Inscrição na biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicou 6 edições por ano

ISSN Imprimir: 1543-1649

ISSN On-line: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

MULTISCALE MODELING FOR THE SCIENCE AND ENGINEERING OF MATERIALS

Volume 19, Edição 3, 2021, pp. 1-80
DOI: 10.1615/IntJMultCompEng.2021040247
Get accessDownload

RESUMO

Material discovery and development drives innovation and is a key component for almost all cutting edge technologies today. With progress in computing power and numerical methods, multiscale modeling has been a rapidly growing requirement in the science and engineering of materials. However, unresolved challenges in true multiscale modeling have thus far prevented engineers and scientists from realizing its full potential and, as a result, its success in production applications is not widespread. Particularly difficult challenges to multiscale simulations are the vastly different physics at different scales among different materials manufactured with different procedures and used in different applications with different performance indicators. To help address these challenges Dassault Systemes has brought together the power of multiple software brands to combine the expertise in multiphysics simulations from quantum and molecular to continuum and system scale with a purpose to promote the production usage of multiscale modeling to design, develop, and validate sustainable and programmable materials. In this paper, the key multiscale modeling and simulation technologies from Dassault Systemes will be introduced with a focus on the realistic industrial applications via an end-to-end digital thread on the 3DEXPERIENCE Platform. Our goal is to provide a fundamental and general framework to allow engineers to construct microscale models, and deduce the macroscale laws and the constitutive relations by proper homogenization, with seamless integration to our native material modeling capabilities, for quantitative, rigorous analysis of the overall response and failure modes of advanced multiphase materials.

Palavras-chave: HASH(0x34c1cc0)
Referências
  1. Abaqus, Abaqus User Documentation, Johnston, RI: Dassault Systemes SIMULIA, 2021.

  2. Akkermans, R.L.C., Spenley, N.A., and Robertson, S.H., Monte Carlo Methods in Materials Studio, Mol. Simul., vol. 39, nos. 14-15, pp. 1153-1164,2013.

  3. Akkermans, R.L.C., Spenley, N.A., and Robertson, S.H., COMPASS III: Automated Fitting Workflows and Extension to Ionic Liquids, Mol. Simul, vol. 47, no. 7, pp. 540-551,2020.

  4. Al-Khalil, M., Kirtil, E., and Rigby, R., Use of Abaqus Explicit for Composite Sandwich Damage Prediction during Bird Impact, in Proc. of SIMULIA Community Conf., 2015.

  5. Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., and Kuhl, E., The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function, Eur. J. Mech, A: Solids, vol. 48, pp. 38-47,2014.

  6. Balasubramani, S.G., Chen, G.P., Coriani, S.,Diedenhofen,M., Frank, M.S.,Franzke, Y.J., Furche, F., Grotjahn,R.,Harding, M.E., Hattig, C., Hellweg, A., Helmich-Paris, B., Holzer, C., Huniar, U., Kaupp, M., Khah, A.M., Khani, S.K., Muller, T., Mack, F., Nguyen, B.D., Parker, S.M., Perlt, E., Rappoport, D., Reiter, K., Roy, S., Ruckert, M., Schmitz, G., Sierka, M., Tapavicza, E., Tew, D.P., van Wullen, C., Voora, V.K., Weigend, F., Wodynski, A., and Yu, J.M., TURBOMOLE: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed-Matter Simulations, J. Chem. Phys, vol. 152, no. 18, p. 184107,2020.

  7. Ballard, M.K., McLendon, W.R., and Whitcomb, J.D., The Influence of Microstructure Randomness on Prediction of Fiber Properties in Composites, J. Compos. Mater, vol. 48, no. 29, pp. 3605-3620,2014.

  8. Bannan, C.C., Burley, K.H., Chiu, M., Shirts, M.R., Gilson, M.K., and Mobley, D.L., Blind Prediction of Cyclohexane-Water Distribution Coefficients from the SAMPL5 Challenge, J. Comput.-Aided Mol. Des., vol. 30, no. 11, pp. 927-944,2016.

  9. Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., and Wilmers, J., Generation of 3D Representative Volume Elements for Heterogeneous Materials: A Review, Prog;. Mater. Sci., vol. 96, pp. 322-384,2018.

  10. Bergstrom, J.S. and Bischoff, J.E., An Advanced Thermomechanical Constitutive Model for UHMWPE, Int. J. Struct. Changes Solids, vol. 2, pp. 31-39,2010.

  11. Bi, J., Gao, Z., and Oancea, V., Artificial Neural Network and Recurrent Neural Network Approaches for Isotropic and Anisotropic Plastic Material Modeling, in Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology, an IACM Conf., San Diego, CA, September 26-29,2021.

  12. Bi, J., Tripathy, S., Savane, V., and Kumar, A., Multiscale Infill/Lattice Optimization Using RVE, Science in the Age of Experience, Boston, MA, May 23-26,2016.

  13. BIOVIA COSMOtherm 2021, Copyright Dassault Systemes, 2021.

  14. BIOVIA Materials Studio 2021, Copyright Dassault Systemes, 2021.

  15. BIOVIA Pipeline Pilot 2021, Copyright Dassault Systemes, 2021.

  16. Billiar, K.L. and Sacks, M.S., A Method to Quantify the Fiber Kinematics of Planar Tissues under Biaxial Stretch, J. Biomech., vol. 30, no. 7, pp. 753-756,1997.

  17. Bittermann, K., Spycher, S., Endo, S., Pohler, L., Huniar, U., Goss, K.U., and Klamt, A., Prediction of Phospholipid-WaterPartition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMOmic, J. Phys. Chem. B, vol. 118, pp. 14833-14842,2014.

  18. Bittermann, K., Linden, L., and Goss, K.U., Screening Tools for the Bioconcentration Potential of Monovalent Organic Ions in Fish, Environ. Sci.: Processes Impacts, vol. 20, no. 5, pp. 845-853,2018.

  19. Boyce, M.C., Kear, K., Socrate, S., and Shaw, K., Deformation of Thermoplastic Vulcanizates, J. Mech. Phys. Solids, vol. 49, no. 5, pp. 1073-1098,2001.

  20. Boyce, B.L., Kramer, S.L.B., and Xue, L., The Second Sandia Fracture Challenge: Predictions of Ductile Failure under Quasi- Static and Moderate-Rate Dynamic Loading, Int. J. Fract., vol. 198, pp. 5-100,2016.

  21. Buhrmester, C., Chen, J., Moshurchak, L., Jiang, J., Wang, R.L., and Dahn, J., Studies of Aromatic Redox Shuttle Additives for LiFePO4-Based Li-Ion Cells, J. Electrochem. Soc., vol. 152, p. A2390,2005.

  22. Burke, K., Perspective on Density Functional Theory, J. Chem. Phys., vol. 136, p. 150901,2012.

  23. Chen, C., Depa, P., Sakai, V.G., Maranas, J.K., Lynn, J.W., Peral, I., and Copley, J.R.D., A Comparison of United Atom, Explicit Atom, and Coarse-Grained Simulation Models for Poly(ethylene oxide), J. Chem. Phys, vol. 124, p. 234901,2006.

  24. Choi, J., Shin, H., and Cho, H., A Multiscale Mechanical Model for the Effective Interphase of SWNT/Expoxy Nanocomposite, Polymer, vol. 89, pp. 159-171,2016.

  25. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C., First Principles Methods Using CASTEP, Z Kristall, vol. 220, pp. 567-570,2005.

  26. CMH-17 Meeting Results, in 6th CMH-17 Crashworthiness Working Group Meeting, Ottawa, Canada, August 5, 2008.

  27. Delley, B., An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Phys. Chem, vol. 92, p. 508,1990.

  28. Delley, B., DMol3 DFT Studies: From Molecules and Molecular Environments to Surfaces and Solids, Comput. Mater. Sci., vol. 17, pp. 122-126,2000.

  29. Djordjevic, A.R., Biljie, R.M., Likar-Smiljanic, V.D., and Sarkar, T.K., Wideband Frequency-Domain Characterization of FR-4 and Time-Domain Causality, IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 662-667,2001.

  30. Du, H., Bi, J., Oancea, V., van der Velden, A., Cojocaru, D., Wohlever, C., and Hurtado, J., Artificial Neural Network Approach for Hyperelastic Material Modeling with Stability Constraint and Extrapolation Capability, in Proc. of Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology, San Diego, CA, September 26-29,2021.

  31. Ecker, M., Tran, T.K.D., Dechent, P., Kabitz, S., Warnecke, A., and Sauer, D.U., Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery. I. Determination of Parameters, J. Electrochem. Soc., vol. 162, p. A1836,2015a.

  32. Ecker, M., Kabitz, S., Laresgoiti, I., and Sauer, D.U., Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery. II. Model Validation, J. Electrochem. Soc, vol. 162, p. A1849,2015b.

  33. Endo, S., Bauerfeind, J., and Goss, K.U., Partitioning of Neutral Organic Compounds to Structural Proteins, Environ. Sci. Technol., vol. 46, no. 22, pp. 12697-12703,2012.

  34. Fager, A., Otomo, H., Salazar-Tio, R., Balasubramanian, G., Crouse, B., Zhang, R., Chen, H., and Schembre-McCabe, J., Multi-Scale Digital Rock: Application of a Multi-Scale Multi-Phase Workflow to a Carbonate Reservoir Rock, in Proc. of The Society of Core Analysis Conf. SCA2021-U004,2021.

  35. Fermemglia, M. and Prici, S., Multiscale Molecular Modeling in Nanostructured Material Design and Process, Comput. Chem. Eng., vol. 33, no. 10, pp. 1701-1710,2009.

  36. Fish, J., Practical Multiscaling, New York: John Wiley & Sons, Ltd., 2014.

  37. Fish, J. and Ghouli, A., Multiscale Analytical Sensitivity Analysis for Composite Materials, Int. J. Numer. Methods Eng., vol. 50, pp. 1501-1520,2001.

  38. Fish, J. and Yuan, Z., Multiscale Enrichment Based on the Partition of Unity, Int. J. Numer. Methods Eng., vol. 62, no. 10, pp. 1341-1359,2005.

  39. Fish, J. and Yuan, Z., Multiscale Enrichment Based on Partition of Unity for Nonperiodic Fields and Nonlinear Problems, Comput. Mech., vol. 40, pp. 249-259, 2007.

  40. Flanigan, C.M., Beyer, L., Klekamp, D., Rohweder, D., Stuck, B., and Terrill, E.R., Comparative Study of Silica, Carbon Black and Novel Fillers in Tread Compounds, in Proc. of 180th Technical Meeting of the Rubber Division of the American Chemical Society, Inc., Cleveland, OH, October 11-13,2011.

  41. Gale, J.D. and Rohl, A.L., The General Utility Lattice Program, Mol. Simul., vol. 29, pp. 291-341,2003.

  42. Gasser, T.C., Ogden, R.W., and Holzapfel, G.A., Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fiber Orientations, J. R. Soc. Interface, vol. 3, pp. 15-35,2006.

  43. Geers, M.G.D., Kouznetsova, V.G., Matous, K., and Yvonnet, J., Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics, 2nd ed., 2017.

  44. Geisler, A., Oemisch, L., Endo, S., and Goss, K.U., Predicting Storage-Lipid Water Partitioning of Organic Solutes from Molecular Structure, Environ. Sci. Technol, vol. 49, no. 9, pp. 5538-5545,2015.

  45. Glahn, T., Chiavaccini, E., and Schuhmann, R., FIT-TD Simulation of Non-Linear Materials for Second Harmonic Generation in Periodically Poled Lithiumniobate Waveguides, in Proc. of 2011 Int. Conf. on Electromagnetics in Advanced Applications, pp. 27-30,2011.

  46. Gold, G. and Helmreich, K., A Physical Surface Roughness Model and Its Applications, IEEE Trans. Microwave Theory Tech, vol. 65, no. 10, pp. 3720-3732,2017.

  47. Gouskos, D. and Iannucci, L., Finite Element Analysis of Non-Crimp Fabric Laminates under Compact Tension, in Proc. of ECCM18-18th European Conf. on Composite Materials, Athens, Greece, June 24-28,2018.

  48. Govindarajan, S.M., Hurtado, J.A., and Mars, W.V., Simulation of Mullins Effect and Permanent Set in Filled Elastomers Using Multiplicative Decomposition, in Proc. of the 5th European Conf. on Constitutive Models for Rubber, ECCMR, 2007, Paris, France, September 2007, vol. 5,2008.

  49. Groot, R.D. and Warren, P.B., Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation, J. Chem. Phys, vol. 107, pp. 4423-4435,1997.

  50. Grujicic, M., Bell, W.C., Pandurangan, B., and He, T., Blast-Wave Impact-Mitigation Capability of Polyurea when Used as Helmet Suspension-Pad Material, Mater. Des, vol. 31, no. 9, pp. 4050-4065,2010.

  51. Grujicic, M., Pandurangan, B., King, A.E., Runt, J., Tarter, J., and Dillon, G., Multi-Length Scale Modeling and Analysis of Microstructure Evolution and Mechanical Properties in Polyurea, J. Mater. Sci., vol. 46, no. 6, pp. 1767-1779,2011.

  52. Halls, M. and Tasaki, K., High-Throughput Quantum Chemistry and Virtual Screening for Lithium Ion Battery Electrolyte Additives, J. Power Sources, vol. 195, pp. 1472-1478,2010.

  53. Hammerstad, E.O. and Jensen, 0., Accurate Models for Microstrip Computer Aided Design, IEEE MTT-S Int. Microwave Symp. Dig, pp. 407-409,1980.

  54. Han, Y.K., Yoo, J., and Yim, T., Why is Tris(trimethylsilyl) Phosphate Effective as an Additive for High-Voltage Lithium-Ion Batteries?, J. Mater. Chem. A, vol. 3, p. 10900,2015.

  55. Han, S. and Bauchau, O.A., Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics, Multibody Syst. Dyn, vol. 34, no. 3, pp. 211-242,2015.

  56. Hanke, F., Modrow, N., Akkermans, R.L.C., Korotkin, I., Mocanu, F.C., Neufeld, V.A., and Veit, M., Multi-Scale Electrolyte Transport Simulations for Lithium Ion Batteries, J. Electrochem. Soc., vol. 167, p. 013522,2020.

  57. Hashin, Z., Analysis of Composite Materials-A Survey, J. Appl. Mech., vol. 50, pp. 481-505,1983.

  58. Hill, R., Elastic Properties of Reinforced Solids: Some Theoretical Principles, J. Mech. Phys. Solids, vol. 11, no. 5, pp. 357-372, 1963.

  59. Hohenberg, P. andKohn, W., Inhomogeneous Electron Gas, Phys. Rev., vol. 136, p. B864,1964.

  60. Holzapfel, G.A., Gasser, T.C., and Ogden, R.W., A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, J. Elasticity, vol. 61, pp. 1-48,2000.

  61. Holzapfel, G.A. and Ogden, R.W., Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization, Philos. Trans, vol. 367, no. 1902, pp. 3445-3475,2009.

  62. Huang, J. and MacKerell, A.D., Jr., CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data, J. Comput. Chem, vol. 34, no. 25, pp. 2135-2145,2013.

  63. Huray, P.G., The Foundations of Signal Integrity, Hoboken,NJ: John Wiley & Sons, Inc., 2009.

  64. Hurtado, J.A., Lapczyk, I., and Govindarajan, S.M., Parallel Rheological Framework to Model Non-Linear Viscoelasticity, Permanent Set, and Mullins Effect in Elastomers, Const. Models Rubber, vol. 8, pp. 95-100,2013.

  65. Jerauld, G.R., Fredrich, J., Lane, N., Sheng, Q., Crouse, B., Freed, D.M., Fager, A., and Xu, R., Validation of a Workflow for Digitally Measuring Relative Permeability, in Proc. of Abu Dhabi Int. Petroleum Exhibition and Conf, Dallas, TX: Society of Petroleum Engineers, p. SPE-188688-MS, 2017.

  66. Ji, H., McLendon, R., Hurtado, J.A., Oancea, V., and Bi, J., Multi-Scale Material Modeling with the Mean-Field Homogenization Method, NAFEMS World Congress 2017, Stockholm, Sweden, June 11-13,2017.

  67. Johnson, A.F., Modelling Fabric-Reinforced Composites under Impact Loads, Composites, Part A, vol. 32, no. 9, pp. 1197-1206, 2001.

  68. Joshi, S.Y. and Deshmukh, S.A., A Review of Advancements in Coarse-Grained Molecular Dynamics Simulations, Mol. Simul., vol. 47, nos. 10-11, pp. 786-803,2021.

  69. Jung, J., Nishima, W., Daniels, M., Bascom, G., Kobayashi, C., Adedoyin, A., Wall, M., Lappala, A., Phillips, D., Fischer, W., Tung, C.S., Schlick, T., Sugita, Y., and Sanbonmatsu, K.Y., J Comput. Chem., vol. 40, pp. 1919-1930,2019.

  70. Kaddour, A.S. and Hinton, M.J., Maturity of 3D Failure Criteria for Fiber-Reinforced Composites: Comparsion between Theories and Experiments: Part B of WWFE-II, J. Compos. Mater, vol. 47, nos. 6-7, pp. 925-966,2013.

  71. Karkkainen, R.L., Sankar, B.V., andTzeng, J.T., A Direct Micromechanical Approach toward the Development of Quadratic Stress Gradient Failure Criteria for Textile Composites, J. Compos. Mater., vol. 41, no. 16, pp. 1917-1937,2007.

  72. Kaul, V., Yao, J., and Hurtado, J.A., A Microstructural Anisotropic Hyperelastic Material for Soft Tissues, in Proc. of 7th World Congress ofBiomechanics, 2014.

  73. Klamt, A. and Schuurmann, G., COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient, J. Chem. Soc, Perkin Trans. 2, vol. 1993, no. 5, pp. 799-805,1993.

  74. Klamt, A., Jonas, V., Burger, T., and Lohrenz, J.C., Refinement and Parametrization of COSMO-RS, J. Phys. Chem. A, vol. 102, pp. 5074-5085,1998.

  75. Klamt, A., Krooshof, G.J.P., and Taylor, R., COSMOSPACE: Alternative to Conventional Activity-Coefficient Models, AIChEJ, vol. 48, no. 10, pp. 2332-2349,2002.

  76. Klamt, A., Huniar, U., Spycher, S., and Keldenich, J., COSMOmic: A Mechanistic Approach to the Calculation of Membrane- Water Partition Coefficients and Internal Distributions within Membranes and Micelles, J. Phys. Chem. B, vol. 112, no. 38, pp. 12148-12157,2008.

  77. Klamt, A., Schwobel, J.A.H., Huniar, U., Koch, L., Terzi, S., and Gaudin, T., COSMOplex: Self-Consistent Simulation of Self- Organizing Inhomogeneous Systems Based on COSMO-RS, Phys. Chem. Chem. Phys., vol. 21, no. 18, pp. 9225-9238,2019.

  78. Klusemann, B. and Svendsen, B., Homogenization Methods for Multi-Phase Elastic Composites: Comparisons and Benchmarks, Technische Mechanik, vol. 30, no. 4, pp. 374-386,2010.

  79. Kohn, W. and Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., vol. 140, p. A1133, 1965.

  80. Kumar, R., HaWoo, J., Xiao, X., and Sheldon, B.W., Internal Microstructural Changes and Stress Evolution in SiliconNanoparticle Based Composite Electrodes, J. Electrochem. Soc., vol. 164, no. 14A, pp. 3750-3765,2017.

  81. Lanir, Y., Constitutive Equations for Fibrous Connective Tissues, J. Biomech., vol. 16, no. 1, pp. 1-2,1983.

  82. Li, A., Li, R., and Fish, J., Generalized Mathematical Homogenization: From Theory to Practice, Comput. Methods Appl. Mech. Eng, vol. 197, nos. 41-42, pp. 245-269,2008.

  83. Li, H., O'Hara, P., and Duarte, C.A., Non-Intrusive Coupling of a 3-D Generalized Finite Element Method and Abaqus for the Multiscale Analysis of Localized Defects and Structural Features, Finite Elem. Anal. Des., vol. 193, p. 103554,2021.

  84. Lu, Y., Jin, W., Klinger, J., Westover, T.L., and Dai, S., Flow Characterization of Compressible Biomass Particles Using Multiscale Experiments and a Hypoplastic Model, Powder Technol., vol. 383, pp. 396-409,2021.

  85. Lundborg, M., Narangifard, A., Wennberg, C.L., Lindahl, E., Daneholt, B., and Norlen, L., Human Skin Barrier Structure and Function Analyzed by Cryo-EM and Molecular Dynamics Simulation, J. Struct. Biology, vol. 203, no. 2, pp. 149-161,2018.

  86. Marrink, S.J., de Vries, A.H., and Mark, A.E., Coarse Grained Model for Semiquantitative Lipid Simulations, J. Phys. Chem. B, vol. 108, pp. 750-760,2004.

  87. Martin, R., Electronic Structure, Basic Theory and Practical Methods, Cambridge: Cambridge University Press, 2012.

  88. Mazhnik, E. andOganov, A.R., A Model of Hardness and Fracture Toughness of Solids, J. Appl. Phys, vol. 126, p. 125109,2019.

  89. Mechin, P.Y., Keryvin, V., Grandidier, J.-C., and Glehen, D., An Experimental Protocol to Measure the Parameters Affecting the Compressive Strength of CFRP with a Fibre Micro-Buckling Failure Criterion, Compos. Struct., vol. 211, pp. 154-162,2019.

  90. Mechin, P.Y., Keryvin, V., and Grandidier, J.C., Limitations on Adding Nano-Fillers to Increase the Compressive Strength of Continuous Fibre/Epoxy Matrix Composites, Compos. Sci. Technol., vol. 192, p. 108099,2020.

  91. Mesarovic, S.D. and Padbidri, J., Minimal Kinematic Boundary Conditions for Simulations of Disordered Microstructures, Philos. Mag, vol. 85, no. 1, pp. 65-78,2005.

  92. McLendon, W.R., Micromechanics Plugin for Abaqus, from https://www. linkedin. com/pulse/micromechanics-plugin-abaqus-ross-mclendon/, 2017.

  93. McLendon, W.R., Bi, J., Kulkarni, S., Matos, M., Deng, J., Cojocaru, D., and Ji, H., Predicting Lattice Response and Stability Using Finite Element RVE Analysis, in Proc. of NAFEMS Multiscale and Multiphysics Modeling & Simulation, Columbus, OH, March, 2017.

  94. McLendon, R., Cojocaru, D., Dalrymple, T., Spirka, T., and Young, P., Calibration of a Phenomenological Foam Material Model from Microscale Simulation, in Proc. ofNAFEMS World Congress 2019, Quebec City, Quebec, Canada, 2019.

  95. McLendon, W.R. and Whitcomb, J.D., Characteristic Failure Initiation Sites in Plain Weave Textile Composites, J. Compos. Mater., vol. 47, no. 25, pp. 3143-3161,2013.

  96. McLendon, W.R. and Whitcomb, J.D., Influence of Thermally Induced Microstress and Microstructural Randomness on Transverse Strength of Unidirectional Composites, J. Compos. Mater., vol. 50,no. 11,pp. 1467-1481,2016.

  97. Mindt, M., Dietz, S., Schulze, M., and Mabou, H., Simulation of the Free Flying Helicopter by Coupling of a New Comprehensive Aeromechanics Code with an Advanced Flexible Multibody Model, in Proc. of Vertical Flight Society 75th Annual Forum & Technology Display, Philadelphia, PA, May 2019.

  98. Moreira, J., Tsai, M., Kenton, J., Barnes, H., and Faller, D., PCB Loadboard Design Challenges for Multi-Gigabit Devices, Autom. Test Appl., vol. 3, pp. 1749-1776,2006.

  99. Mortazavi, B., Podryabinkin, E., Roche, S., Rabczuk, T., Zhuang, X., and Shapeev, A., Machine-Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures, Mater. Horiz., vol. 7, pp. 2359-2367,2020.

  100. Mullins, L., and Tobin, N.R., Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubber, Rubber Chem. Technol, vol. 30, no. 2, pp. 555-571,1957.

  101. Newman, J. and Thomas-Alyea, K.E., Electrochemical Systems, Hoboken,NJ: Wiley-Interscience, 2004.

  102. Nguyen, V.P., Stroeven, M., and Sluys, L.J., Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments, J. Multiscale Modell., vol. 3, no. 4, pp. 229-270,2011.

  103. Oancea, V., Dalrymple, T., Ji, H., Bi, J., Tripathy, S., Wescott, J., and Todd, S., Multi-Scale Simulations for Material Modeling, in Proc. of SPE Automotive Composites Conf. & Exhibition (ACCE), Novi, MI, June 20, 2016.

  104. Oancea, V., Dalrymple, T., Ji, H., Bi, J., Tripathy, S., Wescott, J., and Todd, S., Bridging between Molecular to Component Scales in Multiscale Material Modeling, in Proc. ofNAFEMS Multiscale and Multiphysics Modeling & Simulation, Columbus, OH, March, 2017.

  105. Okuno, Y., Ushirogata, K., Sodeyama, K., and Tateyama, Y., Decomposition of the Fluoroethylene Carbonate Additive and the Glue Effect of Lithium Fluoride Products for the Solid Electrolyte Interphase: An Ab Initio Study, Phys. Chem. Chem. Phys., vol. 18, p. 8643,2016.

  106. Omairey, S.L., Dunning, P.D., and Sriramula, S., Development of an Abaqus Plugin Tool for Periodic RVE Homogenization, Eng. Comput, vol. 35, no. 2, pp. 567-577,2019.

  107. OpenPhase Microstructure Simulation, from http://openphase-solutions.com/, 2021.

  108. Oskay, C. and Fish, J., Eigendeformation-Based Reduced Order Homogenization for Failure Analysis of Heterogeneous Materials, Comput. Methods Appl. Mech. Eng., vol. 196, no. 7, pp. 1216-1243,2007.

  109. Oskay, C. and Fish, J., On Calibration and Validation of Eigendeformation-Based Multiscale Models for Failure Analysis of Heterogeneous Systems, Comput. Mech, vol. 42, no. 2, pp. 181-195,2008.

  110. Otomo, H., Chen, H., and Zhang, R., An Under-Resolved-Simulation Approach for Multi-Component Fluid Flows in Multi-Scale Porous Structures (to be published), 2021.

  111. Park, H., Choi, J., Kim, B., and Cho, M., Temperature-Accelerated Molecular Dynamics Simulations of Quasi-Static Yield Stress of Epoxy Polymers, in Proc. of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018.

  112. Park, H. and Cho, M., Multiscale Constitutive Model Using Data-Driven Yield Function, Composites, PartB, vol. 216, p. 108831, 2021.

  113. Perdew, J.P. and Schmidt, K., Jacob's Ladder of Density Functional Approximations for the Exchange-Correlation Energy, AIP Conf. Proc, vol. 577, p. 1, 2001.

  114. Phelan, D., Reid, M., and Dippenaar, R., Kinetics of the Peritectic Reaction in an Fe-C Alloy, Mater. Sci. Eng.: A, vol. 477, nos. 1-2, pp. 226-232,2008.

  115. Pinho, S.T., Darvizeh, R., Robinson, P., Schuecker, C., and Camanho, P.P., Material and Structural Response of Polymer-Matrix Fiber-Reinforced Composites, J. Compos. Mater, vol. 46, nos. 19-20, pp. 2313-2341,2012.

  116. Qi, H.J. and Boyce, M.C., Constitutive Model for Stretch-Induced Softening of the Stress-Stretch Behavior of Elastomeric Materials, J. Mech. Phys. Solids, vol. 52, no. 10, pp. 2187-2205,2004.

  117. Qi, H.J. andBoyce, M.C., Stress-Strain Behavior of Thermoplastic Polyurethanes, Mech. Mater, vol. 37, no. 8, pp. 817-839,2005.

  118. Qin, S., McLendon, R., Oancea, V., and Beese, A., Micromechanics of Multiaxial Plasticity of DP600: Experiments and Microstructural Deformation Modeling, Mater. Sci. Eng., A, vol. 721, pp. 168-178,2018.

  119. Reuss, A., Berechnung der FlieBgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle, J. Appl. Math. Mech, vol. 9, no. 1, pp. 49-58,1929.

  120. Rocha, I., Kerfriden, P., and van der Meer, F., On-the-Fly Construction of Surrogate Constitutive Models for Concurrent Multiscale Mechanical Analysis through Probabilistic Machine Learning, J. Comput. Phys.: X, vol. 9, p. 100083,2021.

  121. Saavedra Flores, E.I., Adhikari, S., Friswell, M.I., and Scarpa, F., Hyperelastic Finite Element Model for Single Wall Carbon Nanotubes in Tension, Comput. Mater. Sci., vol. 50, no. 3, pp. 1083-1087,2011.

  122. Sacks, M.S., Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues, J. Biomech. Eng., vol. 125, no. 2, pp. 280-287,2003.

  123. Saeb, S., Steinmann, P., and Javili, A., Aspects of Computational Homogenization at Finite Deformations: A Unifying Review from Reuss' to Voigt's Bound, Appl. Mech. Rev., vol. 68, no. 5, p. 050801,2016.

  124. Sahli Costabal, F., Yao, J., and Kuhl, E., Predicting Drug-Induced Arrhythmias by Multiscale Modeling, Int. J. Numer. Methods Biomed. Eng., vol. 34, no. 5, p. e2964,2018.

  125. Schrader, S., Modeling Thermoplastic Vulcanizate Seals with Abaqus, Abaqus Users Conference, May 2005.

  126. Schwobel, J.A.H. and Klamt, A., Mechanistic Skin Penetration Model by the COSMOperm Method: Routes of Permeation, Vehicle Effects and Skin Variations in the Healthy and Compromised Skin, Comput. Toxicol, vol. 11, pp. 50-64,2019.

  127. Schwobel, J.A.H., Ebert, A., Bittermann, K., Huniar, U., Goss, K.U., and Klamt, A., COSMOperm: Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence, J. Phys. Chem. B, vol. 124, no. 16, pp. 3343-3354,2020.

  128. Shlepnev, Y. and McMorrow, S., Nickel Characterization for Interconnect Analysis, in Proc. of 2011 IEEE Int. Symp. on Electro-magnetic Compatability, pp. 524-529,2011.

  129. Shi, M.X., Li, Q.M., Liu, B., Feng, X.Q., and Huang, Y., Atomic-Scale Finite Element Analysis of Vibration Mode Transformation in Carbon Nanorings and Single-Walled Carbon Nanotubes, Int. J. Solids Struct., vol. 46, nos. 25-26, pp. 4342-4360,2009.

  130. Skylaris, C.K., Mostofi, A.A., Haynes, P.D., Dieguez, O., and Payne, M.C., Nonorthogonal Generalized Wannier Function Pseudopotential Plane-Wave Method, Phys. Rev. B, vol. 66, p. 035119,2002.

  131. Sokolinsky, V.S., Indermuehle, K.C., and Hurtado, J.A., Numerical Simulation of the Crushing Process of a Corrugated Composite Plate, Composites, Part A, vol. 42,no.9,pp. 1119-1126,2011.

  132. Souza, P.C.T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Griinewald, F., Patmanidis, I., Abdizadeh, H., Bruininks, B.M.H., Wassenaar, T.A., Kroon, P.C., Melcr, J., Nieto, V., Corradi, V., Khan, H.M., Domafeki, J., Javanainen, M., Martinez- Seara, H., Reuter, N., Best, R.B., Vattulainen, I., Monticelli, L., Periole, X., Tieleman, D.P., de Vries, A.H., and Marrink, S.J., Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics, Nat. Methods, vol. 18, pp. 382-388,2021.

  133. Steinbach, I. and Apel, M., Multi Phase Field Model for Solid State Transformation with Elastic Strain, Phys. D (Amsterdam, Neth.), vol. 217, no. 2, pp. 153-160,2006.

  134. Sun, H., Jin, Z., Yang, C., Akkermans, R.L.C., Robertson, S.H., Spenley, N.A., Miller, S., and Todd, S.M., COMPASS II: Extended Coverage for Polymer and Drug-Like Molecule Databases, J. Mol. Model., vol. 22 , p. 47, 2016.

  135. Sun, W., Guan, Z., Li, Z., Zhang, M., and Huang, Y., Compressive Failure Analysis of Unidirectional Carbon/Epoxy Composite Based on Micro-Mechanical Models., Chin. J. Aeronaut., vol. 30, no. 6, pp. 1907-1918,2017.

  136. Svensson, C. and Dermer, G.H., Time Domain Modeling of Lossy Interconnects, IEEE Trans. Adv. Packag., vol. 24, no. 2, pp. 191-196,May 2001.

  137. Tao, Y. and Scharf, F., Revisit Nickel Characterization Effect on High-Speed Interconnect Performance, in Proc. of 2015 IEEE MTT-S Int. Conf. on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1-3,2015.

  138. Taylor, G.I., Plastic Strain in Metals, J. Inst. Met., vol. 62, pp. 307-324,1938.

  139. Tiaden, J., Phase Field Simulations of the Peritectic Solidification of Fe-C, J. Cryst. Growth, vols. 198-199, no. 2, pp. 1275-1280, 1999.

  140. Tian, Y., Xu, B., and Zhao, Z., Microscopic Theory of Hardness and Design of Novel Superhard Crystals, Int. J. Refract. Met. Hard Mater., vol. 33, pp. 93-106,2012.

  141. TURBOMOLE V7.5, A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TUR-BOMOLE GmbH, since 2007, from https://www.turbomole.org and https://www.3ds.com, 2020.

  142. van de Walle, A., Asta, M., and Ceder, G., The Alloy Theoretic Automated Toolkit: A User Guide, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., vol. 26, no. 4, pp. 539-553,2002a.

  143. van de Walle, A. and Ceder, G., Automating First-Principles Phase Diagram Calculations, J. Phase Equilib., vol. 23, no. 348, 2002b.

  144. vande Walle, A., Sun, R., Hong, Q.J., and Kadkhodaei, S., Software Tools for High-Throughput CALPHAD from First-Principles Data, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., vol. 58, pp. 70-81,2017.

  145. Vlassis, N.N. and Sun, W.C., Sobolev Training of Thermodynamic-Informed Neural Networks for Interpretable Elasto-Plasticity Models with Level Set Hardening, Comput. Methods Appl. Mech. Eng., vol. 377, p. 113695,2021.

  146. Voigt, W., Lehrbuch der Krystallphysik, Leipzig, Germany: Teubner, 1928.

  147. Waldman, S.D., Sacks, M.S., and Lee, J.M., Boundary Conditions during Biaxial Testing of Planar Connective Tissues. Part II. Fiber Orientation, J. Mater. Sci. Lett., vol. 21, no. 15, pp. 1215-1221,2002.

  148. Wang, Y. and McDowell, D.L., Uncertainty Quantification in Multiscale Materials Modeling, Cambridge: Woodhead Publishing, 2020.

  149. Whelan, G. and McDowell, D.L., Uncertainty Quantification in ICME Workflows for Fatigue Critical Computational Modeling, Eng. Fract. Mech, vol. 220, p. 106673,2019.

  150. Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., and Xia, F., Tunable Infrared Plasmonic Devices Using Graphene/Insulator Stacks, Nat. Nanotechnol., vol. 7, pp. 330-334,2012.

  151. Yi, J., Boyce, M.C., Lee, G.F., and Balizer, E., Large Deformation Rate-Dependent Stress-Strain Behavior of Polyurea and Polyurethanes, Polymer, vol. 47, no. 1, pp. 319-329,2006.

  152. Yuan, Z. and Fish, J., Are the Cohesive Zone Models Necessary for Delamination Analysis?, Comput. Methods Appl. Mech. Eng., vol. 310, pp. 567-604,2016.

  153. Zhang, J., Tuguldur, B., and van der Spoel, D., Force Field Benchmark of Organic Liquids. 2. Gibbs Energy of Solvation, J. Chem. Inf. Model., vol. 55, no. 6, pp. 1192-1201,2015.

  154. Zhang, Q., Xie, J., Gao, Z., London, T., Griffiths, D., and Oancea, V., A Metallurgical Phase Transformation Framework Applied to SLM Additive Manufacturing Processes, Mater. Des., vol. 166, p. 107618,2019a.

  155. Zhang, Q., Xie, J., London, T., Griffiths, D., Bhamji, I., and Oancea, V., Estimates of the Mechanical Properties of Laser Powder Bed Fusion Ti-6Al-4V Parts Using Finite Element Models, Mater. Des., vol. 169, p. 107678,2019b.

  156. Zhang, M., Salazar-Tio, R., Fager, A., and Crouse, B., A Multiscale Digital Rock Workflow for Shale Matrix Permeability Prediction, in Proc. of Unconventional Resources Technology Conference (URTeC), 2020.

CITADO POR
  1. Karibayev Mirat, Kalybekkyzy Sandugash, Wang Yanwei, Mentbayeva Almagul, Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications, Molecules, 27, 11, 2022. Crossref

  2. Bang Jinho, Bae Jin-Ho, Jung Jongwon, Yang Beomjoo, A Short Review of the Literature on the Multiscale Modeling of Nanoparticle-Reinforced Composites, Multiscale Science and Engineering, 4, 3, 2022. Crossref

  3. Farizhandi Amir Abbas Kazemzadeh, Mamivand Mahmood, Processing time, temperature, and initial chemical composition prediction from materials microstructure by deep network for multiple inputs and fused data, Materials & Design, 219, 2022. Crossref

  4. te Vrugt Michael, Wittkowski Raphael, Perspective: New directions in dynamical density functional theory, Journal of Physics: Condensed Matter, 35, 4, 2023. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain