Inscrição na biblioteca: Guest
Critical Reviews™ in Biomedical Engineering

Publicou 6 edições por ano

ISSN Imprimir: 0278-940X

ISSN On-line: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Uncovering the Mechanisms of Deep Brain Stimulation for Parkinson's Disease through Functional Imaging, Neural Recording, and Neural Modeling

Volume 30, Edição 4-6, 2002, pp. 249-281
DOI: 10.1615/CritRevBiomedEng.v30.i456.20
Get accessGet access

RESUMO

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders, including Parkinson's disease. However, understanding of the mechanisms of action of DBS remains elusive. The goal of this review is to address our understanding of the effects of high-frequency stimulation within the central nervous system based on results from functional imaging, neural recording, and neural modeling experiments. Using these results, we address the main hypotheses on the mechanisms of action of DBS and conclude that stimulation-induced desynchronization of network oscillations represents the hypothesis that best explains the presently available data.

CITADO POR
  1. Vaillancourt David E., Prodoehl Janey, Sturman Molly M., Bakay Roy A.E., Metman Leo Verhagen, Corcos Daniel M., Effects of deep brain stimulation and medication on strength, bradykinesia, and electromyographic patterns of the ankle joint in Parkinson's disease, Movement Disorders, 21, 1, 2006. Crossref

  2. Karimi M., Golchin N., Tabbal S. D., Hershey T., Videen T. O., Wu J., Usche J. W. M., Revilla F. J., Hartlein J. M., Wernle A. R., Mink J. W., Perlmutter J. S., Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease, Brain, 131, 10, 2008. Crossref

  3. Gross Robert E., Krack Paul, Rodriguez-Oroz Maria C., Rezai Ali R., Benabid Alim-Louis, Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor, Movement Disorders, 21, S14, 2006. Crossref

  4. Gwinn Ryder P., Spencer Dennis D., Spencer Susan S., Duckrow Robert B., Vives Kenneth, Wu Kun, Tkeshelashvili David, Zaveri Hitten P., Local spatial effect of 50 Hz cortical stimulation in humans, Epilepsia, 49, 9, 2008. Crossref

  5. TANEI Takafumi, KAJITA Yasukazu, NIHASHI Takashi, KANEOKE Yoshiki, TAKEBAYASHI Shigenori, NAKATSUBO Daisuke, WAKABAYASHI Toshihiko, Changes in Regional Blood Flow Induced by Unilateral Subthalamic Nucleus Stimulation in Patients With Parkinson's Disease, Neurologia medico-chirurgica, 49, 11, 2009. Crossref

  6. Yousif Nada, Liu Xuguang, Modeling the current distribution across the depth electrode–brain interface in deep brain stimulation, Expert Review of Medical Devices, 4, 5, 2007. Crossref

  7. McIntyre Cameron C, Miocinovic Svjetlana, Butson Christopher R, Computational analysis of deep brain stimulation, Expert Review of Medical Devices, 4, 5, 2007. Crossref

  8. Coenen Volker A., Schlaepfer Thomas E., Maedler Burkhard, Panksepp Jaak, Cross-species affective functions of the medial forebrain bundle—Implications for the treatment of affective pain and depression in humans, Neuroscience & Biobehavioral Reviews, 35, 9, 2011. Crossref

  9. Cheung S.W., Larson P.S., Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC), Neuroscience, 169, 4, 2010. Crossref

  10. Butson Christopher R., McIntyre Cameron C., Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation, Clinical Neurophysiology, 118, 8, 2007. Crossref

  11. Liu Bingfang, Ma Jun, Gao Erjing, He Yu, Cui Fuzhai, Xu Qunyuan, Development of an artificial neuronal network with post-mitotic rat fetal hippocampal cells by polyethylenimine, Biosensors and Bioelectronics, 23, 8, 2008. Crossref

  12. Walckiers Grégoire, Fuchs Benjamin, Thiran Jean-Philippe, Mosig Juan R, Pollo Claudio, Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation, Journal of Neuroscience Methods, 186, 1, 2010. Crossref

  13. Bellinger S C, Miyazawa G, Steinmetz P N, Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study, Journal of Neural Engineering, 5, 3, 2008. Crossref

  14. Merrill Daniel R., Bikson Marom, Jefferys John G.R., Electrical stimulation of excitable tissue: design of efficacious and safe protocols, Journal of Neuroscience Methods, 141, 2, 2005. Crossref

  15. Miocinovic Svjetlana, Lempka Scott F., Russo Gary S., Maks Christopher B., Butson Christopher R., Sakaie Ken E., Vitek Jerrold L., McIntyre Cameron C., Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation, Experimental Neurology, 216, 1, 2009. Crossref

  16. Coenen Volker Arnd, Schlaepfer Thomas E., Allert Niels, Mädler Burkhard, Diffusion Tensor Imaging and Neuromodulation, in Emerging Horizons in Neuromodulation - New Frontiers in Brain and Spine Stimulation, 107, 2012. Crossref

  17. Carron R., Chabardès S., Hammond C., Les mécanismes d’action de la stimulation cérébrale à haute fréquence. Revue de la littérature et concepts actuels, Neurochirurgie, 58, 4, 2012. Crossref

  18. H. Lee Kendall, D. Blaha Charles, Bledsoe Jonathan M., Mechanisms of Action of Deep Brain Stimulation, in Neuromodulation, 2009. Crossref

  19. McIntyre Cameron C., Computational Modeling of Deep Brain Stimulation, in Neuromodulation, 2009. Crossref

  20. Chomiak T., Hu B., Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain, The Journal of Physiology, 579, 2, 2007. Crossref

  21. Karkare Vaibhav, Gibson Sarah, Markovic Dejan, A 75-µW, 16-Channel Neural Spike-Sorting Processor With Unsupervised Clustering, IEEE Journal of Solid-State Circuits, 48, 9, 2013. Crossref

  22. Patel C.B., Sherman D.L., Paul J.S., Zhang N., Mirski M.A., Residual entropy reveals effects of deep brain stimulation on neural activity in PTZ-induced epilepsy, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), 2003. Crossref

  23. Walckiers Gregoire, Pollo Claudio, Mosig Juan R., A new approach to model boundary conditions in finite element method analysis of deep brain stimulation, 2006 First European Conference on Antennas and Propagation, 2006. Crossref

  24. Zhang Beinuo, Jiang Zhewei, Wang Qi, Seo Jae-Sun, Seok Mingoo, A neuromorphic neural spike clustering processor for deep-brain sensing and stimulation systems, 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2015. Crossref

  25. Blaha Charles D., Chapter 17 Theories of Deep Brain Stimulation Mechanisms, in Deep Brain Stimulation, 2016. Crossref

  26. McIntyre Cameron C., Grill Warren M., Sherman David L., Thakor Nitish V., Cellular Effects of Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition, Journal of Neurophysiology, 91, 4, 2004. Crossref

  27. (Brian) Paek Seungleal, Kale Rajas P., Wininger Katheryn M., Lujan J. Luis, Physiological Monitoring in Deep Brain Stimulation: Toward Closed-Loop Neuromodulation Therapies, in Emerging Trends in Neuro Engineering and Neural Computation, 2017. Crossref

  28. Lavano Angelo, Beuter Anne, Parkinson’s Disease: Deep Brain Stimulation, in Encyclopedia of Computational Neuroscience, 2018. Crossref

  29. Lee Kendall H., Mosier Elizabeth M., Blaha Charles D., Mechanisms of Action of Deep Brain Stimulation, in Neuromodulation, 2018. Crossref

  30. Ineichen Christian, Shepherd Naomi Ruth, Sürücü Oǧuzkan, Understanding the Effects and Adverse Reactions of Deep Brain Stimulation: Is It Time for a Paradigm Shift Toward a Focus on Heterogenous Biophysical Tissue Properties Instead of Electrode Design Only?, Frontiers in Human Neuroscience, 12, 2018. Crossref

  31. Leondopulos Stathis S., Micheli-Tzanakou Evangelia, Advances Toward Closed-Loop Deep Brain Stimulation, in Computational Neuroscience, 38, 2010. Crossref

  32. Fodstad H., Hariz M., Electricity in the treatment of nervous system disease, in Operative Neuromodulation, 97/1, 2006. Crossref

  33. Merrill Daniel R., The Electrochemistry of Charge Injection at the Electrode/Tissue Interface, in Implantable Neural Prostheses 2, 2010. Crossref

  34. Beuter Anne, Parkinson’s Disease: Deep Brain Stimulation, in Encyclopedia of Computational Neuroscience, 2014. Crossref

  35. Choi Charles T. M., Lee Yen-Ting, Modeling Deep Brain Stimulation, in 13th International Conference on Biomedical Engineering, 23, 2009. Crossref

  36. Rasche D., Siebert S., Stippich C., Kress B., Nennig E., Sartor K., Tronnier V. M., Epidurale Rückenmarkstimulation bei Postnukleotomiesyndrom, Der Schmerz, 19, 6, 2005. Crossref

  37. Leung T. C. H., Lui C. N. P., Chen L. W., Yung W. H., Chan Y. S., Yung K. K. L., Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats, ACS Chemical Neuroscience, 3, 1, 2012. Crossref

  38. Banerjee Arnab, Nag Sudip, Energy-Efficient Electrical Stimulation Systems, in Handbook of Neuroengineering, 2021. Crossref

  39. Perlmutter Joel S., Mink Jonathan W., DEEP BRAIN STIMULATION, Annual Review of Neuroscience, 29, 1, 2006. Crossref

  40. Liu Jinsha, Ting Joey Paolo, Al-Azzam Shams, Ding Yun, Afshar Sepideh, Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases, International Journal of Molecular Sciences, 22, 6, 2021. Crossref

  41. Khadka Niranjan, Harmsen Irene E., Lozano Andres M., Bikson Marom, Bio-Heat Model of Kilohertz-Frequency Deep Brain Stimulation Increases Brain Tissue Temperature, Neuromodulation: Technology at the Neural Interface, 23, 4, 2020. Crossref

  42. Lavano Angelo, Beuter Anne, Parkinson’s Disease: Deep Brain Stimulation, in Encyclopedia of Computational Neuroscience, 2022. Crossref

  43. Lee Kendall H., Blaha Charles D., Garris Paul A., Mohseni Pedram, Horne April E., Bennet Kevin E., Agnesi Filippo, Bledsoe Jonathan M., Lester Deranda B., Kimble Chris, Min Hoon-Ki, Kim Young-Bo, Cho Zang-Hee, Evolution of Deep Brain Stimulation: Human Electrometer and Smart Devices Supporting the Next Generation of Therapy, Neuromodulation: Technology at the Neural Interface, 12, 2, 2009. Crossref

  44. McIntyre Cameron C, Savasta Marc, Kerkerian-Le Goff Lydia, Vitek Jerrold L, Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both, Clinical Neurophysiology, 115, 6, 2004. Crossref

  45. McIntyre Cameron C., Mori Susumu, Sherman David L., Thakor Nitish V., Vitek Jerrold L., Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus, Clinical Neurophysiology, 115, 3, 2004. Crossref

  46. Sajib Saurav Z. K., Sadleir Rosalind, Magnetic Resonance Current Density Imaging (MR-CDI), in Electrical Properties of Tissues, 1380, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain