Inscrição na biblioteca: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publicou 6 edições por ano

ISSN Imprimir: 0743-4863

ISSN On-line: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Recent Advancements in Electrospun Nanofibers for Wound Healing: Polymers, Clinical and Regulatory Perspective

Volume 39, Edição 4, 2022, pp. 83-118
DOI: 10.1615/CritRevTherDrugCarrierSyst.2022039840
Get accessDownload

RESUMO

Wound management is an unmet therapeutic challenge and a global healthcare burden. Current treatment strategies provide limited efficiency in wound management, thus undergoing constant evolution in the treatment approaches. As wound healing is a complex physiological process involving precise synchronization of various phases like hemostasis, inflammation and remodelling, which necessitates innovative treatment strategies. Nanotechnology platforms like polymeric nanofibers (NFs) offer a promising solution for wound management. NFs contain a porous mesh-like structure that mimics the natural extracellular matrix and promote the cell adhesion and proliferation in the wound bed, thus displaying a great potential as a wound healing scaffold. Electrospinning is a simple, versatile and scalable technique for producing highly porous and tuneable NFs with a high surface area. Electrospun NFs are presenting extensive application in wound management, especially for burns and diabetic foot ulcers. This review briefly discusses the wound physiology and conventional treatment strategies. It also provides an overview of the electrospinning process and its principle, highlighting the application of electrospun polymeric NFs in wound management. The authors have made an attempt to emphasizes on the clinical challenges and future perspectives along with regulatory aspects of NFs as a wound dressing.

Referências
  1. Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery. 2017;35(9):473-7.

  2. Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-42.

  3. Sen CK. Human wounds and its burden: An updated compendium of estimates. Adv Wound Care. 2019;8(2):39-48.

  4. Milind RG, Savai J. Chronic wound management during COVID-19 pandemic. Endocrinol Metab Res. 2020;5:37-46.

  5. Yazdanpanah L. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37-53.

  6. Canedo-Dorantes L, Canedo-Ayala M. Skin acute wound healing: A comprehensive review. Int J Inflam. 2019;2019:3706315.

  7. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, Qin H-L, Abbas Bukhari SN. Emerging trends in therapeutic algorithm of chronic wound healers: Recent advances in drug delivery systems, concepts-to-clinical application and future prospects. Crit Rev Ther Drug Carrier Syst. 2017;34(5):387-452.

  8. Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater. 2019;2(3):952-69.

  9. Sylvester MA, Amini F, Keat TC. Electrospun nanofibers in wound healing. Mater Today Proc. 2019;29:1-6.

  10. Sharma R, Singh H, Joshi M, Sharma A, Garg T, Goyal AK, Rath G. Recent advances in polymeric electrospun nanofibers for drug delivery. Crit Rev Ther Drug Carrier Syst. 2014;31(3):187-217.

  11. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci. 2008;97(8):2892-923.

  12. Chaudhary C, Garg T. Scaffolds: A novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst. 2015;32(4):277-321.

  13. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35-43.

  14. Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Indian J Otolaryngol. 1967;19:142-3.

  15. Martin P. Wound healing - aiming for perfect skin regeneration. Science. 1997;276(5309):75-81.

  16. Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol. 2016;91(5):614-20.

  17. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9-18.

  18. Kalantari K, Afifi AM, Jahangirian H, Webster TJ. Biomedical applications of chitosan electrospun nanofibers as a green polymer - Review. Carbohydr Polym. 2019;207:588-600.

  19. Lei J, Sun L, Li P, Zhu C, Lin Z, Mackey V, Coy DH, He Q. The wound dressings and their applications in wound healing and management. Health Sci J. 2019;13(4):662.

  20. Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: Targeted and controlled carrier for cell and drug delivery. J Drug Target. 2015;23(3):202-21.

  21. Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci. 2020;144:105224.

  22. Tiwari JN, Tiwari RN, Kim KS. Three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57(4):724-803.

  23. Yin C, Rozet S, Okamoto R, Kondo M, Tamada Y, Tanaka T, Hattori H, Tanaka M, Sato H, Iino S. Physical properties and in vitro biocompatible evaluation of silicone-modified polyurethane nanofibers and films. Nanomaterials. 2019;9(3):367.

  24. Shahriar SMS, Mondal J, Hasan MN, Revuri V. Electrospinning nanofibers for therapeutics delivery. Nanomaterials. 2019;9(4):532.

  25. Islam MS, Ang BC, Andriyana A, Amalina MA. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl Sci. 2019;1:1248.

  26. Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868-92.

  27. Alghoraibi I, Alomari S. Different methods for nanofiber design and fabrication. In: Barhoum A, Bechelany M, Makhlouf A, editors. Handbook of nanofibers. New York: Springer; 2019. p. 79-124.

  28. Mendes AC, Strohmenger T, Goycoolea F, Chronakis IS. Electrostatic self-assembly of polysaccharides into nanofibers. Colloids Surfaces A Physicochem Eng Asp. 2017;531:182-8.

  29. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223-53.

  30. Al-Hazeem NZ. Nanofibers and electrospinning method. In: Kyzas G, Mitropoulos AC, editors. Novel nanomaterials: Synthesis and applications. IntechOpen 2018. Available from: https://www.intechopen.com/chapters/59431.

  31. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: Solving global issues. Mater Today. 2006;9(3):40-50.

  32. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY. Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng B Solid-State Mater Adv Technol. 2017;217:36-48.

  33. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298-415.

  34. Nune SK, Rama KS, Dirisala VR, Chavali MY. Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. In: Ficai D, Mihai A, editors. Nanostructures for novel therapy. New York: Elsevier; 2017. p. 281-311.

  35. Cai Y, Wei Q, Huang F. Processing of composite functional nanofibers. In: Wei Q, editor. Functional nanofibers and their applications. New York: Elsevier; 2012. p. 38-54.

  36. Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J Biomater Sci Polym Ed. 2013;24(4):365-85.

  37. Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano. 2017;11(6):5737-45.

  38. Zhong L, Yang T, Wang J, Huang CZ. A study of the catalytic ability of in situ prepared AgNPs-PMAA-PVP electrospun nanofibers. New J Chem. 2015;39(12):9518-24.

  39. Yao S, Li Y, Zhou Z, Yan H. Graphene oxide-assisted preparation of poly(Vinyl alcohol)/carbon nano-tube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology. RSC Adv. 2015;5(111):91878-87.

  40. Yang GZ, Li JJ, Yu DG, He MF, Yang JH, Williams GR. Nanosized sustained-release drug depots fabricated using modified triaxial electrospinning. Acta Biomater. 2017;53:233-41.

  41. Shimomura K, Rothrauff BB, Hart DA, Hamamoto S, Kobayashi M, Yoshikawa H, Tuan RS, Nakamura N. Enhanced repair of meniscal hoop structure injuries using an aligned electrospun nanofibrous scaffold combined with a mesenchymal stem cell-derived tissue engineered construct. Biomaterials. 2019;192:346-54.

  42. Yang H, Huang CZ. Polymethacrylic acid-facilitated nanofiber matrix loading Ag nanoparticles for SERS measurements. RSC Adv. 2014;4(73):38783-90.

  43. Feng C, Jing GAO, Lu W, Yuhua YAO, Chunling Z. New wound dressing coaxial electrospun nanofibers dressing. Adv Mater Res. 2013;790:570-4.

  44. Blachowicz T, Ehrmann A. Conductive electrospun nanofiber mats. Materials. 2020;13(1):152.

  45. Kim B, Park H, Lee S, Sigmund WM. Poly (Acrylic acid) nanofibers by electrospinning. Mater Lett. 2005;59:829-32.

  46. Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J Eng Fiber Fabr. 2019;14:10.1177/1558925018824901.

  47. Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release. 2021;334:463-84.

  48. Kyselica R, Enikov ET, Polyvas P, Anton R. Electrostatic focusing of electrospun polymer (PEO) nanofibers. 2018;94:21-9.

  49. Kenry, Lim CT. Nanofiber technology: Current status and emerging developments. Prog Polym Sci. 2017;70:1-17.

  50. Shah A, Ashames AA, Buabeid MA, Murtaza G. Synthesis, in vitro characterization and antibacterial efficacy of moxifloxacin-loaded chitosan-pullulan-silver-nanocomposite films. J Drug Deliv Sci Technol. 2020;55:101366.

  51. Desai KGH. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit Rev Ther Drug Carrier Syst. 2016;33(2):107-58.

  52. Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97(B):417-26.

  53. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M. Chitosan: A potential biopolymer for wound management. Int J Biol Macromol. 2017;102:380-3.

  54. Dai T, Tanaka M, Huang Y. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011;9(7):857-79.

  55. Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent J-J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C. 2017;77:271-81.

  56. Yang S, Zhang X, Zhang D. Electrospun chitosan/poly (Vinyl alcohol)/graphene oxide nanofibrous membrane with ciprofloxacin antibiotic drug for potential wound dressing application. Int J Mol Sci. 2019;20(18):4395.

  57. Zou P, Lee WH, Gao Z, Qin D, Wang Y, Liu J, Sun T, Gao Y. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with 0H-CATH30 nanoparticles. Carbohydr Polym. 2020;232:115786.

  58. Zhu L, Liu X, Du L, Jin Y. Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury. Biomed Pharmacother. 2016;83:33-40.

  59. Sun J, Perry SL, Schiffman JD. Electrospinning nanofibers from chitosan/hyaluronic acid complex coacervates. Biomacromolecules. 2019;20(11):4191-8.

  60. Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol. 2018;116(2017):774-85.

  61. Ajalloueian F, Tavanai H, Hilborn J, Donzel-gargand O, Leifer K, Wickham A, Arpanaei A. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. Biomed Res Int. 2014;2014:475280.

  62. Isra A, Islam K, Ibrahim ES. Chitosan-based electrospun nanofibers mats reinforced with phenytoin-loaded PLGA/lecithin nanoparticles as potential wound dressings. Front Bioeng Biotechnol. 2016;4:10.3389/conf.FBI0E.2016.01.00972.

  63. Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: Morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem. 2020;44(25):10343-51.

  64. Dhurai B, Saraswathy N, Maheswaran R, Sethupathi P, Vanitha P, Vigneshwaran S, Rameshbabu V. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front Mater Sci. 2013;7(4):350-61.

  65. Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering. 2018;5(1):1-28.

  66. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014;4(47):24777-85.

  67. Pinzon-Garda AD, Cassini-Vieira P, Ribeiro CC, de Matos Jensen CE, Barcelos LS, Cortes ME, Sinisterra RD. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res B Appl Biomater. 2017;105(7):1938-49.

  68. Wu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym. 2011;26(6):565-77.

  69. Topuz F, Uyar T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Mater Sci Eng C. 2017;80:371-8.

  70. Ajmal G, Bonde GV, Mittal P, Khan G, Pandey VK, Bakade BV, Mishra B. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm. 2019;567:118480.

  71. Zahiri M, Khanmohammadi M, Goodarzi A, Ababzadeh S, Sagharjoghi Farahani M, Mohandesnezhad S, Bahrami N, Nabipour I. Encapsulation of curcumin loaded chitosan nanoparticle within poly (s-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol. 2020;153:1241-50.

  72. Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R. Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application. Bioact Mater. 2018;3(2):201-11.

  73. Xue J, Shi R, Niu Y, Gong M, Coates P, Crawford A, Chen D, Tian W, Zhang L. Fabrication of drug-loaded anti-infective guided tissue regeneration membrane with adjustable biodegradation property. Colloids Surfaces B Biointerfaces. 2015;135:846-54.

  74. Shi R, Xue J, He M, Chen D, Zhang L, Tian W. Structure, physical properties, biocompatibility and in vitro/vivo degradation behavior of anti-infective polycaprolactone-based electrospun membranes for guided tissue/bone regeneration. Polym Degrad Stab. 2014;109:293-306.

  75. Xue J, He M, Liang Y, Crawford A, Coates P, Chen D, Shi R, Zhang L. Fabrication and evaluation of electrospun PCL-gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B. 2014;2(39):6867-77.

  76. Shi R, Geng H, Gong M, Ye J, Wu C, Hu X, Zhang L. Long-acting and broad-spectrum antimicrobial electrospun poly (s-caprolactone)/gelatin micro/nanofibers for wound dressing. J Colloid Interface Sci. 2018;509:275-84.

  77. Pavlinakova V, Fohlerova Z, Pavlinak D, Khunova V, Vojtova L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C. 2018;91:94-102.

  78. Khil MS, Cha D Il, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater. 2003;67(2):675-9.

  79. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater. 2009;4(4):044106.

  80. Heo DN, Yang DH, Lee JB, Bae MS, Kim JH, Moon SH, Chun HJ, Kim CH, Lim H, Kwon IK. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol. 2013;9(3):511-5.

  81. Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm. 2019;569:118590.

  82. Manikandan A, Mani MP, Jaganathan SK, Rajasekar R, Jagannath M. Formation of functional nano-fibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polym Test. 2017;61:106-13.

  83. Lee H, Kharaghani D, Kim IS. Mechanical force for fabricating nanofiber. InTechOpen 2017. Available from: https://www.intechopen.com/chapters/59124.

  84. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym. 2014;102(1):884-92.

  85. Taha AA, Wu Y na, Wang H, Li F. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manage. 2012;112:10-6.

  86. Lee H, Nishino M, Sohn D, Lee JS, Kim IS. Control of the morphology of cellulose acetate nanofibers via electrospinning. Cellulose. 2018;25(5):2829-37.

  87. Khan MQ, Kharaghani D, Sanaullah, Shahzad A, Saito Y, Yamamoto T, Ogasawara H, Kim IS. Fabrication of antibacterial electrospun cellulose acetate/ silver-sulfadiazine nanofibers composites for wound dressings applications. Polym Test. 2019;74:39-44.

  88. Jatoi AW, Kim IS, Ni QQ. Cellulose acetate nanofibers embedded with AgNPs anchored TiO 2 nanoparticles for long term excellent antibacterial applications. Carbohydr Polym. 2019;207:640-9.

  89. Wutticharoenmongkol P, Hannirojram P, Nuthong P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym Adv Technol. 2019;30(4):1135-47.

  90. Ullah A, Ullah S, Khan MQ, Hashmi M, Nam PD, Kato Y. Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. Int J Biol Macromol. 2020;155:479-89.

  91. Khan I, Gothwal A, Sharma AK, Kesharwani P, Gupta L, Iyer AK, Gupta U. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst. 2016;33(2):159-93.

  92. Lee CH, Liu KS, Chang SH, Chen WJ, Hung KC, Liu SJ, Pang JH, Juang JH, Chou CC, Chang PC, Chen YT, Wang FS. Promoting diabetic wound therapy using biodegradable rhPDGF-loaded nanofibrous membranes: CONSORT-compliant article. Medicine. 2015;94(47):e1873.

  93. Lee CH, Chao YK, Chang SH, Chen WJ, Hung KC, Liu SJ, Juang JH, Chen YT, Wang FS. Nanofibrous rhPDGF-eluting PLGA-collagen hybrid scaffolds enhance healing of diabetic wounds. RSC Adv. 2016;6(8):6276-84.

  94. Da Silva LP, Neves BM, Moura L, Cruz MT, Carvalho E. Neurotensin decreases the proinflammatory status of human skin fibroblasts and increases epidermal growth factor expression. Int J Inflam. 2014;2014:248240.

  95. da Silva L, Neves BM, Moura L, Cruz MT, Carvalho E. Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochim Biophys Acta. 2011;1813(10):1863-71.

  96. Zheng Z, Liu Y, Huang W, Mo Y, Lan Y, Guo R, Cheng B. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 2):493-501.

  97. Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Appl Sci. 2019;9:2205.

  98. Shin D, Kim MS, Yang CE, Lee WJ, Roh TS, Baek W. Radially patterned polycaprolactone nanofibers as an active wound dressing agent. Arch Plast Surg. 2019;46(5):399-404.

  99. Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin-loaded poly(s-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 2009;36(12):1149-56.

  100. Ranjbar-Mohammadi M, Bahrami SH. Electrospun curcumin loaded poly(s-caprolactone)/gum tragacanth nanofibers for biomedical application. Int J Biol Macromol. 2016;84:448-56.

  101. Yong YK, Zakaria ZA, Kadir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z. Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complement Altern Med. 2013;13:1-7.

  102. Cardarelli CR, Benassi M de T, Mercadante AZ. Characterization of different annatto extracts based on antioxidant and colour properties. LWT Food Sci Technol. 2008;41(9):1689-93.

  103. Goto T, Takahashi N, Kato S, Kim Y Il, Kusudo T, Taimatsu A, Egawa K, Kang MS, Hiramatsu T, Sakamoto T, Uemura T, Hirai S, Kobayashi M, Horio F, Kawada T. Bixin activates PPARa and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice. J Agric Food Chem. 2012;60(48):11952-8.

  104. Fathollahipour S, Abouei Mehrizi A, Ghaee A, Koosha M. Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. J Biomed Mater Res A. 2015;103(12):3852-62.

  105. Koosha M, Mirzadeh H. Electrospinning, mechanical properties, and cell behavior study of chitosan/ PVA nanofibers. J Biomed Mater Res A. 2015;103(9):3081-93.

  106. Sundaramurthi D, Vasanthan KS, Kuppan P, Krishnan UM, Sethuraman S. Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: A biomimetic extracellular matrix as dermal substitute. Biomed Mater. 2012;7(4):045005.

  107. Ahmadi Majd S, Rabbani Khorasgani M, Moshtaghian SJ, Talebi A, Khezri M. Application of chitosan/PVA nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol. 2016;92:1162-8.

  108. Itoh H, Li Y, Chan KHK, Kotaki M. Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym Bull. 2016;73(10):2761-77.

  109. Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa Khanam P, Augustine R, Hasan A. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120:385-93.

  110. Stephens P, Caley M, Peake M. Alternatives for animal wound model systems. Methods Mol Biol. 2013;1037:177-201.

  111. Mendes JJ, Leandro CI, Bonaparte DP, Pinto AL. A rat model of diabetic wound infection for the evaluation of topical antimicrobial therapies. Comp Med. 2012;62(1):37-48.

  112. Yu COL, Leung KS, Fung KP, Lam FFY, Ng ESK, Lau KM, Chow SKH, Cheung WH. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation. Exp Anim. 2017;66(3):259-69.

  113. Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A, Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci Rep. 2020;10(1):8312.

  114. Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hahsemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019;229:57-66.

  115. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang L, Yang J, Nguyen K. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9(12):9351-9.

  116. Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited. Wound Repair Regen. 2015;23(6):874-7.

  117. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017;12(11):1335-52.

  118. Omer S, Forgach L, Zelko R, Sebe I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics. 2021;13(2):286.

  119. Kossovich LY, Salkovskiy Y, Kirillova IV. Electrospun chitosan nanofiber materials as burn dressing. 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore, 1212-14.

  120. Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S. Bio-based electrospun fibers for wound healing. J Funct Biomater. 2020;11(3):67.

  121. www.ClinicalTrials.gov [cited 2020 Dec 28]. Results from search for "nanofibers." Available from: https://www.clinicaltrials.gov/ct2/results?cond=nanofibers&term=&cntry=&state=&city=&dist=.

  122. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673-92.

  123. Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine. 2020;15(2):111-4.

  124. Nijhara R, Balakrishnan K. Bringing nanomedicines to market: Regulatory challenges, opportunities, and uncertainties. Nanomedicine. 2006;2(2):127-36.

  125. Mahjour SB, Fu X, Yang X, Fong J, Sefat F, Wang H. Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns. 2015;41(8):1764-74.

  126. Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li WJ, Tuan RS, Elliott DM. Engineering on the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev. 2009;15(2):171-93.

  127. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744-94.

  128. Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F. Potential of electrospun nanofibers for biomedical and dental applications. Materials. 2016;9(2):73.

  129. CHMP SINEREM, INN: Superparamagnetic iron oxide nanoparticles stabilised with dextran and sodium citrate. [cited 2021 Jan 18]. Available from: https://www.emea.europa.eu/en/search/search?search_api_views_fulltext=sinerem.

  130. Halamoda-Kenzaoui B, Baconnier S, Bastogne T, Bazile D, Boisseau P, Borchard G, Borgos SE, Calzolai L, Cederbrant K. Bridging communities in the field of nanomedicine. Regul Toxicol Pharmacol. 2019;106:187-96.

  131. REFINE: Regulatory Science Framework for Nano(Bio)material-based medical products and devices. [cited 2021 Jan 18]. Available from: http://refine-nanomed.eu/.

  132. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci. 2020;8(17):4653-64.

  133. Hock SC, Ying YM, Wah CL. A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol. 2011;65(2):177-95.

  134. JRC Publications Repository. Anticipation of regulatory needs for nanotechnology-enabled health products [cited 2021 May 1]. Available from: https://publications.jrc.ec.europa.eu/repository/handle/ JRC118190.

  135. Mohammadzadehmoghadam S, Dong Y, Barbhuiya S, Guo L, Liu D, Umer R, Qi X, Tang Y. Electrospinning: Current status and future trends. In: Fakirov S, editor. Nano-size polymers: Preparation, properties, applications. New York: Springer; 2016. p. 89-154.

  136. Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci. 2014;14(6):772-92.

  137. Huang W, Wang MJ, Liu CL, You J, Chen SC, Wang YZ, Liu Y. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. J Mater Chem A. 2014;2(22):8416-24.

  138. Nune SK, Rama KS, Dirisala VR, Chavali MY. Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. In: Ficai D, Grumezescu AM, editors. Nanostructures for novel therapy: Synthesis, characterization and applications. New York: Elsevier; 2017. p. 281-311.

  139. Cheng KCK, Bedolla-Pantoja MA, Kim YK, Gregory JV, Xie F, De France A, Hussel C, Sun K, Abbott N, Lahann J. Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science. 2018;362(6416):804-8.

  140. Endres T, Zheng M, Beck-Broichsitter M, Samsonova O, Debus H, Kissel T. Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques. J Control Release. 2012;160(3):583-91.

  141. Nemati S, Kim SJ, Shin YM, Shin H. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg. 2019;6(1):36.

  142. Ma J, Zhang Q, Zhang Y, Zhou L, Yang J, Ni Z. A rapid and simple method to draw polyethylene nanofibers with enhanced thermal conductivity. Appl Phys Lett. 2016;109(3):033101.

  143. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40(3):175-81.

  144. Min LL, Zhong L Bin, Zheng YM, Liu Q, Yuan ZH, Yang LM. Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep. 2016;6(1):32480.

  145. Ramalingam R, Dhand C, Leung CM, Ezhilarasu H, Prasannan P, Ong ST, Subramanian S, Kamruddin M, Lakshminarayan R, Ramakrishna S, Verma NK, Arunachalan KD. Poly-s-caprolactone/gelatin hybrid electrospun composite nanofibrous mats containing ultrasound assisted herbal extract: Antimicrobial and cell proliferation study. Nanomaterials. 2019;9(3):462.

  146. Akduman C, Kumbasar EPA. Electrospun polyurethane nanofibers. IntechOpen 2017. Available from: https://www.intechopen.com/chapters/56364.

  147. ClinicalTrials.gov. Clinical trial for the treatment of diabetic foot ulcers using a nitric oxide releasing patch: PATHON [cited 2021 Mar 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT0042872 7?term=NCT00428727&draw=2&rank=1.

  148. ClinicalTrials.gov. Controlled nitric oxide releasing patch versus meglumine antimoniate in the treatment of cutaneous leishmaniasis [cited 2021 Mar 2]. Available from: https://clinicaltrials.gov/ct2/ show/NCT00317629?term=NCT00317629&draw=2&rank=1.

  149. ClinicalTrials.gov. Combination of Taliderm and vacuum-assisted closure (VAC) for treatment of pressure ulcers [cited 2021 Mar 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT02237287 ?term=NCT02237287&draw=2&rank=1.

  150. ClinicalTrials.gov. Evaluation of the SPINNER device for the application of wound dressing: Treatment of split skin graft donor sites (SPINNER01) [cited 2021 Mar 2]. Available from: https://clinical- trials.gov/ct2/show/NCT02680106?term=NCT02680106&draw=2&rank=1.

CITADO POR
  1. Gancitano Giuseppe, Reiter Russel J., The Multiple Functions of Melatonin: Applications in the Military Setting, Biomedicines, 11, 1, 2022. Crossref

3086 Visualizações do artigo 680 downloads de artigos Métricas
3086 VISUALIZAÇÕES 680 TRANSFERÊNCIAS 1 Crossref CITAÇÕES Google
Scholar
CITAÇÕES

Artigos com conteúdo semelhante:

Scaffold: A Novel Carrier for Cell and Drug Delivery Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 1
Saahil Arora , R. S. R. Murthy, Onkar Singh, Tarun Garg
Emerging Trends in Therapeutic Algorithm of Chronic Wound Healers: Recent Advances in Drug Delivery Systems, Concepts-to-Clinical Application and Future Prospects Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 5
Hnin Ei Thu, Shahzeb Khan, Mei Shao, Victoria Silkstone, Syed Nasir Abbas Bukhari, Zahid Hussain, Marcel de Matas, Hua-Li Qin
Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.41, 2024, issue 2
Sujata P. Sawarkar, Prachi Pimple, Sujit Nair, Apurva Sawant
Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.40, 2023, issue 6
Keerthi Atluri, Purnendu K. Sharma, Vijendra Nalamothu, Alon Mantel, R. Jayachandra Babu, Srikanth Manne
Nail Psoriasis Treatment: Insights into Current Progress and Future Trends Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.37, 2020, issue 2
Supriya Verma, Rajesh Singh Jadon, Gajanand Sharma, Pradip Nirbhavane, Bhupinder Singh, Om Parkash Katare
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain