Inscrição na biblioteca: Guest
Journal of Enhanced Heat Transfer

Publicou 8 edições por ano

ISSN Imprimir: 1065-5131

ISSN On-line: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

MOLECULAR STUDY OF CORE-SHELL RATIO EFFECT ON THERMOPHYSICAL PROPERTIES OF SIO2@AU-WATER NANOFLUID

Volume 30, Edição 4, 2023, pp. 19-38
DOI: 10.1615/JEnhHeatTransf.2023046713
Get accessGet access

RESUMO

Thermal conductivity (λ) and specific heat capacity (cp) are essential thermophysical properties related to thermal storage systems. Molecular simulations of the shell-to-total-radius ratios (Φ) of SiO2@ Au nanoparticle (NP) are used to investigate their impact on the cp and λ of water nanofluids (NFs) containing this NP. The roles of solid/liquid and solid/solid interfaces on cp and λ are identified by using the calculations of the vibrational density of state (VDOS) of the SiO2@Au nanoparticle, the core (SiO2 molecule), the shell (Au atom), and the thin layer of water molecules next to the particle surface. The effects of core-shell NPs on the characteristics of the base fluid are further understood by using the VDOS mismatch between the NP and the thin water layer and the radial distribution function of water molecules. The heat current contribution is discussed to view the λ increase mechanism of NF. It is found that cp increases with increasing Φ, while λ increases with decreasing Φ. The convection component and the virial term consisting of the heat current are considerable contributions. New correlations are proposed for calculating the cp and λ of NFs containing core-shell NPs, thus explaining the contributions of the components to cp and λ of NFs. The study of the effect of Φ on the thermophysical characteristics of these NFs provides molecular insight into the roles of the solid/liquid and solid/solid interfaces. These results contribute to the understanding of the thermophysical properties of core-shell NFs and their uses in solar thermal applications.

Referências
  1. Abu-Hamdeh, N., Bantan, R., Golmohammadzadeh, A., and Toghraie, D., The Thermal Properties of Water-Copper Nanofluid in the Presence of Surfactant Molecules Using Molecular Dynamics Simulation, J. Mol. Liq., vol. 325, Article ID 115149, 2021.

  2. Ali, H.M., Ed., HybridNanofluids for Convection Heat Transfer, Academic Press, 2020.

  3. Amininejad, S., Ivleva, N.P., and Baumann, T., Organic Coatings on Engineered Inorganic Nanoparticles, EGU General Assembly 2019, vol. 21, Paper No. EGU2019-14497-1, 2019.

  4. Aslfattahi, N., Saidur, R., Arifutzzaman, A., Sadri, R., Bimbo, N., Sabri, M.F.M., Maughan, P.A., Bouscarrat, L., Dawson, R.J., Said, S.M., Goh, B.T., and Sidik, N.A.C., Experimental Investigation of Energy Storage Properties and Thermal Conductivity of a Novel Organic Phase Change Material/MXene as a New Class of Nanocomposites, J. Energy Storage, vol. 27, Article ID 101115, 2020.

  5. Cao, L., Tang, F., and Fang, G., Synthesis and Characterization of Microencapsulated Paraffin with Titanium Dioxide Shell as Shape-Stabilized Thermal Energy Storage Materials in Buildings, Energy Build., vol. 72, pp. 31-37, 2014.

  6. Cao, Q. and Cui Z., Molecular Dynamics Simulations of the Effects of Surface Sinusoidal Nanostructures on Nanoscale Liquid Film Phase-Change, J. Therm. Sci., vol. 29, pp. 1076-1084, 2020.

  7. Chen, G.Q., Chen, S.P., Chang, K., and Su, H.L., Study of Heat Transfer of Finned Tube Heat Exchanger for Cryogenic Liquids, Vacuum Cryogenics, vol. 2007, no. 4, pp. 240-244, 2007.

  8. Chen, M., He, Y., Wang, X., and Hu, Y., Complementary Enhanced Solar Thermal Conversion Performance of Core-Shell Nanoparticles, Appl. Energy, vol. 211, pp. 735-742, 2018.

  9. Chen, S., Cheng, X., Li, Y., Wang, X., Zheng, H., and Zhong, H., Study on the Microstructures and Thermal Properties of SiO2 @ NaNO3 Microcapsule Thermal Storage Materials, Int. J. Energy Res., vol. 44, pp. 10008-10022, 2020.

  10. Chitra, B., Kumar, K.S., Manoj, D., and Kumar, S.M., Experimental Study to Enhance the Thermal Conductivity of Nanofluid, J. Eng. Technol., vol. 4, no. 4, pp. 272-278, 2013.

  11. Cui, W., Shen, Z., Yang, J., and Wu, S., Rotation and Migration of Nanoparticles for Heat Transfer Augmentation in Nanofluids by Molecular Dynamics Simulation, Case Stud. Therm. Eng., vol. 6, pp. 182-193, 2015.

  12. Deng, X., Wu, Z., and Wang, G., Thermal Conductivity and Heat Capacity of Water/phi Cellulose Nanofluids: A Molecular Dynamics Study, Int. J. Mod. Phys. B., vol. 34, no. 27, Article ID 2050248, 2020.

  13. Dogu^cu, D.K., Kizil, Q., Bicer, A., Sari, A., and Alkan, C., Microencapsulated n-Alkane Eutectics in Poly-styrene for Solar Thermal Applications, Sol. Energy, vol. 160, pp. 32-42, 2018.

  14. Gellings, P.J., Handbook of Solid State Electrochemistry, Boca Raton, FL: CRC Press, 2019.

  15. Grest, G.S., Nagel, S., Rahman, A., and Witten, T., Density of States and the Velocity Autocorrelation Function Derived from Quench Studies, J. Chem. Phys., vol. 74, pp. 3532-3534, 1981.

  16. Guo, Z., A Review on Heat Transfer Enhancement with Nanofluid, J. Enhanc. Heat Transf., vol. 27, no.1, pp. 1-70, 2020.

  17. Guo, Z., Cheng, L., Cao, H., Zhang, H., Huang, X., and Min, J., Heat Transfer Enhancement-A Brief Review of Literature in 2020 and Prospect, Heat Transf. Res., vol. 52, pp. 65-92, 2021.

  18. Honarkhah, R., Bakhshan, Y., Rahmati, M., and Khorshidi, J., Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermo-Physical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation, Environ. Energy Econ. Res., vol. 2, no. 1, pp. 21-36, 2018.

  19. Hong, Y., Zhang, J., Huang, X., and Zeng, X.C., Thermal Conductivity of a Two-Dimensional Phosphorene Sheet: A Comparative Study with Graphene, Nanoscale, vol. 7, no. 44, pp. 18716-18724, 2015.

  20. Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev., vol. A 31, no. 3, pp. 1695-1697, 1985.

  21. Jin, L., Noraldeen, S.F., Zhou, L., and Du, X., Effects of Solid/Liquid Interface on Size-Dependent Specific Heat Capacity of Nanoscale Water Films: Insight from Molecular Simulations, Fluid Phase Equilib., vol. 537, Article ID 113001, 2021a.

  22. Jin, L., Noraldeen, S.F., Zhou, L., and Du, X., Molecular Study on the Role of Solid/Liquid Interface in Specific Heat Capacity of Thin Nanofluid Film with Different Configurations, Fluid Phase Equilib., vol. 548, Article ID 113188, 2021b.

  23. Kang, H., Zhang, Y., and Yang, M., Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM Potential for Cu-Cu Interactions, Appl. Phys., vol. 103, pp. 1001-1008, 2011.

  24. Kulkarni, H.B., Kulkarni, R.M., Nadakatti, M.M., Gokak, G., and Deshpande, A.S., Thermal Conductivity Enhancement by Al2O3@Cu, Core@Shell Nanoparticle Suspensions in Nanofluid Coolant, Annales Chimie-Science Materiaux, vol. 43, pp. 23-28, 2019.

  25. Kumagai, T., Izumi, S., Hara, S., and Sakai, S., Development of Bond-Order Potentials That Can Reproduce the Elastic Constants and Melting Point of Silicon for Classical Molecular Dynamics Simulation, Comput. Mater. Sci., vol. 39, no. 2, pp. 457-464, 2007.

  26. Lee, J.W., Meade, A.J., Barrera, E., and Templeton, J., Thermal Transport Mechanisms in Carbon Nanotube-Nanofluids Identified from Molecular Dynamics Simulations, J. Heat Transf., vol. 137, Article ID 072401, 2015.

  27. Lee, S.L., Saidur, R., Sabri, M.F., and Min, T.K., Molecular Dynamic Simulation: Studying the Effects of Brownian Motion and Induced Micro-Convection in Nanofluids, Numer.-Heat Tr. A - Appl., vol. 69, pp. 643-658, 2016.

  28. Li, Z., Cui, L., Li, B., and Du, X., Enhanced Heat Conduction in Molten Salt Containing Nanoparticles: Insights from Molecular Dynamics, Int. J. Heat Mass Transf., vol. 153, Article ID 119578, 2020.

  29. Lin, Z., Huang, C., Huang, Z., and Zhen, W., Surface/Interface Influence on Specific Heat Capacity of Solid, Shell and Core-Shell Nanoparticles, Appl. Therm. Eng., vol. 127, pp. 884-888, 2017.

  30. Mao, Y. and Zhang, Y., Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models, Chem. Phys. Lett., vol. 542, pp. 37-41, 2012.

  31. Melinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., and Warot-Fonrose, B., Engineered Inorganic Core/Shell Nanoparticles, Phys. Rep., vol. 543, no. 3, pp. 163-197, 2014.

  32. Milanese, M., Iacobazzi, F., Colangelo, G., and Risi, A.D., An Investigation of Layering Phenomenon at the Liquid-Solid Interface in Cu and CuO Based Nanofluids, Int. J. Heat Mass Transf., vol. 103, pp. 564-571, 2016.

  33. Moldoveanu, G.M., Huminic, G., Minea, A.A., and Huminic, A., Experimental Study on Thermal Conductivity of Stabilized Al2O3 and SiO2 Nanofluids and Their Hybrid, Int. J. Heat Mass Transf., vol. 127, pp. 450-457, 2018.

  34. Moreira, L.M., Carvalho, E.A., Bell, M.J.V., Anjos, V., Sant'Ana, A.C., Alves, A.P.P., Fragneaud, B., Sena, L.A., Archanjo, B.S., and Achete, C.A., Thermo-Optical Properties of Silver and Gold Nanofluids, J. Therm. Anal. Calorim., vol. 114, no. 2, pp. 557-564. 2013.

  35. Mosavi, A., Hekmatifar, M., Alizadeh, A.A., Toghraie, D., Sabetvand, R., and Karimipour, A., The Molecular Dynamics Simulation of Thermal Manner of Ar/Cu Nanofluid Flow: The Effects of Spherical Barriers Size, J. Mol. Liq., vol. 319, Article ID 114183, 2020.

  36. Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids,Micro NanoLett., vol. 2, no. 3, pp. 67-71. 2007.

  37. O'Hanley, H., Buongiorno, J., McKrell, T., and Hu, L.W., Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry, Adv. Mech. Eng., vol. 4, Article ID 181079, 2012.

  38. Rizvi, S.M.M. and Shin, D., Specific Heat Capacity, Viscosity, and Thermal Stability of Carbonate-Based Molten Salt Nanofluids, J. Energy Storage, vol. 43, Article ID 103192, 2021.

  39. Rong, Z., Pan, G., Lu, J., Liu, S., Ding, J., Wang, W., and Lee, D.J., Ab-Initio Molecular Dynamics Study on Thermal Property of NaCl-CaCl2 Molten Salt for High-Temperature Heat Transfer and Storage, Renew. Energ., vol. 163, pp. 579-588, 2021.

  40. Roni, M.R., Shahadat, M.R., and Morshed, A.K., A Molecular Dynamics Study of the Effect of Nanoparticles Coating on Thermal Conductivity of Nanofluids,Micro NanoLett., vol. 16, pp. 221-226, 2021.

  41. Saaskilahti, K., Oksanen, J., Tulkki, J., and Volz, S., Spectral Mapping of Heat Transfer Mechanisms at Liquid-Solid Interfaces, Phys. Rev. E, vol. 93, no. 5, Article ID 052141, 2016.

  42. Sari, A., Thermal Energy Storage Characteristics of Myristic Acid-Palmitic Eutectic Mixtures Encapsulated in PMMA Shell, Sol. Energy Mater. Sol. Cells, vol. 193, pp. 1-6, 2019.

  43. Sedighi M. and Mohebbi, A., Investigation of Nanoparticle Aggregation Effect on Thermal Properties of Nanofluid by a Combined Equilibrium and Non-Equilibrium Molecular Dynamics Simulation, J. Mol. Liq., vol. 197, pp. 14-22, 2014.

  44. Shahrul, I.M., Mahbubul, I.M., Saidur, R., Sabri, M.F., Amalina, M.A., and Khaleduzzaman, S.S., Global Effects of MWCNT-W Nanofluid in a Shell and Tube Heat Exchanger, Adv. Mat. Res., vol. 832, pp. 154-159, 2013.

  45. Sheng, N., Zhu, C., Sakai, H., Akiyama, T., and Nomura, T., Synthesis of Al-25 wt% Si@Al2O3@Cu Microcapsules as Phase Change Materials for High Temperature Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, vol. 191, pp. 141-147, 2019.

  46. Shin, D. and Banerjee, D., Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications, Int. J. Heat Mass Transf., vol. 54, nos. 5-6, pp. 1064-1070, 2011.

  47. Solomon, L., Zheng, Y., Tuzla, K., Neti, S., and Oztekin, A., Analysis of an Encapsulated Phase Change Material-Based Energy Storage System for High-Temperature Applications, Int. J. Energy Res., vol. 42, pp. 2518-2535, 2018.

  48. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in't Veld, P. J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., and Plimpton, S.J., LAMMPS-A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales, Comput. Phys. Commun., vol. 271, Article ID 108171, 2022.

  49. Tom, R.T., Nair, A.S., Singh, N., Aslam, M., Nagendra, C.L., Philip, R., Vijayamohanan, K.P., and Pradeep, T., Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core-Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties, Langmuir, vol. 19, no. 8, pp. 3439-3445, 2003.

  50. VMD User's Guide, Theoretical and Computational Biophysics Group. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, from https://www.ks.uiuc.edu/ research/vmd/current/ug/, 2016.

  51. Wang, X. and Jing, D., Role of Solid-Liquid Interaction Energy on Anomalous Thermal Conductivity En-hancement in Well-Dispersed Dilute Nanofluids Studied by Equilibrium Molecular Dynamics, Chem. Phys, vol. 539, Article ID 110943, 2020.

  52. Xia, M., Song, Y., and Zhang, S., Specific Heat of Graphene Nanoribbons, Phys. Lett. A, vol. 375, no. 42, pp. 3726-3730, 2011.

  53. Yu, Y., Zhao, C., Tao, Y.B., Chen, X., and He, Y., Superior Thermal Energy Storage Performance of NaCl-SWCNT Composite Phase Change Materials: A Molecular Dynamics Approach, Appl. Energ., vol. 290, Article ID 116799, 2021.

  54. Yuan, H., Bai, H., Chen, H., Zhang, Z., An, H., and Tian, W., Synthesis and Properties of High Thermal Conductivity Ag Shell-Coated Phase Change Materials, Renew. Energ., vol. 179, pp. 395-405, 2021.

  55. Zhang, C., Hao, X.L., Wang, C.X., Wei, N., and Rabczuk, T., Thermal Conductivity of Graphene Nanoribbons under Shear Deformation: A Molecular Dynamics Simulation, Sci. Rep., vol. 7, no. 1, Article ID 41398, 2017.

  56. Zhang, L., Tian, L., Zhang, A., Jing, Y., and Qu, P., Molecular Dynamics Simulations of the Effects of a Nanoparticle Surface Adsorption Layer on the Thermal Conductivity of a Cu-Ar Nanofluid, Int. J. Thermophys., vol. 42, Article ID 44, 2021.

  57. Zhou, S. and Ni, R., Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid, Appl. Phys. Lett., vol. 92, Article ID 093123, 2008.

Próximos artigos

Flow Boiling Heat Transfer in Microchannel Heat Exchangers with Micro Porous Coating Surface Kuan-Fu Sung, I-Chuan Chang, Chien-Yuh Yang Enhancement Evaluation Criteria for Pool Boiling Enhancement Structures in Electronics Cooling: CHF Enhancement Ratio (ER-CHF) and Enhancement Index (EI) Maharshi Shukla, Satish Kandlikar Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials Wei Li In Memoriam of Professor Ralph L. Webb on the anniversary of his 90th birthday Wei Li Analysis of the Single-Blow Transient Testing Technique for Non-metallic Heat Exchangers Wentao Li, Kun Sun, Guoyan ZHOU, Xing Luo, Shan-Tung Tu, Stephan Kabelac, Ke Wang Evaluation of Heat Transfer Rate of Double-Layered Heat Sink Cooling System with High Energy Dissipation El Bachir Lahmer, Jaouad Benhamou, Youssef Admi, Mohammed Amine Moussaoui, Ahmed Mezrhab, Rakesh Kumar Phanden Experimental Investigation on Behavior of a Diesel Engine with Energy, Exergy, and Sustainability Analysis Using Titanium Oxide (Tio2) Blended Diesel and Biodiesel AMAN SINGH RAJPOOT, TUSHAR CHOUDHARY, ANOOP SHUKLA, H. CHELLADURAI, UPENDRA RAJAK, ABHINAV ANAND SINHA COLLISION MORPHOLOGIES OF SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS Xin Liu, Yiqing Guo, Jingchun Min, Xuan ZHANG, Xiaomin Wu Pool boiling heat transfer characteristics of porous nickel microstructure surfaces Kun-Man Yao, Mou Xu, Shuo Yang, Xi-Zhe Huang, Dong-chuan MO, Shu-Shen Lyu Field experimental investigation of the insulation deterioration characteristics of overhead pipeline for steam heating network Junguang Lin, Jianfa Zhao, Xiaotian Wang, Kailun Chen, Liang Zhang A parametric and comparative study on bare-tube banks and new-cam-shaped tube banks for waste heat recovery applications Ngoctan Tran, Jane-Sunn Liaw, Chi-Chuan Wang
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain