Inscrição na biblioteca: Guest
International Journal for Uncertainty Quantification

Publicou 6 edições por ano

ISSN Imprimir: 2152-5080

ISSN On-line: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

HAMILTONIAN MONTE CARLO IN INVERSE PROBLEMS. ILL-CONDITIONING AND MULTIMODALITY

Volume 13, Edição 1, 2023, pp. 69-93
DOI: 10.1615/Int.J.UncertaintyQuantification.2022038478
Get accessDownload

RESUMO

The Hamiltonian Monte Carlo (HMC) method allows sampling from continuous densities. Favorable scaling with dimension has led to wide adoption of HMC by the statistics community. Modern autodifferentiating software should allow more widespread usage in Bayesian inverse problems. This paper analyzes two major difficulties encountered using HMC for inverse problems: poor conditioning and multimodality. Novel results on preconditioning and replica exchange Monte Carlo parameter selection are presented in the context of spectroscopy. Recommendations are given for the number of integration steps as well as step size, preconditioner type and fitting, annealing form, and schedule. These recommendations are analyzed rigorously in the Gaussian case and shown to generalize in a fusion plasma reconstruction.

Referências
  1. Radford, N., MCMC Using Hamiltonian Dynamics, in Handbook of Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. Jones, and X.L. Meng, Eds., Vol. 54, Boca Raton, FL: CRC Press, pp. 113-162, 2011.

  2. Fichtner, A., Zunino, A., and Gebraad, L., Hamiltonian Monte Carlo Solution of Tomographic Inverse Problems, Geophys. J. Int., 216(2):1344-1363,2019.

  3. Bui-Thanh, T. and Girolami, M., Solving Large-Scale PDE-Constrained Bayesian Inverse Problems with Riemann Manifold Hamiltonian Monte Carlo, Inverse Probl., 30(11):114014,2014.

  4. Nagel, J.B. and Sudret, B., Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse Problems, ASCE-ASME J. Risk Uncertainty Eng. Syst, Part A: Civ. Eng, 2(3):B4015008, 2016.

  5. Dikovsky, M., Baltz, E.A., Von Behren, R., Geraedts, S., Kast, A., Langmore, I., Madams, T., Norgaard, P., Platt, J.C., Romero, J., and Roche, T., Multi-Instrument Bayesian Reconstruction of Plasma Shape Evolution in the C-2W Experiment, Phys. Plasmas, 28(6):062503, 2021.

  6. Conway, D., Simpson, J., Didana, Y., Rugari, J., and Heinson, G., Probabilistic Magnetotelluric Inversion with Adaptive Regu-Larisation Using the No-U-Turns Sampler, Pure Appl. Geophys, 175(8):2881-2894, 2018.

  7. Beskos, A., Pinski, F.J., Sanz-Serna, J.-M., and Stuart, A.-M., Hybrid Monte Carlo on Hilbert Spaces, Stochastic Process. Appl, 121(10):2201-2230,2011.

  8. Au, K.X., Graham, M.M., and Thiery, A.H., Manifold Lifting: Scaling MCMC to the Vanishing Noise Regime, Stat. Comput, arXiv:2003.03950, 2020.

  9. Betancourt, M., Byrne, S., Livingstone, S., and Girolami, M., The Geometric Foundations of Hamiltonian Monte Carlo, Bernoulli, 23(4A):2257-2298,2017.

  10. Calvetti, D. and Somersalo, E., Inverse Problems: From Regularization to Bayesian Inference, WIREs Comput. Stat., 10(3):e1427, 2018.

  11. Gelman, A., Vehtari, A., Simpson, D., Margossian, D.C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Biirkner, P.-C., and Modrak, M., Bayesian Workflow, Stat. Methodol., arXiv:2011.01808, 2020.

  12. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, Cambridge, MA: MIT Press, 2016.

  13. Farquhar, S., Smith, L., and Gal, Y., Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, Eds., pp. 4346-4357, 2020.

  14. Robert, C. and Casella, G., A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data, Stat. Sci., 26(1):102-115, 2011.

  15. Betancourt, M., A Conceptual Introduction to Hamiltonian Monte Carlo, Stat. Methodol., arXiv:1701.02434, 2017.

  16. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Biirkner, P.-C., Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC (with Discussion), Bayesian Anal., 16(2):667-718,2021.

  17. Lao, J., Suter, C., Langmore, I., Chimisov, C., Sax-ena, A., Sountsov, P., Moore, D., Saurous, R.A., Hoffman, M.D., and Dillon, J.V., tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware, Stat. Comput., arXiv:2002.01184, 2020.

  18. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., and Ghemawat, S., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Comput. Sci. Distrib. Paral. Cluster Comput, arXiv:1603.04467,2015.

  19. Frostig, R., Johnson, M.J., and Leary, C., Compiling Machine Learning Programs via High-Level Tracing, Accessed Jan. 2, 2022, from https://mlsys.org/Conferences/2019/doc/2018/146.pdf, 2022.

  20. Duane, S., Kennedy, A.D., Pendleton, B.J., and Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195(2):216-222, 1987.

  21. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Rid- dell, A., Stan: A Probabilistic Programming Language, J. Stat. Software, 76(1):1-32, 2017.

  22. Salvatier, J., Wiecki, T.V., and Fonnesbeck, C., Probabilistic Programming in Python Using PyMC3, PeerJ. Comput. Sci., 2:e55, 2016.

  23. Girolami, M. and Calderhead, B., Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods, J. R. Stat. Soc. B, 73(2):123-214,2011.

  24. Livingstone, S., Betancourt, M., Byrne, S., and Girolami, M., On the Geometric Ergodicity of Hamiltonian Monte Carlo, Stat. Comput, arXiv:1601.08057,2016.

  25. Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, New York: Springer, 2006.

  26. Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and Stuart, A., Optimal Tuning of the Hybrid Monte Carlo Algorithm, Bernoulli, 19(5A):1501-1534,2013.

  27. Betancourt, M., Byrne, S., and Girolami, M., Optimizing the Integrator Step Size for Hamiltonian Monte Carlo, Stat. Methodol, arXiv:1411.6669, 2014.

  28. Langmore, I., Dikovsky, M., Geraedts, S., Norgaard, P., and Von Behren, R., A Condition Number for Hamiltonian Monte Carlo, Stat. Comput, arXiv:1905.09813, 2020.

  29. Horn, R.A., Horn, R.A., and Johnson, C.R., Matrix Analysis, Oxford, U.K.: Cambridge University Press, 1990.

  30. Mangoubi, O., Pillai, N.S., and Smith, A., Does Hamiltonian Monte Carlo Mix Faster Than a Random Walk on Multimodal Densities, Math. Probab, arXiv:1808.03230,2018.

  31. Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Va-Sudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., and Saurous, R.A., TensorFlow Distributions, Comput. Sci. Mach. Learn., arXiv:1711.10604, 2017.

  32. Bai, Z., Methodologies in Spectral Analysis of Large Dimensional Random Matrices: A Review, Stat. Sinica, 9(3):611-662, 1999.

  33. Bose, A., Gangopadhyay, S., and Sen, A., Limiting Spectral Distribution of XX' Matrices, Ann. Inst. Henri Poincare Probab. Stat., 46(3):677-707, 2010.

  34. Hoffman, M.D., The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res, 15,2014.

  35. Andrieu, C. and Thoms, J., A Tutorial on Adaptive MCMC, Stat. Comput., 18(4):343-373, 2008.

  36. Swendsen, R.H. and Wang, J.S., Replica Monte Carlo Simulation of Spin Glasses, Phys. Rev. Lett., 57(21):2607-2609,1986.

  37. Neal, R.M., Annealed Importance Sampling, Stat. Comput., 11(2):125-139, 2001.

  38. Okabe, T., Kawata, M., Okamoto, Y., and Mikami, M., Replica-Exchange Monte Carlo Method for the Isobaric-Isothermal Ensemble, Chem. Phys. Lett., 335(5):435-439,2001.

  39. Syed, S., Bouchard-Cote, A., Deligiannidis, G., and Doucet, A., Non-Reversible Parallel Tempering: A Scalable Highly Parallel MCMC Scheme, J. R. Stat. Soc. B, 84(2):321-350, 2022.

  40. Bobkov, S. and Madiman, M., Concentration of the Information in Data with Log-Concave Distributions, Ann. Probab, 39(4):1528-1543, 2011.

  41. Kofke, D.A., On the Acceptance Probability of Replica-Exchange Monte Carlo Trials, J. Chem. Phys, 117(15):6911-6914, 2002.

  42. van der Sluis, A., Condition Numbers and Equilibration of Matrices, Numer. Math., 14(1):14-23, 1969.

  43. Laurent, B. and Massart, P., Adaptive Estimation of a Quadratic Functional by Model Selection, Ann. Stat., 28(5):1302-1338, 2000.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain