Inscrição na biblioteca: Guest
International Journal for Uncertainty Quantification

Publicou 6 edições por ano

ISSN Imprimir: 2152-5080

ISSN On-line: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

ADAPTIVE STRATIFIED SAMPLING FOR NONSMOOTH PROBLEMS

Volume 12, Edição 6, 2022, pp. 71-99
DOI: 10.1615/Int.J.UncertaintyQuantification.2022041034
Get accessGet access

RESUMO

Science and engineering problems subject to uncertainty are frequently both computationally expensive and feature nonsmooth parameter dependence, making standard Monte Carlo too slow, and excluding efficient use of accelerated uncertainty quantification methods relying on strict smoothness assumptions. To remedy these challenges, we propose an adaptive stratification method suitable for nonsmooth problems and with significantly reduced variance compared to Monte Carlo sampling. The stratification is iteratively refined and samples are added sequentially to satisfy an allocation criterion combining the benefits of proportional and optimal sampling. Theoretical estimates are provided for the expected performance and probability of failure to correctly estimate essential statistics. We devise a practical adaptive stratification method with strata of the same kind of geometrical shapes, and cost-effective refinement satisfying a greedy variance reduction criterion. A Python implementation of the presented methodology is available at https://pypi.org/project/adaptive-stratification. Numerical experiments corroborate the theoretical findings and exhibit speedups of up to three orders of magnitude compared to standard Monte Carlo sampling.

Referências
  1. Hosder, S.,Walters, R., and Balch, M., Efficient Uncertainty Quantification Applied to the Aeroelastic Analysis of a Transonic Wing, in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2008.

  2. Christie, M., Demyanov, V., and Erbas, D., Uncertainty Quantification for Porous Media Flows, J. Comput. Phys., 217(1):143-158, 2006.

  3. Tartakovsky, D.M. and Broyda, S., PDF Equations for Advective-Reactive Transport in Heterogeneous Porous Media with Uncertain Properties, J. Contam. Hydrol., 120-121:129-140, 2011.

  4. Palmer, T.N., Predicting Uncertainty in Forecasts of Weather and Climate, Rep. Prog. Phys., 63(2):71-116, 2000.

  5. Cabral Pereira, L., Sanchez, M., and do Nascimento Guimaraes, L.J., Uncertainty Quantification for Reservoir Geomechanics, Geomech. Energy Environ., 8:76-84, 2016.

  6. Kroese, D.P., Taimre, T., and Botev, Z.I., Handbook of Monte Carlo Methods, Hoboken, NJ: Wiley, 2011.

  7. Asmussen, S. and Glynn, P.W., Stochastic Simulation: Algorithms and Analysis, Vol. 57, New York: Springer, 2007.

  8. Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.

  9. Dick, J., Kuo, F.Y., and Sloan, I.H., High-Dimensional Integration: The Quasi-Monte Carlo Way, Acta Numer., 22:133-288, 2013.

  10. Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton, NJ: Princeton University Press, 2010.

  11. Cliffe, K.A., Giles, M.B., Scheichl, R., and Teckentrup, A.L., Multilevel Monte Carlo Methods and Applications to Elliptic PDEs with Random Coefficients, Comput. Visual Sci., 14(1):3-15, 2011.

  12. Giles, M.B., Multilevel Monte Carlo Methods, Acta Numer., 24:259-328, 2015.

  13. Haji-Ali, A.L., Nobile, F., and Tempone, R., Multi-Index Monte Carlo: When Sparsity Meets Sampling, Numer. Math., 132(4):767-806, 2016.

  14. Muller, F., Jenny, P., and Meyer, D.W., Multilevel Monte Carlo for Two Phase Flow and Buckley-Leverett Transport in Random Heterogeneous Porous Media, J. Comput. Phys., 250:685-702, 2013.

  15. Krumscheid, S. and Nobile, F., Multilevel Monte Carlo Approximation of Functions, SIAM/ASA J. Uncertain. Quantif., 6(3):1256-1293, 2018.

  16. Giles, M.B. and Haji-Ali, A.L., Multilevel Nested Simulation for Efficient Risk Estimation, SIAM/ASA J. Uncertain. Quantif., 7(2):497-525, 2019.

  17. Krumscheid, S., Nobile, F., and Pisaroni, M., Quantifying Uncertain System Outputs via the Multilevel Monte Carlo Method-Part I: Central Moment Estimation, J. Comput. Phys., 414:109466, 2020.

  18. Etore, P. and Jourdain, B., Adaptive Optimal Allocation in Stratified Sampling Methods, Methodol. Comput. Appl., 12(3):335-360, 2010.

