Inscrição na biblioteca: Guest

SHOCK WAVE INTERACTION NEAR A CYLINDER ALIGNED NORMAL TO A BLUNTED PLATE—PART I: GAS FLOW AND HEAT TRANSFER ON A PLATE NEAR A CYLINDER

Volume 49, Edição 2, 2018, pp. 105-118
DOI: 10.1615/TsAGISciJ.2018026924
Get accessGet access

RESUMO

The flow around a cylinder mounted on a sharp or blunted plate is experimentally studied. The experiments are performed in a shock tunnel at Mach number M = 5 for a wide range of Reynolds numbers ReL (based on the plate length): from 0.6 to 3.4 × 107. The varied parameters are the distance between the leading edge of the plate and the cylinder X0 and the bluntness radius of the leading edge of the plate. A panoramic method is used to investigate heat transfer. The work consists of two parts. Part I describes the results on the flow structure and heat transfer on the plate surface ahead of the cylinder and in its vicinity. It is shown that the heat transfer coefficient near the cylinder is significantly greater than that on the plate in the undisturbed region and is close in terms of the order of magnitude to the heat transfer coefficient on the frontal surface of the cylinder in the undisturbed flow. An increase in the bluntness radius of the plate to a certain level considerably decreases the maximum Stanton number ahead of the cylinder. At the transitional and turbulent states of the undisturbed boundary layer on the plate ahead of the cylinder, the change in the Reynolds number in the examined range has a minor effect on heat transfer enhancement near the cylinder on both the sharp and blunted plates. Investigations of the state of the boundary layer on the plate, which is not disturbed by the cylinder, confirm the existence of a reverse laminar–turbulent transition, which occurs when the bluntness radius increases. It is shown that the laminar–turbulent transition and its reverse transition lead to nonmonotonic changes in the peak Stanton number on the plate as a function of the bluntness radius of the leading edge and the distance between the leading edge and the cylinder.

CITADO POR
  1. Borovoy Volf Y., Radchenko Vladimir N., Aleksandrov Sergey V., Mosharov Vladimir E., Laminar–Turbulent Transition Reversal on a Blunted Plate with Various Leading-Edge Shapes, AIAA Journal, 2021. Crossref

Última edição

KIRILL IVANOVICH SYPALO−50TH ANNIVERSARY NUMERICAL STUDY OF THE DISTURBANCES GENERATED BY MICROJETS IN A SUPERSONIC FLAT-PLATE BOUNDARY LAYER Andrei Valerievich Novikov, Alexander Vitalyevich Fedorov, Ivan Vladimirovich Egorov, Anton Olegovich Obraz, Nikolay Nikolaevich Semenov ANALYSIS OF THE MOVING DETONATION INTERACTION WITH TURBULENT BOUNDARY LAYERS IN A DUCT ON THE BASIS OF NUMERICAL SIMULATION Vladimir Anatolievich Sabelnikov, Vladimir Viktorovich Vlasenko, Sergey Sergeyevich Molev EXPERIMENTAL STUDY OF COUNTERFLOW BLOWING IN HIGH-SPEED FLOW THROUGH AN ASYMMETRIC SLOT IN THE LEADING EDGE OF A SHARP WEDGE Eduard Borisovich Vasilevskii, Ivan Valeryevich Ezhov, Pavel Vladimirovich Chuvakhov ASYMPTOTIC SOLUTIONS TO HYPERSONIC BOUNDARY LAYER EQUATIONS ON A FLAT WING WITH A POINT OF INFLECTION ON THE LEADING EDGE Georgiy Nikolaevich Dudin, Aleksey Vyacheslavovich Ledovskiy WAVE MODEL OF ORGANIZED STRUCTURES IN A TURBULENT BOUNDARY LAYER ON A PLATE WITH ZERO LONGITUDINAL PRESSURE GRADIENT Vladimir Alekseevich Zharov, Igor Ivanovich Lipatov, Rami Salah Saber Selim NUMERICAL SIMULATION OF THE FLOW AROUND LANDSCAPE FRAGMENTS AND SOLUTION VERIFICATION Viktor Viktorovich Vyshinsky, Koang T'in' Zoan POLYNOMIAL REPRESENTATION OF THERMODYNAMIC PROPERTIES OF COMBINED FUEL SYSTEMS IN RAMJET SIMULATION MODELS Timur Romanovich Zuev, Mikhail Semenovich Tararyshkin A MODEL TEST METHODOLOGY FOR THE INVESTIGATION OF AN ELASTICALLY SCALED MAIN ROTOR Maxim Andreyevich Ledyankin , Sergey Anatolyevich Mikhailov, Dmitry Valeryevich Nedel'ko, Timur Arturovich Agliullin INDEX, VOLUME 51, 2020
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain