrploying a FE method rooted in the porous electrode
theory (Newman and Thomas-Alyea, 2004).

The multiscale/multiphysics nature of the problem is diéstt succinctly in Fig. 85. There are several mate-
rial multiscale aspects that require simultaneous saiufid) A diffusion in solid particles (assumed spherical) at
microscale on particles with characteristic dimensionsnfl0.1 to 20 um. This diffusion models intercalation/de-
intercalation cycles and it is associated with solid phesesformations that have a significant influence on the non-
linearity of the diffusion coeffcients and the overall mankcal swelling of the particles; (2) reactive electroclstng
at the wetted particle surface coupling the macroscaldreldremistry involving electric potentials and concetibra
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Cathode Collector
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[ .
FIG. 84: Li-lon battery cells—a prime example of multiscale behaviwom 0.1 m to 1 um by the nature of the manufacturing

process and reactive powders included (Abaqus, 2021).
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(Abaqus, 2021).
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in the electrolyte to a de-homogenized flux driving the ioédamtion/de-intercalation process; (3) a multiphysics ho
mogenization method to impose the overall conservationi ¢6 lcealize the interplay between the different scales.
Swelling at particle level drives overall deformation oéthlectrodes/cell leading to evolutions of the macroscale
porosities and tortuosities which in turn affect the oVaracroscale diffusion. Some results, Li diffusion/migpat

and electron conduction schematics are illustrated in&&g.

The need for increased energy densities in battery celldvild a lot of research worlwide. One such direction
involves Si-based anodes which hold the potential of ireinggstored capacity multiple-fold with incredible potieht
benefits to engineering applications (e.g., increasedndrrange in automobiles). However, the lithiation prodess
Si is accompanied by a very large volumetric swelling andsstrdevelopment (Kumar et al., 2017) which leads to
premature degradation in usual charge/discharge cyclesrdde element methods combined with finite elements
techniques as illustrated in Fig. 87 can provide additiamgights in behavior at the submicron scale.

cathode

©)

Electrolyte

FIG. 86: Li-lon battery cells—a schematic representation illustigithe field variables being solved in a multiscale’ BEnse;
sample results for Li-lon concentration in the electrolgell scale) and particles at microscale (top right); aamtcepresentation
of a tortuous path of travel of Li-lon and electrons followaiunctional battery (Abaqus, 2021)

Si20CB60 Si60CB20

FIG. 87: Pseudo-manufacturing model of active anode particle§;(lehiation model for various weight fractions Si, andcaghite
mixtures illustrating one of the grand challenges of Sieoksnodes architectures—large swelling leading to redbagdry life
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5.4 Battery Electrolyte Characterization: From Atoms to Ce lls

In this case on liquid battery electrolytes, we create actimad complete in silico link between the chemical formu-
lation (e.qg., the recipe) of an electrolyte solution anddterall performance of the battery cell. Current commércia
electrolytes are typically based on a carbonate solvett WRF; acting as a salt and a range of different additives
(Ecker et al., 2015a,b). These additives play an importletin the battery performance and in controlling degra-
dation, for example, to avoid formation of toxic HF (Okuncakt 2016), help form the solid electrolyte interphase
(SEI) (Han et al., 2015), or to provide chemical protectigaiast overcharging (Buhrmester et al., 2005), among
many other uses. The key challenge with these additivesatsslhcomponents of the electrolyte compaosition also
affect its charge transport performance and are intrifigiiaked to the overall battery cell performance. The for-
mulation of electrolytes therefore is a multiobjectiveioptation required for each cell chemistry. At the same time
it is done relatively late in the materials development eyanhd on time scales much shorter than the multiple years
typically required to design and scale up other battery ried$esuch as a new cathode or anode chemistry.

This multiobjective optimization problem is a prototygdioae case for multiscale modeling. Validated molecular
modeling workflows make it possible to screen different tidelicandidates for chemical properties. For example,
BIOVIA Materials Studio (2021) has been used extensivelaimpute the electrochemical stability of many different
candidates (Halls and Tasaki, 2009). To enable the muétadive study of the electrolyte with a direct link to the
overall battery cell performance, it is essential to esthba direct link between the electrolyte formulation and
charge/discharge curves of complete battery cells. Thiiosesummarizes the multiscale connection introduced in
detail by Hanke et al. (2020), with a focus on the differenthds used to obtain the charge transport properties of
Li-lon solutions for different concentrations and temperas.

With molecular scales, we begin by translating the solverrfilation into numbers of molecules from which
we can build a simulation cell using the Monte Carlo based fshous Cell Module in Materials Studio (Akkermans
et al., 2013). The key ingredients are provided as massagéthylene carbonate (EC, molecular weight 88.1 g/mol)
and ethyl methyl carbonate (EMC, molecular weight 104.1af)nWe also add varying pairs of tiand PF ions
into the cell to account for the concentration dependeneefdtihd it sufficient to use approximately 200 molecules
in total. For each simulation cell, an initial MD simulatigsrun for 100 ps using an NPT ensemble (e.g., keeping
the number of molecules constant, and applying a barosgfty a constant pressure of 0 and a thermostat to keep
a constant temperature) with the COMPASS suite of forcedigldaterials Studio (Sun et al., 2016; Akkermans et
al., 2020). This calculation will provide the density of thalution, from which we can calculate the concentration
(in mol/l) of the salt solution—an essential parameter fier Newman model simulations.

To obtain the charge transport parameters, we continueanlithger 5 ns MD simulation in an NVE ensemble
(constant number of molecules, volume, and total enerdyg diffusionD. coefficient for an individual ionic species
is calculated by averaging the mean square displacermﬁfvst) of the ions over time and applying the long-time
random walk relationlim; _, - <AR2(t)> = 6Dt. The angled brackets denote the average over all ion desplacts
and time intervals available in a MD trajectory. The partiahductivity for individual ionic species is now calculdte
using the diffusion coefficient and the Einstein relation = D.ce?N 4 /kgT; heree is the charge of an electron,
N4 is Avogadro’s number, ankls the Boltzmann constant. The overall conductivity is cated by summing partial
conductivities over all ion species. The transference remfir Li-lons is obtained from the relative contribution of
Li to the conductivity, e.g4, = D, /(D + D_).

So far, we covered a single simulation cell for a single terapee at a single concentration value. The full
parameterization of an electrolyte requires averaging eeeeral different simulation cells for eaefiT" pair and
then repeating the entire analysis over several differententrations and temperatures. Finally, the global tesul
are fit into a single-model parameterization representiegelectrolyte. The entire workflow is detailed in Hanke et
al. (2020). To achieve all of these calculations, it is ingtiee to automate the calculations as much as possible, done
here using protocols in BIOVIA Pipeline Pilot (2021) whidloas users to go directly from the number of molecules
to the final electrolyte transport relations in a singlerusteraction. At the same time, it is essential to keep tiack
important simulation details, for example, to allow usersack the statistics. This information must be availataihb
on the level of an individual trajectory and for the globdkcgation of the temperature- and concentration-depeinden
charge transport properties. Figures 88(a)—-88(d) sunam#re results of the workflow so far.
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FIG. 88: Linking the motion of individual Li-lons to battery cell germance

At this stage, we have obtained the charge transport piepdar a liquid electrolyte directly from its formula-
tion using only molecular dynamics simulations. We can nee/the resulting charge transport model in our Newman
model implementation in the Dymola battery library or in Ajoa as described previously, with the remaining param-
eters of the Newman model taken from existing measuremegriEsker et al. (2015a). The results of this calculation
are shown in Fig. 88(e) and show quantitative agreementmithsured battery cell performance data for a discharge
rate of 1 C (e.g., complete discharge of the cell in 1 hr) amdliiferent temperatures. The same approach provides
guantitative agreement with measured voltage traces firfast charging and at low temperature.

Overall, this multiscale workflow enables the multiobjeetin silico design and optimization of electrolytes for
a number of different chemical characteristics as well aggdtransport properties. This is particularly important
for controlling long-time degradation of the battery, whis to a large extent controlled by the (electro-) chemical
behavior of individual electrolyte molecules. While impitag the longevity of the electrolyte, it remains esserttal
optimize the charge transport properties of the batteryeds w

6. MACHINE LEARNING

There is no doubt that machine learning is infiltrating intanyfields of study as a promising technology. In the field
of multiscale materials modeling, machine learning apghea are gaining popularity to extract constitutive laws
from lower-scale computations as well as to construct giate models for efficient calculation of microstructure
responses. For example, Rocha et al. (2021) used an aciiverlg framework to accelerate concurrent multiscale
(FE?) analysis. The framework was concluded promising to redieecomputational cost of FEwith limitations
such as being unable to handle nonmonotonic strain pathshiltalearning can also be employed for computational
materials design ensembling computational techniquesspg quantum chemistry, molecular dynamics to contin-
uum scale. Mortazavi et al. (2020) used machine learningddehinteratomic potentials enabling first-principles
multiscale modeling where no viable classical modelingratitive is available. Despite many publications, machine
learning in the multiscale material modeling faces chaén While providing accurate prediction within the trami

Volume 19, Issue 3, 2021



70 Bi et al.

data range, the model may become unconstrained and inéecwtside the training data regime. Machine learning
needs big data and it is difficult to transform the currentgitgl testing system to keep up with the thirst for data. It is
difficult to include added complexity such as nonmonotooaxling and history dependence, and to extract physically
meaningful quantities to infer the material state. Thidisagresents a few numerical examples focusing on how to
train a proper machine learning model to tackle some of thweabhallenges.

6.1 ANN Approach for Hyperelastic Material Modeling with St ability Constraint and Extrapolation
Capability

We use a multilayer perceptron ANN to model the strain-eymeajential with respect to the strain invariants. The
inputs are the strain invarianisg, I,; the output is the strain-energy potenfia(Fig. 89). The neural net connects the
inputs to hidden layer/layers and then to the output layeruph activation functions. Experimental measurements
or virtual simulations can be used to create the trainingluiede. In this case, the uniaxial, biaxial, and planar test
data are used to train the machine learning model. The weaid biases of the neurons are optimized through the
training of the network driven by the data and a multilayerdiion can be extracted from the trained neural network.
Due to the high flexibility of the neural network, it is mostiyparanteed that the mathematical model matches very
well with the test data. However, out of the range of avadatiita, the response may become unconstrained and
unstable. Proper selection of the activation function Base physics could improve the extrapolation capability of
the trained machine learning potential. In this case, dimestress is the derivative of the potential with respetido
strain, in order to improve numerical stability, the detiva of the activation function with respect to strain shbul
monotonically increase as strain increases. Therefogesdftplus activation function is a better choice in thisecas
compared to a tanh activation function. Another approadoistrain the machine learning function is to use physical
constraint as added terms in the loss function. In this examye added a Drucker stability constraint based error
function as a weighted term in the loss function. We are ablenprove the stable range of the trained hyperelastic
model with a minimal loss in the accuracy of the model (Table 1

A different approach is to train the machine learning modetdrrect the error between the test data and the
best fitting conventional material model, e.g., Ogden3. Ai€s&n activation function is used for the neural network
and trained to correct localized errors of the best fittingl€@ model within the test data range. The hybrid model
approaches the behavior of the Ogden3 as strain moves ohe dést data range. This approach guarantees best
fitting between test data and model within a given data randengell understood numerical stability for out of range
strains, e.g., unconditionally stable in this case (Fig. 90

FIG. 89: Basic structure of a multilayer perceptron model

TABLE 1: Stable nominal strain ranges (based on Du et al., 2021)

Stable Strain Range  Without Constraint  With Constraint

Uniaxial (-0.26) (-0.38,00)
Biaxial (-1, 0.051) (-1,0.5)
Planar (-0.28, 0.38) (-bp)
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FIG. 90: Nominal stress vs. nominal strain of the hybrid model (basedu et al., 2021)

6.2 Recurrent Neural Network Approach for Anisotropic Plas tic Material Modeling with History
Dependence

We use the gated recurrent unit (GRU) followed by a regulaNAN include the history dependence of anisotropic
plastic materials. Virtual simulations can be performetatches for a large number (750 simulations in this case)
of load cases with random loadings and unloadings. Thesstned strain histories can be extracted and used as the
training data. The inputs to the GRU are all past historiesti@gins. The GRU extracts from the past strain data the
controlling history variabled;_1-., updates them to the current stédte;.., and feeds into the subsequent ANN
layers for regression modeling (Fig. 91).

The method is applicable to data generated by virtual expari/microstructure simulations for scale bridging.
However, in order to validate the predictiveness of the RNNraach, we used Abaqus 2D Hill plasticity and 3D
Barlat plasticity as virtual data/ground truth. Figure 8ws good matching between ground truth simulations using
the built-in Hill plasticity model and machine learning gietions for four new unseen loading histories. Figure
93 shows good matching between ground truth simulationsgusie built-in Barlat plasticity model and machine
learning predictions for two new unseen loading histories.

These models are implemented into Abaqus through the UMAToavUMAT subroutine interface. The trained
machine learning models are rewritten in the material magifor stress update at the material point, providing the
exact same accuracy in FE simulations as external ML testimgjthey do not exhibit issues such as error accumula-
tion as found in some incremental forms of machine learnppg@aches. These models can be applied to any datasets
including datasets obtained from running RVE simulatiarafiultiscale material modeling. Nevertheless, the above
studies have a heavy focus on machine learning practicgpisig the microstructural simulation and virtual data
generation steps, and merely serve as numerical exampgbswoa few ideas on how to tackle some of the common
challenges in using machine learning for a multiscale nedtarodel. Other challenges such as errors in discontinu-
ous function machine learning predictions, machine le@y®irror mitigation, or physical measure extraction for the
material state may be tacked with hybrid/physics informggraaches (Bi et al., 2021; Vlassis and Sun, 2021).

7. TOWARDS STREAMLINING MATERIAL MULTISCALE IN ENGINEERIN G PRACTICE

The 3DEXPERIENCE Platform is a collaborative environment thatroects designers and engineers in real time.
Users leverage the latest data whenever and wherever neéedeghsing collaboration and improving productivity.
Everything including the processes, the data, and the agijgihs can be shared by all stakeholders in a secured
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FIG. 91: Basic structure of a GRU model
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environment. ThR&DEXPERIENCE Platform enables all participants to view arad tee product or service at any
stage as they can be experienced virtually. This offers tivarstage of being able to make cost-effective changes
quickly and at any time.

The 3BDEXPERIENCE Platform portfolio comprises 3D modeling apations, simulation applications, social
and collaborative applications, and IT applications, \whémables a streamlined workflow that connects material
designers with simulation engineers of different experéind also the manufacturers.
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Next we demonstrate the streamlined workflow on the platfaith the example of an end-to-end process
designing an injection molded part with fiber-reinforcedngmsite as shown in Fig. 94. The Plastic Part Design app
can be used by a plastic part designer for the initial desighedCAD geometry. Once the design is complete, the
part is published on the platform; the plastic injectioniaegr can then access the part on the platform and start
their injection molding simulation in the Plastic Injeatiapp. Design parameters such as the gate locations can be
optimized by an optimization process using the Results Wital app. Geometry changes may also be recommended
by plastic injection engineers and can be directly revieamalapproved by the designers in real time on the platform.
In the meantime structural engineers can have access tattentversion of the CAD design and create a simulation
to test the integrity of the part design and fiber distribagidrom the injection molding simulation. A customized
process can be used to connect the plastic injection simonltt the structural simulation, in which results mapping
is done automatically during the import of the results figlitsduding fiber orientation, temperature, and residual
stresses. The entire process from part design to structimalation can be automated using an execution process
and optimal design parameters can be identified and reviewetl participants of the project.

8. CONCLUSIONS

Inventing a new material is truly “rocket science.” The ¢igaprocess is driven by brilliant minds working together
often from multiple domains leveraging vastly differeniesce and engineering skills. Most commonly the resulting
work is subject to protective patents regarding the “sesatice” behind the recipe. Corporations of all kinds canrsid
materials development as one of the core assets as far #edttal Property is concerned. For that matter public
domain dissemination of best practices, numerical modeticluded, does often not reflect entirely the state of a
“production”-related simulation tool chain in an entegexi This paper is no exception.

There is no doubt that ICME/materials science computatioreéthods often come to the aid of the material
scientist/engineer to complement physical testing/measents/prototyping for accelerated timelines of prodigct
velopment. Some of the techniques are reserved for theatediscientist/researcher in advanced research labs, and
others represent core tools used in consulting companidsedicated departments in industrial corporations, while
others have permeated routine engineering practice.

While we cannot really share most of the interesting apptica we have been working on with our customers,
perhaps the description of the methods and applicatiortsstbacould share can help the reader form an opinion
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FIG. 94: End-to-end digital thread for maximized process automatio
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of the overall offering. At Dassault Systemes the effortppaviding advanced, customizable, flexible, and easy to
use simulation tools to help the materials engineer/sisiechts been sustained with new advancements with each
release. We embarked on this journey years ago offering araiat solutions at all scales starting frah initio to
product. We are committed to advancing existing tools arudating new ones to extend the penetration of advanced
multiscale methods in daily engineering practice.
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