  19. Press, W.H. and Farrar, G.R., Recursive Stratified Sampling for Multidimensional Monte Carlo Integration, Comput. Phys., 4(2):190-195, 1990.

  20. Etore, P., Fort, G., Jourdain, B., and Moulines, E., On Adaptive Stratification, Ann. Oper. Res., 89(1):127-154, 2011.

  21. Shields, M.D., Teferra, K., Hapij, A., and Daddazio, R.P., Refined Stratified Sampling for Efficient Monte Carlo Based Uncertainty Quantification, Reliab. Eng. Syst. Saf., 142:310-325, 2015.

  22. Shields, M.D., Refined Latinized Stratified Sampling: A Robust Sequential Sample Size Extension Methodology for High-Dimensional Latin Hypercube and Stratified Designs, Int. J. Uncertain. Quantif., 6(1):79-97, 2016.

  23. Shields, M.D., Adaptive Monte Carlo Analysis for Strongly Nonlinear Stochastic Systems, Reliab. Eng. Syst. Saf., 175:207-224, 2018.

  24. De Luigi, C. and Maire, S., Adaptive Integration and Approximation over Hyper-Rectangular Regions with Applications to Basket Options Pricing, Monte Carlo Methods Appl., 16:265-282, 12 2010.

  25. Witteveen, J.A.S. and Iaccarino, G., Simplex Stochastic Collocation with Random Sampling and Extrapolation for Nonhypercube Probability Spaces, SIAM J. Sci. Comput., 34(2):A814-A838, 2012.

  26. Jakeman, J.D., Narayan, A., and Xiu, D., Minimal Multi-Element Stochastic Collocation for Uncertainty Quantification of Discontinuous Functions, J. Comput. Phys., 242:790-808, 2013.

  27. Rushdi, A., Swiler, L.P., Phipps, E.T., D'Elia, M., and Ebeida, M.S., VPS: Voronoi Piecewise Surrogate Models For High-Dimensional Data Fitting, Int. J. Uncertain. Quantif., 7(1):1-21, 2017.

  28. Gorodetsky, A. and Marzouk, Y., Efficient Localization of Discontinuities in Complex Computational Simulations, SIAM J. Sci. Comput., 36(6):A2584-A2610, 2014.

  29. Vershynin, R., High-Dimensional Probability, Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 47, Cambridge, UK: Cambridge University Press, 2018.

  30. Serfling, R.J., Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons, Inc., 1980.

  31. DasGupta, A., Asymptotic Theory of Statistics and Probability, New York: Springer, 2008.

  32. Cochran, W.G., Sampling Techniques, 3rd ed., New York: John Wiley & Sons, 1977.

  33. Kuhn, H.W., Some Combinatorial Lemmas in Topology, IBM J. Res. Dev., 4(5):518-524, 1960.

  34. Cuvelier, F. and Scarella, G., Vectorized Algorithms for Regular Tessellations of d-Orthotopes and Their Faces, Working Paper or Preprint, November 2017.

  35. Welford, B.P., Note on a Method for Calculating Corrected Sums of Squares and Products, Technometrics, 4:419-420, 1962.

  36. Nordbotten, J. and Celia, M., Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation, Hoboken, NJ: Wiley, 2011.

  37. Poette, G., Despres, B., and Lucor, D., Uncertainty Quantification for Systems of Conservation Laws, J. Comput. Phys., 228(7):2443-2467, 2009.

  38. Tryoen, J., Le Maitre, O., Ndjinga, M., and Ern, A., Intrusive Galerkin Methods with Upwinding for Uncertain Nonlinear Hyperbolic Systems, J. Comput. Phys., 229(18):6485-6511, 2010.

  39. Pettersson, P., Iaccarino, G., and Nordstrom, J., A Stochastic Galerkin Method for the Euler Equations with Roe Variable Transformation, J. Comput. Phys., 257:481-500, 2014.

  40. MacMinn, C.W., Szulczewski, M.L., and Juanes, R., CO2 Migration in Saline Aquifers. Part 1. Capillary Trapping under Slope and Groundwater Flow, J. Fluid Mech., 662:329-351, 2010.

  41. Pettersson, P., Stochastic Galerkin Formulations for CO2 Transport in Aquifers: Numerical Solutions with Uncertain Material Properties, Transport Porous Med., 114(2):457-483, 2016.

  42. Yuan, F., Krumscheid, S., and Pettersson, P., Adaptive Stratification Library, accessed from https://pypi.org/project/adaptivestratification, 2022.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain