Inscrição na biblioteca: Guest
Critical Reviews™ in Biomedical Engineering

Publicou 6 edições por ano

ISSN Imprimir: 0278-940X

ISSN On-line: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Progress in Excision Methods of Bone Materials

Volume 50, Edição 4, 2022, pp. 31-49
DOI: 10.1615/CritRevBiomedEng.2022045860
Get accessGet access

RESUMO

Bone resection is a common technique in modern surgery, which can be divided into contact (such as mechanical osteotomy and ultrasonic osteotomy) and non-contact (such as laser osteotomy). Irrespective of the excision method, it causes processing damage to natural bone material, thus affecting bone healing. To reduce the machining damage in bone resection, different machining variables (cutting fluid temperature, feed rate, rotational speed, and ultrasonic frequency) were considered to explore the selection of various cutting conditions. This paper reviews the excision of natural bone materials including mechanical osteotomy, laser osteotomy, and ultrasonic osteotomy, especially traditional drilling and ultrasonic cutting, which represent the traditional and prospective methods of bone excision technology, respectively. Finally, the differences between methods are emphasized and the future trends in osteotomy technology and condition control during osteotomy are analyzed.

Figures

  • Bone structure
  • Thermal effects on bone materials during bone cutting
  • (A) External cooling for bone drilling. (B) Internal cooling of bone drilling.
  • Kinematics of vibration-assisted drilling
  • (A) Effect of radius on axial force. (B) Effect of center distance on axial force (reprinted with permission from
Elsevier, copyright 202136).
  • Cutting-edge temperature model
  • Fresh-milled bone temperature during high-speed bone milling a function of feed rate and spindle speed (reprinted with permission from Elsevier, copyright 201837)
  • (A) Cutting-edge temperature at different feed rates. (B) Temperature of bone material at different feeding
rates. (C) Cutting-edge temperature at different cutting depths. (D) Temperature of bone material at different cutting
depths (reprinted with permission from Elsevier, copyright 202012).
  • (A) Overview of atomization cooling system. (B) Cooling chamber. (C) Close-up view of skeletal workpieces,
grinding wheels, and nozzles for atomization cooling (reprinted with permission from Elsevier, copyright 201346)
  • Theoretical temperature curve (reprinted with permission from Elsevier, copyright 201747)
  • Temperature-monitoring concept (reprinted with permission from Elsevier, copyright 201349)
  • Typical grinding force signals under different cooling conditions. Variances are expressed as means ± standard deviation. (a) drying; (b) dripping; (c) fog; and (d) NJMC (reprinted with permission from Elsevier, copyright
2017).47
  • Femtosecond laser osteotomy process
  • Structure and principle of ultrasonic bone knife
  • Ultrasonic osteotomy
  • Necrosis rate at peak temperature (reprinted with permission from Elsevier, copyright 201678)
Referências
  1. Bai W, Shu L, Sun R, Xu J, Silberschmidt VV, Sugita N. Mechanism of material removal in orthogonal cutting of cortical bone. J Mech Behav Biomed Mater. 2020;104:103618.

  2. Amewoui F, Le Coz G, Bonnet AS, Moufki A. An analytical modeling with experimental validation of bone temperature rise in drilling process. Med Eng Phys. 2020;84:151-60.

  3. Minnaard J, Kleipool RP, Baars W, Dankelman J, Stufkens S, Horeman T. A new bone-cutting approach for minimally invasive surgery. Med Eng Phys. 2021;87:56-62.

  4. Kita R, Yoshino A, Mano R, Nakamura S, Kondo S. Triangular-shaped lingual osteotomy using a bone saw in sagittal split ramus osteotomy. Adv Oral Maxillofac Surg. 2021;3:100133.

  5. Enokida M, Kanaya H, Uehara K, Ueki M, Nagashima H. An experimental comparative study of drilling efficiency and temperature elevation with unmodified and modified medical drills in pig tibia bone. Heliyon. 2019;5(8):e02189.

  6. Shu L, Li S, Terashima M, Bai W, Hanami T, Hasegawa R, Sugita N. A novel self-centring drill bit design for low-trauma bone drilling. Int J Mach Tools Manuf. 2020;154:103568.

  7. Puangmali P, Jetdumronglerd S, Wongratanaphisan T, Cole MOT. Sensorless stepwise breakthrough detection technique for safe surgical drilling of bone. Mechatronics. 2020;65:102306.

  8. Shu L, Sugita N. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. J Mech Behav Biomed Mater. 2020;103:103599.

  9. Singh G, Babbar A, Jain V, Gupta D. Comparative statement for diametric delamination in drilling of cortical bone with conventional and ultrasonic assisted drilling techniques. J Orthop. 2021;25:53-8.

  10. Bai W, Shu L, Sun R, Xu J, Silberschmidt VV, Sugita N. Improvements of material removal in cortical bone via impact cutting method. J Mech Behav Biomed Mater. 2020;108:103791.

  11. Alam K, Al-Ghaithi A, Piya S, Saleem A. In-vitro experimental study of histopathology of bone in vibrational drilling. Med Eng Phys. 2019;67:78-87.

  12. Chen Q, Liu Y, Dong Q. Modeling and experimental validation on temperature diffusion mechanism in highspeed bone milling. J Mater Process Technol. 2020;286: 116810.

  13. Dahibhate RV, Jaju SB, Sarode RI. Development of mathematical model for prediction of bone drilling temperature. Mater Today Proc. 2021;38:2732-6.

  14. Babbar A, Jain V, Gupta D. Thermogenesis mitigation using ultrasonic actuation during bone grinding: A hybrid approach using CEM43C and Arrhenius model. J Braz Soc Mech Sci Eng. 2019;41(10):401.

  15. Boa K, Barrak I, Varga Jr E, Joob-Fancsaly A, Varga E, Piffko J. Intraosseous generation of heat during guided surgical drilling: An ex vivo study of the effect of the temperature of the irrigating fluid. Br J Oral Maxillofac Surg. 2016;54(8):904-8.

  16. Cseke A, Heinemann R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Med Eng Phys. 2018;51:24-30.

  17. Shu L, Bai W, Shimada T, Ying Z, Li S, Sugita N. Thermographic assessment of heat-induced cellular damage during orthopedic surgery. Med Eng Phys. 2020;83:100-5.

  18. Wu DM, Zhang LZ, Liu S. Research on cutting temperature in bone cutting surgery. In: Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (AIM); 7-11 July 2015; Busan, Korea. New York: IEEE; 2015.

  19. Dahotre NB, Santhanakrishnan S, Joshi SS, Khan RJK, Fick DP, Robertson WB, Sheh RK, Ironside CN. Integrated experimental and computational approach to laser machining of structural bone. Med Eng Phys. 2018;51:56-66.

  20. Zhang Y, Xu LL, Wang CY, Chen ZH, Han S, Chen B, Chen J. Mechanical and thermal damage in cortical bone drilling in vivo. Proc Inst Mech Eng Part H-J Eng Med. 2019;233(6):621-35.

  21. Domitran Z, Brezak D, Staroveski T, Klaic M, Bruketa T. Experimental and finite element analysis of surgical drill bits with and without irrigation channel - A case study approach. Med Eng Phys. 2018;62:29-35.

  22. Bai XF, Hou SJ, Li K, Qu YX, Zhu WD. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies. Med Eng Phys. 2020;83:73-81.

  23. Robles-Linares JA, Axinte D, Liao Z, Gameros A. Machining-induced thermal damage in cortical bone: Necrosis and micro-mechanical integrity. Mater Des. 2021;197:109215.

  24. Bai X, Hou S, Li K, Qu Y, Zhang T. Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods. Med Eng Phys. 2019;69:1-7.

  25. Li SH, Shu LM, Kizaki T, Bai W, Terashima M, Sugita N. Cortical bone drilling: A time series experimental analysis of thermal characteristics. J Manuf Process. 2021;64:606-19.

  26. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2008;128(1):71-7.

  27. McCann AC, Berger C, Mahmoud AF, Kuan EC, Malhotra NR, O'Malley Jr BW. Novel approach using transoral robotic surgery for resection of cervical spine chordoma. Laryngoscope. 2019;129(6):1395-9.

  28. Isler SC, Cansiz E, Tanyel C, Soluk M, Selvi F, Cebi Z. The effect of irrigation temperature on bone healing. Int J Med Sci. 2011;8(8):704-8.

  29. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop. 2012;36(7):1449-56.

  30. Bruketa T, Augustin G, Staroveski T, Klaic M, Brezak D, Capak H, Dobric I. Distribution of coolant during drilling with open type internally cooled medical steel drill. Injury. 2021;52:S32-7.

  31. Nam O, Yu W, Choi MY, Kyung HM. Monitoring of bone temperature during osseous preparation for orthodontic micro-screw implants: Effect of motor speed and ressure. Key Eng Mater. 2006;321-323:1044-7.

  32. Lilly Mercy J, Prakash S, Palanikumar K, Akshay Kumar B, Venugopal Reddy D. Comparison and multiresponse optimisation of drilling characteristics of bovine bones with varying density. Mater Today Proc. 2019;16:918-26.

  33. Akhbar MFA, Yusoff AR. Multi-objective optimization of surgical drill bit to minimize thermal damage in bone-drilling. Appl Therm Eng. 2019;157:113594.

  34. Juhasz L, Maas J, Borovac B. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics. 2011;21(1):329-38.

  35. Li S, Zhang D, Shao Z, Tang H. Information feedback self-adaptive harmony search algorithm for the bovine cortical bone vibration-assisted drilling optimization. Measurement. 2020;149:107020.

  36. Hu Y, Chen X, Chen J, Zhang C, Fu W. The influence of crescent texture parameters on the axial force when drilling bone. Med Eng Phys. 2021;87:87-94.

  37. Al-Abdullah KIA-l, Abdi H, Lim CP, Yassin WA. Force and temperature modelling of bone milling using artificial neural networks. Measurement. 2018;116:25-37.

  38. Li Q, Du Z, Yu H. Temperature estimation for robotic bone milling surgery based on heat generation and conduction. Measurement. 2021;178:109411.

  39. Liao Z, Axinte D, Gao D. On modelling of cutting force and temperature in bone milling. J Mater Process Technol. 2019;266:627-38.

  40. Tai BL, Zhang L, Wang AC, Sullivan S, Wang G, Shih AJ. Temperature prediction in high speed bone grinding using motor PWM signal. Med Eng Phys. 2013;35(10):1545-9.

  41. Babbar A, Jain V, Gupta D. Neurosurgical bone grinding. In: Biomanufacturing. Berlin: Springer; 2019. p. 137-55.

  42. Babbar A, Jain V, Gupta D. Thermo-mechanical aspects and temperature measurement techniques of bone grinding. Mater Today Proc. 2020;33:1458-62.

  43. Babbar A, Jain V, Gupta D. In vivo evaluation of machining forces, torque, and bone quality during skull bone grinding. Proc Inst Mech Eng H. 2020;234(6):626-38.

  44. Babbar A, Jain V, Gupta D, Agrawal D. Finite element simulation and integration of CEM43 degrees C and Arrhenius models for ultrasonic-assisted skull bone grinding: A thermal dose model. Med Eng Phys. 2021;90:9-22.

  45. Lanata-Flores A, Nascimento EHL, Goulart DR, Haiter-Neto F, Moraes M, Albergaria-Barbosa JR. In vitro comparison of dental implant site preparation with ultra-sonic system and conventional rotatory system. Oral Surgery. 2019;13(2):108-16.

  46. Zhang L, Tai BL, Wang AC, Shih AJ. Mist cooling in neurosurgical bone grinding. CIRP Annals. 2013;62(1):367-70.

  47. Yang M, Li C, Zhang Y, Wang Y, Li B, Jia D, Hou Y, Li R. Research on microscale skull grinding temperature field under different cooling conditions. Appl Therm Eng. 2017;126:525-37.

  48. Zhang L, Tai BL, Wang G, Zhang K, Sullivan S, Shih AJ. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys. 2013;35(10):1391-8.

  49. Tai BL, Zhang L, Wang A, Sullivan S, Shih AJ. Neuro-surgical bone grinding temperature monitoring. Procedia CIRP. 2013;5:226-30.

  50. Burgner J, Mueller M, Raczkowsky J, Woern H. Robot assisted laser bone processing: Marking and cutting experiments. In: Proceedings of IEEE Conference on Advanced Robotics; 22-26 June 2009; Munich, Germany. New York: IEEE; 2009.

  51. Eyrich GKH. Laser-osteotomy induced changes in bone. Med Laser Appl. 2005;20(1):25-36.

  52. Baek KW, Deibel W, Marinov D, Griessen M, Bruno A, Zeilhofer HF, Cattin P, Juergens P. Clinical applicability of robot-guided contact-free laser osteotomy in cranio-maxillo-facial surgery: In-vitro simulation and in-vivo surgery in minipig mandibles. Br J Oral Maxillofac Surg. 2015;53(10):976-81.

  53. Shimokita R, Okihara S, Eura S, Eda H. Evaluation of bone carbonization by CO2 laser osteotomy. In: Proceedings of IEEE Conference on World Automation Congress; 28 Sept-2 Oct 2008; Waikoloa, HI, USA. New York: IEEE; 2008.

  54. Zhang XZ, Zhan ZL, Liu NR, Xie SS, Ye Q. The infulence of water layer thickness on microstructure changes of bone tissue ablated with pulse CO2 laser: An SEM evaluation. In: Proceedings of IEEE Conference on Symposium on Photonics and Optoelectronics; 21-23 May 2012; Shanghai, China. New York: IEEE; 2012.

  55. Zhang XZ, Zhan ZL, Xie SS, Ye Q. Crater morphology and thermal injury of bovine shank bone ablated by pulse CO2 laser with different defocusing conditions. In: Proceedings of IEEE Conference on Symposium on Photonics and Optoelectronics; 14-16 Aug 2009; Wuhan, China. New York: IEEE; 2009.

  56. Papadaki M, Doukas A, Farinelli WA, Kaban L, Troulis M. Vertical ramus osteotomy with Er:YAG laser: A feasibility study. Int J Oral Maxillofac Surg. 2007;36(12):1193-7.

  57. Padoin E, Santos IF, Perondi EA, Menuzzi O, Gonjalves JF. Topology optimization of piezoelectric macro-fiber composite patches on laminated plates for vibration suppression. Struct Multidiscipl Optim. 2018;59(3):941-57.

  58. Cloutier M, Girard B, Peel SA, Wilson D, Sandor GK, Clokie CM, Miller D. Calvarial bone wound healing: A comparison between carbide and diamond drills, Er:YAG and Femtosecond lasers with or without BMP-7. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):720-8.

  59. Augello M, Deibel W, Nuss K, Cattin P, Jurgens P. Comparative microstructural analysis of bone osteotomies after cutting by computer-assisted robot-guided laser osteotome and piezoelectric osteotome: An in vivo animal study. Lasers Med Sci. 2018;33(7):1471-8.

  60. Jae-Hung Han IL. Analysis of composite plates with piezo-electric actuators for vibration control using layerwise displacement theory. Compos B Eng. 1998;373-1:621-32.

  61. Augello M, Baetscher C, Segesser M, Zeilhofer HF, Cattin P, Juergens P. Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO((R))) - A study on applicability and effectiveness in human cadavers. J Craniomaxillofac Surg. 2018;46(10):1850-5.

  62. Cangueiro LT, Vilar R. Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone. Appl Surf Sci. 2013;283:1012-7.

  63. Cangueiro LT, Vilar R, Botelho do Rego AM, Muralha VS. Femtosecond laser ablation of bovine cortical bone. J Biomed Opt. 2012;17(12):125005.

  64. Petrov T, Pecheva E, Walmsley AD, Dimov S. Femtosecond laser ablation of dentin and enamel for fast and more precise dental cavity preparation. Mater Sci Eng C Mater Biol Appl. 2018;90:433-8.

  65. Girard B, Yu D, Armstrong MR, Wilson BC, Clokie CM, Miller RJ. Effects of femtosecond laser irradiation on osseous tissues. Lasers Surg Med. 2007;39(3):273-85.

  66. Kang YK, Park HC, Kim J, Choi S-B. Interaction of active and passive vibration control of laminated composite beams with piezoceramic sensors actuators. Mater Des. 2001;23:277-86.

  67. Detchou DK, Dimentberg R, Vaughan KA, Kolster R, Braslow BM, Malhotra NR. Navigated ultrasonic osteotomy to aid in en bloc chordoma resection via spondylectomy. World Neurosurg. 2020;143:319-24.

  68. Detchou DK, Glauser G, Dimentberg R, Schuster JM, Malhotra NR. Case series of ultrasonic navigated osteotomy for the treatment of spinal chordomas. World Neurosurg. 2021;150:e347-52.

  69. Keyhan SO, Poorian B, Fallahi HR. Piezoelectric technology in rhinoplasty. Oral Maxillofac Surg Clin North Am. 2021;33(1):23-30.

  70. Lin CW, Chang CC, Chen HT, Chen YJ, Lin CS, Hsu HC, Tsou HK. 3D real-time image-guided navigation spine corpectomy with ultrasonic bone cutter: Technical note. World Neurosurg. 2020;135:197-204.

  71. Franzini A, Legnani F, Beretta E, Prada F, DiMeco F, Visintini S, Franzini A. Piezoelectric surgery for dorsal spine. World Neurosurg. 2018;114:58-62.

  72. Steiert C, Masalha W, Grauvogel TD, Roelz R, Klingler JH, Heiland DH, Beck J, Scheiwe C, Grauvogel J. Piezo-surgery for safe and efficient petrous bone cutting in cerebellopontine angle and petroclival meningioma surgery. J Clin Neurosci. 2021;89:319-28.

  73. Kokuryo S, Habu M, Kita R, Katsuki T, Tominaga K, Yoshioka I. Comparison of the effects of ultrasonic and conventional surgery on the neurosensory disturbance after bilateral sagittal split osteotomy. J Oral Maxillofac Surg. 2018;76(7):1539-45.

  74. Dammous S, Dupont Q, Gilles R. Three-dimensional computed tomographic evaluation of bilateral sagittal split osteotomy lingual fracture line and le fort I pterygomaxillary separation in orthognathic surgery using cadaver heads: Ultrasonic osteotome versus conventional saw. J Oral Maxillofac Surg. 2015;73(6):1169-80.

  75. Beziat JL, Bera JC, Lavandier B, Gleizal A. Ultrasonic osteotomy as a new technique in craniomaxillofacial surgery. Int J Oral Maxillofac Surg. 2007;36(6):493-500.

  76. Al-Delayme RMA. Randomized clinical study comparing piezoelectric surgery with conventional rotatory osteotomy in mandibular third molars surgeries. Saudi Dent J. 2021;33(1):11-21.

  77. Tang H, Deng W, Sun Z, Wang Y, Li L, Ding Y, Zhou Y. Optimization of factors influencing temperature rise and thermal necrosis of a robot driven piezoelectric osteotomy in bovine cortical bone: An in vitro study using an orthogonal test design. Clin Biomech. 2019;70:249-56.

  78. Thereza-Bussolaro C, Galvan Galvan J, Pacheco-Pereira C, Flores-Mir C. Maxillary osteotomy complications in piezoelectric surgery compared to conventional surgical techniques: A systematic review. Int J Oral Maxillofac Surg. 2019;48(6):720-31.

  79. Demirbas AE, Bilge S, Celebi S, Kutuk N, Alkan A. Is ultrasonic bone scalpel useful in Le Fort I osteotomy? J Oral Maxillofac Surg. 2020;78(1):141.e1-10.

  80. Yamauchi K, Suzuki H, Yamaguchi Y, Saito S, Nogami S, Takahashi T. Pyramidal and posterior osseous release for maxillary superior/posterior mobilization using an ultrasonic bone-cutting device after Le Fort I osteotomy. J Craniomaxillofac Surg. 2020;48(2):170-5.

  81. Babbar A, Jain V, Gupta D, Agrawal D. Histological evaluation of thermal damage to osteocytes: A comparative study of conventional and ultrasonic-assisted bone grinding. Med Eng Phys. 2021;90:1-8.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain