Inscrição na biblioteca: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publicou 6 edições por ano

ISSN Imprimir: 0743-4863

ISSN On-line: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Theranostic Approach for the Management of Osteoporosis

Volume 40, Edição 3, 2023, pp. 95-121
DOI: 10.1615/CritRevTherDrugCarrierSyst.2022043413
Get accessGet access

RESUMO

Osteoporosis (OP) is a bone-metabolic disorder, causing micro-architecture degeneration and a decrease in bone density. Nutritional deficiency, i.e., calcium, vitamin D, and hormonal imbalances are the primary cause for the occurrence of OP. Although conventional diagnostic techniques and therapies are available and found to be effective only at a later stage, though still lack prevention strategies. Thus, the patients tend to suffer incidence of fractures and many difficulties to manage their day-to-day activities at an elderly stage. Numerous nanomaterial(s) possessing unique physicochemical, optical, and electrical properties are reported nowadays to be employed for both early-stage detections of disease and its treatment. Amongst these nanomaterials, superparamagnetic iron oxide nanoparticles (SPIONs) possessing strong magnetic susceptibility, less in vivo toxicity, and surface functionalities are extensively employed for MRI contrast imaging agents in the area of disease diagnosis, and drug delivery tools for various therapies. Therefore, this review highlights the pathophysiology of OP, conventional techniques of diagnosis, and the application of SPIONs for diagnostic and treatment purposes of osteoporosis.

Referências
  1. Kalka M, Markiewicz N, Ptak M, Sone ED, Ozyhar A, Dobryszycki P, Wojtas M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization. FASEB J. 2019;33(6):6877-86.

  2. Yedavally-Yellayi S, Ho AM, Patalinghug EM. Update on osteoporosis. Prim Care. 2019;46(1):175-90.

  3. Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging findings and evaluation of metabolic bone disease. Adv Radiol. 2015;2015:1-21.

  4. Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary osteoporosis. Endocr Rev. 2022;43(2):240-313.

  5. Sajid P, Devasena T. Synthesis and characterization of silica nanocomposites for bone applications. Int J Pharm Res. 2012;3(5):173-7.

  6. Zalavras C, Shah S, Birnbaum MJ, Frenkel B. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Expr. 2003;13(2-4):221-35.

  7. Khadilkar AV, Mandlik RM. Epidemiology and treatment of osteoporosis in women: An Indian perspective. J Womens Health. 2015;7:841-50.

  8. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S. Noninvasive assessment of bone mineral and structure: State of the art. J Bone Miner Res. 1996;11(6):707-30.

  9. Lorentzon M, Johansson H, Harvey N, Liu E, Vandenput L, McCloskey E, Kanis J. Osteoporosis and fractures in women: The burden of disease. Climacteric. 2022;25(1):4-10.

  10. Guerri S, Mercatelli D, Gomez MPA, Napoli A, Battista G, Guglielmi G, Bazzocchi A. Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quant Imaging Med Surg. 2018;8(1):60-85.

  11. Patravale V, Dandekar P, Jain R. Nanoparticulate systems as drug carriers: Perspective on the transition from laboratory to market. London: Woodhead Publishing; 2012.

  12. Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;337(6092):303-5.

  13. Yadav A, Shukla R, Flora S. Nanodiamonds: A versatile drug-delivery system in the recent therapeutics scenario. Crit Rev Ther Drug Carrier Syst. 2021;38(4):39-78.

  14. Sood A, Arora V, Shah J, Kotnala R, Jain TK. Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core-shell nanoparticles. J Exp Nanosci. 2016;11(5):370-82.

  15. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.

  16. Singh B, Sharma T, Saini S, Kaur R, Jain A, Raza K, Beg S. Systematic development of drug nano-cargos using formulation by design (FbD): An updated overview. Crit Rev Ther Drug Carrier Syst. 2020;37(3):229-69.

  17. Xie J, Lee S, ChenX.Nanoparticle-based theranostic agents.Adv Drug Deliv Rev. 2010;62(11):1064-79.

  18. Tripathi S, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum dots and their potential role in cancer theranostics. Crit Rev Ther Drug Carrier Syst. 2015;32(6):461-502.

  19. Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater. 2017;6(23):1700306.

  20. Navyatha B, Nara S. Theranostic nanostructures for ovarian cancer. Crit Rev Ther Drug Carrier Syst. 2019;36(4):305-71.

  21. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161-214.

  22. Singh B, Khurana RK, Garg B, Saini S, Kaur R. Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Crit Rev Ther Drug Carrier Syst. 2017;34(3):209-55.

  23. Prokopiou D, Pissas M, Fibbi G, Margheri F, Kalska-Szostko B, Papanastasiou G, Jansen M, Wang J, Laurenzana A, Efthimiadou E. Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: In vitro safety assessment in healthy cells. Toxicol In Vitro. 2021;72:105094.

  24. Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268-80.

  25. Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Puschel K, Djuric M, Amling M, Christiansen S, Busse B. Bone tissue aging affects mineralization of cement lines. Bone. 2018;110:187-93.

  26. Brunetti G, Colaianni G, Colucci S, Grano M. Anatomy and physiology of skeletal tissue: The bone cells. In: Multidisciplinary Approach to Osteoporosis. New York: Springer; 2018. p. 1-23.

  27. Bellido T, Plotkin LI, Bruzzaniti A. Bone cells. In: Basic and applied bone biology: New York: Elsevier; 2019. p. 37-55.

  28. Schiellerup SP, Skov-Jeppesen K, Windelev JA, Svane MS, Holst JJ, Hartmann B, Rosenkilde MM. Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment. Front Endocrinol. 2019;10:75.

  29. Yu B, Wang CY. Osteoporosis and periodontal diseases-An update on their association and mechanistic links. Periodontology. 2022;89(1):99-113.

  30. Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for post-menopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14-21.

  31. Xu Y, Yan H, Zhang X, Zhuo J, Han Y, Zhang H, Xie D, Lan X, Cai W, Wang X. Roles of altered macrophages and cytokines: Implications for pathological mechanisms of postmenopausal osteoporosis, rheumatoid arthritis, and Alzheimer's disease. Front Endocrinol. 2022;13:876269.

  32. Balzano RF, Mattera M, Cheng X, Cornacchia S, Guglielmi G. Osteoporosis: What the clinician needs to know? Quant Imaging Med Surg. 2018;8(1):39.

  33. Areeckal AS, Kocher M. Current and emerging diagnostic imaging based techniques for assessment of osteoporosis and fracture risk. IEEE Rev Biomed Eng. 2018;12:254-68.

  34. Cherni I, Nouir R, Daoud F, Hamzaoui S, Ghalila H. Fast diagnostic of osteoporosis based on hair analysis using LIBS technique. Med Eng Phys. 2022;103:103798.

  35. Cortet B, Dennison E, Diez-Perez A, Locquet M, Muratore M, Nogues X, Crespo DO, Quarta E, Brandi ML. Radiofrequency echographic multi spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone. 2021;143:115786.

  36. Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in men: A review of an underestimated bone condition. Int J Mol Sci. 2021;22(4):2105.

  37. Khosla S, Atkinson EJ, Riggs BL, Melton LJ III. Relationship between body composition and bone mass in women. J Bone Miner Res. 1996;11(6):857-63.

  38. Pazianas M, Abrahamsen B, Ferrari S, Russell RGG. Eliminating the need for fasting with oral administration of bisphosphonates. Ther Clin Risk Manag. 2013;9:395.

  39. Lee D, Heo DN, Kim H-J, Ko W-K, Lee SJ, Heo M, Bang JB, Lee JB, Hwang D-S, Do SH, Kwon IK. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep. 2016;6:27336.

  40. Bock O, Felsenberg D. Bisphosphonates in the management of postmenopausal osteoporosis-optimizing efficacy in clinical practice. Clin Interv Aging. 2008;3(2):279.

  41. Suresh E, Pazianas M, Abrahamsen B. Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology. 2014;53(1):19-31.

  42. Lindsay R, Nieves J, Henneman E, Shen V, Cosman F. Subcutaneous administration of the amino-terminal fragment of human parathyroid hormone-(1-34): Kinetics and biochemical response in estrogenized osteoporotic patients. J Clin Endocrinol Metab. 1993;77(6):1535-9.

  43. Ng KW, Martin T. New therapeutics for osteoporosis. Curr Opin Pharmacol. 2014;16:58-63.

  44. Chapurlat RD. Odanacatib: A review of its potential in the management of osteoporosis in postmenopausal women. Ther Adv Musculoskelet Dis. 2015;7(3):103-9.

  45. Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol. 2015;11(3):461-70.

  46. Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliv Rev. 2012;64(12):1220-38.

  47. Medina-Reyes EI, Garcia-Viacobo D, Carrero-Martinez FA, Chirino YI. Applications and risks of nanomaterials used in regenerative medicine, delivery systems, theranostics, and therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1):35-61.

  48. Ali A, Hira Zafar MZ, ul Haq I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49-67.

  49. Montiel Schneider MG, Martin MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova MJP. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics. 2022;14(1):204.

  50. Meisen U, Kathrein H. The influence of particle size, shape and particle size distribution on properties of magnetites for the production of toners. J Imaging Sci Technol. 2000;44(6): 508-13.

  51. Dronskowski R. The little maghemite story: A classic functional material. Adv Funct Mater. 2001;11(1):27-9.

  52. Taimoory SM, Rahdar A, Aliahmad M, Sadeghfar F, Hajinezhad MR, Jahantigh M, Shahbazi P, Trant JF. The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J Mol Liq. 2018;265:96-104.

  53. Zhang H, Wang R, Zhang G, Yang B. A covalently attached film based on poly(methacrylic acid)-capped Fe3O4 nanoparticles. Thin Solid Films. 2003;429(1-2):167-73.

  54. Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc. 2004;126(23):7206-11.

  55. Narain R, Gonzales M, Hoffman AS, Stayton PS, Krishnan KM. Synthesis of monodisperse biotinylated p (NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir. 2007;23(11):6299-304.

  56. Kado T. Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO (001) substrates. J Appl Phys. 2008;103(4):043902.

  57. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical ap-plications. Acc Chem Res. 2009;42(8):1097-107.

  58. Steitz B, Hofmann H, Kamau SW, Hassa PO, Hottiger MO, von Rechenberg B, Hofmann-Amtenbrink M, Petri-Fink A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J Magn Magn. 2007;311(1):300-5.

  59. Jishkariani D, Lee JD, Yun H, Paik T, Kikkawa JM, Kagan CR, Donnio B, Murray CB. The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles. Nanoscale. 2017;9(37):13922-8.

  60. Shah ST, A Yehya W, Saad O, Simarani K, Chowdhury Z, A Alhadi A, Al-Ani LA. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials. 2017;7(10):306.

  61. Wan J, Yuan R, Zhang C, Wu N, Yan F, Yu S, Chen K. Stable and biocompatible colloidal dispersions of superparamagnetic iron oxide nanoparticles with minimum aggregation for biomedical applications. J Phys Chem C. 2016;120(41):23799-806.

  62. Lattuada M, Hatton TA. Functionalization of monodisperse magnetic nanoparticles. Langmuir. 2007;23(4):2158-68.

  63. Karaagac O, Kofkar H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. J Magn Magn Mater. 2022;551:169140.

  64. Neto DM, da Costa LS, de Menezes FL, Fechine LM, Freire RM, Denardin JC, Banobre-Lopez M, Vasconcelos IF, Ribeiro TS, Leal LKA. A novel amino phosphonate-coated magnetic nanoparticle as MRI contrast agent. Appl Surf Sci. 2021;543:1-42.

  65. Sayed FN, Polshettiwar V. Facile and sustainable synthesis of shaped iron oxide nanoparticles: Effect of iron precursor salts on the shapes of iron oxides. Sci Rep. 2015;5:9733.

  66. Sood A, Arora V, Shah J, Kotnala RK, Jain TK. Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core-shell nanoparticles. J Exp Nanosci. 2015;11(5):370-82.

  67. Monteiro AP, Caminhas LD, Ardisson JD, Paniago R, Cortes ME, Sinisterra RD. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym. 2017;163:1-9.

  68. Bixner O, Lassenberger A, Baurecht D, Reimhult E. Complete exchange of the hydrophobic dispersant shell on monodisperse superparamagnetic iron oxide nanoparticles. Langmuir. 2015;31(33):9198-204.

  69. Peralta ME, Jadhav SA, Magnacca G, Scalarone D, Martire DO, Parolo ME, Carlos L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanopar- ticles for efficient controlled and targeted drug delivery. J Colloid Interface Sci. 2019;544:198-205.

  70. Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, Paramelle D. Biocompatible peptide-coated ultrasmall superparamagnetic iron oxide nanoparticles for in vivo contrast-enhanced magnetic resonance imaging. ACS Nano. 2018;12(7):6480-91.

  71. Kim D, Zhang Y, Voit W, Rao K, Muhammed M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn. 2001;225(1-2):30-6.

  72. Starowicz M, Starowicz P, Zukrowski J, Przewoznik J, Lemanski A, Kapusta C, Banas J. Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J Nanopart Res. 2011;13(12):7167-76.

  73. Si J-C, Xing Y, Peng M-L, Zhang C, Buske N, Chen C, Cui Y-L. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm. 2014;16(4):512-6.

  74. Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B, Shouche YS, Ogale S, Sastry M. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir. 2008;24(11):5787-94.

  75. Alvarez Salazar G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci. 2006;61(14):4625-33.

  76. Jana NR, Chen Y, Peng X. Size and shape controlled magnetic oxide nanoparticles. Chem Mater. 2004;16:3931-5.

  77. Massart R, inventor; Bpifrance Financement SA, assignee. Magnetic fluids and process for obtaining them. U.S. patent US4329241A. 1982 May 11.

  78. Honary S, Ebrahimi P, Asgarirad H, Mohamadpour F. Optimization of iron oxide nanoparticle preparation for biomedical applications by using box-behenken design. Int J Nanosci Nanotechnol. 2014;10(4):257-61.

  79. Shahid MK, Choi Y. Characterization and application of magnetite particles, synthesized by reverse coprecipitation method in open air from mill scale. J Magn Magn. 2020;495:165823.

  80. Khalil MI. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem. 2015;8(2):279-84.

  81. Dolores R, Raquel S, Adianez G-L. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: Effect of ultrasonic frequency. Ultrason Sonochem. 2015;23:391-8.

  82. Aliramaji S, Zamanian A, Sohrabijam Z. Characterization and synthesis of magnetite nanoparticles by innovative sonochemical method. Procedia Mater Sci. 2015;11:265-9.

  83. Park YC, Smith JB, Pham T, Whitaker RD, Sucato CA, Hamilton JA, Bartolak-Suki E, Wong JY. Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf B. 2014;119:106-14.

  84. Cabrera L, Gutierrez S, Morales M, Menendez N, Herrasti P. Magnetic conducting composites based on polypyrrol and iron oxide nanoparticles synthesized via electrochemistry. J Magn Magn Mater. 2009;321(14):2115-20.

  85. Karimzadeh I, Dizaji HR, Aghazadeh M. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater Res Express. 2016;3(9):095022.

  86. Kolen'ko YV, Banobre-Lopez M, Rodriguez-Abreu C, Carbo-Argibay E, Sailsman A, Pineiro-Redondo Y, Cerqueira MF, Petrovykh DY, Kovnir K, Lebedev OI, Rivas J. Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C. 2014;118(16):8691-701.

  87. Li S, Zhang T, Tang R, Qiu H, Wang C, Zhou Z. Solvothermal synthesis and characterization of mono-disperse superparamagnetic iron oxide nanoparticles. J Magn Magn Mater. 2015;379:226-31.

  88. Kozakova Z, Kuritka I, Kazantseva NE, Babayan V, Pastorek M, Machovsky M, Bazant P, Saha P. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvo-thermal synthesis and its correlation with the structural and magnetic properties. Dalton Trans. 2015;44(48):21099-108.

  89. Coker VS. Formation of magnetic nanoparticles by Fe (III)-reducing bacteria: Synthesis and characterisation. PhD thesis. UK: The University of Manchester; 2007.

  90. El-Kassas HY, Ghobrial MG. Biosynthesis of metal nanoparticles using three marine plant species: Anti-algal efficiencies against "Oscillatoria simplidssima." Environ Sci Pollut Res Int. 2017;24(8):7837-49.

  91. Martinez-Cabanas M, Lopez-Garcia M, Barriada JL, Herrero R, de Vicente MES. Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chem Eng J. 2016;301:83-91.

  92. Rajiv P, Bavadharani B, Kumar MN, Vanathi P. Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol. 2017;12:45-9.

  93. Kanagasubbulakshmi S, Kadirvelu K. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J. 2017;2(4):422-7.

  94. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7(25):11142-54.

  95. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 2017;11(2):2284-303.

  96. Orsini NJ, Babic-Stojic B, Spasojevic V, Calatayud M, Cvjeticanin N, Goya G. Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe(acac)3. J Magn Magn Mater. 2018;449:286-96.

  97. Vega-Chacon J, Picasso G, Aviles-Felix L, Jafelicci M. Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2016;7(1):015014.

  98. Yu S, Hachtel JA, Chisholm MF, Pantelides ST, Laromaine A, Roig A. Magnetic gold nanotriangles by microwave-assisted polyol synthesis. Nanoscale. 2015;7(33):14039-46.

  99. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NTK. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale. 2016;8(6):3278-87.

  100. Hemery G, Keyes Jr AC, Garaio E, Rodrigo I, Garcia JA, Plazaola F, Garanger E, Sandre O. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem. 2017;56(14):8232-43.

  101. Parsons J, Luna C, Botez C, Elizalde J, Gardea-Torresdey J. Microwave-assisted synthesis of iron (III) oxyhydroxides/oxides characterized using transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. J Phys Chem Solids. 2009;70(3-4):555-60.

  102. Pascu O, Carenza E, Gich M, Estrade S, Peiro F, Herranz G, Roig A. Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. J Phys Chem C. 2012;116(28):15108-16.

  103. Gonzalez-Moragas L, Yu S-M, Murillo-Cremaes N, Laromaine A, Roig A. Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem Eng J. 2015;281:87-95.

  104. Aivazoglou E, Metaxa E, Hristoforou E. Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Adv. 2018;8(4):048201.

  105. Segmehl JS, Laromaine A, Keplinger T, May-Masnou A, Burgert I, Roig A. Magnetic wood by in situ synthesis of iron oxide nanoparticles via a microwave-assisted route. J Mater Chem C. 2018;6(13):3395-402.

  106. Song X, Yan G, Quan S, Jin E, Quan J, Jin G. MRI-visible liposome-polyethylenimine complexes for DNA delivery: Preparation and evaluation. Biosci Biotechnol Biochem. 2019;83(4):622-32.

  107. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics. 2021;13(7):1-26.

  108. Chouhan RS, Horvat M, Ahmed J, Alhokbany N, Alshehri SM, Gandhi S. Magnetic nanoparticles-A multifunctional potential agent for diagnosis and therapy. Cancers. 2021;13(9):2213.

  109. Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Nanobiotechnology. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1):e1740.

  110. Garcia-Soriano D, Milan-Rois P, Lafuente-Gomez N, Navio C, Gutierrez L, Cusso L, Desco M, Calle D, Somoza A, Salas G. Science I. Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions. J Colloid Interface Sci. 2022;613:447-60.

  111. Liu J, Jo J-I, Kawai Y, Aoki I, Tanaka C, Yamamoto M, Tabata Y. Preparation of polymer-based multimodal imaging agent to visualize the process of bone regeneration. J Control Release. 2012;157(3):398-405.

  112. Wyss PP, Herrera LC, Bouteghmes NS, Sarem M, Reichardt W, Leupold J, Hennig J, Shastri VP. Nanoprobes for multimodal visualization of bone mineral phase in magnetic resonance and near-infrared optical imaging. ACS Omega. 2016;1(2):182-92.

  113. Panahifar A, Mahmoudi M, Doschak MR. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity. ACS Appl Mater Interfaces. 2013;5(11):5219-26.

  114. Wang H, Liu J, Tao S, Chai G, Wang J, Hu F-Q, Yuan H. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomedicine. 2015;10:5671.

  115. Hu S, Zhou Y, Zhao Y, Xu Y, Zhang F, Gu N, Ma J, Reynolds MA, Xia Y, Xu HH. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J Tissue Eng Regen Med. 2018;12(4):e2085-98.

  116. Tran N, Webster TJ. Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomater. 2011;7(3):1298-306.

  117. Tran N, Hall D, Webster TJ. Mechanisms of enhanced osteoblast gene expression in the presence of hydroxyapatite coated iron oxide magnetic nanoparticles. Nanotechnology. 2012;23(45):455104.

  118. Tran N, Webster TJ. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling. Nanotechnology. 2013;24(18):185102.

  119. Shi S-F, Jia J-F, Guo X-K, Zhao Y-P, Chen D-S, Guo Y-Y, Cheng T, Zhang X-L. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int J Nanomedicine. 2012;7: 5593-602.

  120. Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev. 2015;2(4):041302.

  121. Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater. 2020;9(9):e1901058.

  122. Chang D, Lim M, Goos JA, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M. Biologically targeted magnetic hyperthermia: Potential and limitations. Front Pharmacol. 2018;9:831.

  123. Lee MS, Su CM, Yeh JC, Wu PR, Tsai TY, Lou SL. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment. Int J Nanomedicine. 2016;11:4583-94.

  124. Wu S, Yu Q, Sun Y, Tian J. Synergistic effect of a LPEMF and SPIONs on BMMSC proliferation, directional migration, and osteoblastogenesis. Am J Transl Res. 2018;10(5):1431.

  125. Quan H, He Y, Sun J, Yang W, Luo W, Dou C, Kang F, Zhao C, He J, Yang X. Chemical self-assembly of multifunctional hydroxyapatite with a coral-like nanostructure for osteoporotic bone reconstruction. ACS Appl Mater Interfaces. 2018;10(30):25547-60.

  126. Marycz K, Sobierajska P, Roecken M, Kornicka-Garbowska K, K^pska M, Idczak R, Nedelec J-M, Wiglusz RJ. Iron oxides nanoparticles (IOs) exposed to magnetic field promote expression of osteo-genic markers in osteoblasts through integrin alpha-3 (INTa-3) activation, inhibits osteoclasts activity and exerts anti-inflammatory action. J Nanobiotechnology. 2020;18(1):33.

  127. Pareta RA, Taylor E, Webster TJ. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology. 2008;19(26):265101.

  128. Beck Jr GR, Ha S-W, Camalier CE, Yamaguchi M, Li Y, Lee J-K, Weitzmann MN. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed Nanotechnol Biol Med. 2012;8(6):793-803.

  129. Khajuria DK, Razdan R, Mahapatra DR. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteo-porosis in animal model. Eur J Pharm Sci. 2015;66:173-83.

  130. Weitzmann MN, Ha S-W, Vikulina T, Roser-Page S, Lee J-K, Beck GR Jr. Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomed Nanotechnol Biol Med. 2015;11(4):959-67.

  131. Ryu T-K, Kang R-H, Jeong K-Y, Jun D-R, Koh J-M, Kim D, Bae SK, Choi S-W. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release. 2016;232:152-60.

  132. Cai M, Yang L, Zhang S, Liu J, Sun Y, Wang X. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int J Nanomedicine. 2017;12:7469-82.

  133. Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: Release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnology. 2021;19(1):209.

  134. Liu L, Jin R, Duan J, Yang L, Cai Z, Zhu W, Nie Y, He J, Xia C, Gong Q. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomater. 2020;103:281-92.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain