Inscrição na biblioteca: Guest
International Journal of Energy for a Clean Environment

Publicou 8 edições por ano

ISSN Imprimir: 2150-3621

ISSN On-line: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

RECENT ADVANCEMENTS IN MICROCOMBUSTION-BASED POWER GENERATORS

Volume 23, Edição 2, 2022, pp. 19-52
DOI: 10.1615/InterJEnerCleanEnv.2021038266
Get accessGet access

RESUMO

The limitations posed by electrochemical batteries due to their lower power densities, bulky volumes, and environmental hazards from their disposal have promoted the development of small-scale combustion-based power generators as an alternative power source for various microelectromechanical systems applications. Microcombustors are considered to be a viable heat source for these power generators due to the high power density of hydrocarbon and hydrogen fuels and the recent innovations in micromachining and microfabrication techniques. Because of their high heat loss to heat generation ratio, flow and heat recirculation techniques are used to improve the flame stability limits of microcombustors. In the present study, two types of direct micropower generators are reviewed in detail. There is a consensus among researchers that favors thermoelectric generators (TEGs) and thermophotovoltaic systems over micro-gas turbines due to the presence of moving parts, lower power densities, and complex manufacturing techniques involved in the development of the latter. Progress in the field of TEGs has been analyzed by highlighting the challenges faced in terms of thermoelectric materials and efficient thermal management. A maximum power output of 30 W and maximum conversion efficiency of 5% have been reported by various researchers using TEG-based power generators.

Referências
  1. Abedi, H., Merotto, L., Fanciulli, C., Donde, R., De Iuliis, S., and Passaretti, F., Study of the Performances of a Thermoelectric Generator Based on a Catalytic Meso-Scale H2/C3H8 Fueled Combustor, J. Nanosci. Nanotechnol., vol. 17, no. 3, pp. 1592-1600, 2017.

  2. Aichlmayr, H.T., Kittelson, D.B., and Zachariah, M.R., Miniature Free-Piston Homogeneous Charge Compression Ignition Engine-Compressor Concept-Part II: Modeling HCCI Combustion in Small Scales with Detailed Homogeneous Gas Phase Chemical Kinetics, Chem. Eng. Sci., vol. 57, no. 19, pp. 4173-4186, 2002.

  3. Allen, D., Haugeto, R., Kajor, M., and Namazian, M., Small Thermoelectric Generators, in Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT'02, Long Beach, CA, USA: IEEE, pp. 424-426, 2002.

  4. Ansari, M. and Amani, E., Micro-Combustor Performance Enhancement Using a Novel Combined Baffle-Bluff Configuration, Chem. Eng. Sci., vol. 175, pp. 243-256, 2018.

  5. Aravind, B., Hiranandani, K., and Kumar, S., Development of an Ultra-High Capacity Hydrocarbon Fuel Based Micro Thermoelectric Power Generator, Energy, vol. 206, p. 118099, 2020a.

  6. Aravind, B., Khandelwal, B., and Kumar, S., Experimental Investigations on a New High Intensity Dual Microcombustor Based Thermoelectric Micropower Generator, Appl. Energy, vol. 228, pp. 1173-1181, 2018a.

  7. Aravind, B., Khandelwal, B., Ramakrishna, P., and Kumar, S., Towards the Development of a High Power Density, High Efficiency, Micro Power Generator, Appl. Energy, vol. 261, p. 114386, 2020b.

  8. Aravind, B., Raghuram, G.K.S., Kishore, V.R., and Kumar, S., Compact Design of Planar Stepped Micro Combustor for Portable Thermoelectric Power Generation, Energy Convers. Manage., vol. 156, pp. 224-234, 2018b.

  9. Aravind, B., Saini, D.K., and Kumar, S., Experimental Investigations on the Role of Various Heat Sinks in Developing an Efficient Combustion Based Micro Power Generator, Appl. Therm. Eng., vol. 148, pp. 22-32, 2019.

  10. Aravind, B., Velamati, R.K., Singh, A.P., Yoon, Y., Minaev, S., and Kumar, S., Investigations on Flame Dynamics of Premixed H2-Air Mixtures in Microscale Tubes, RSCAdv., vol. 6, no. 55, pp. 50358-50367, 2016.

  11. Bagheri, G., Hosseini, S.E., and Wahid, M.A., Effects of Bluff Body Shape on the Flame Stability in Premixed Micro-Combustion of Hydrogen-Air Mixture, Appl. Therm. Eng., vol. 67, no. 1-2, pp. 266-272, 2014.

  12. Bani, S., Pan, J., Tang, A., Lu, Q., and Zhang, Y., Micro Combustion in a Porous Media for Thermophotovoltaic Power Generation, Appl. Therm. Eng., vol. 129, pp. 596-605, 2018.

  13. Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial J.-P., Nanostructured Bulk Silicon as an Effective Thermoelectric Material, Adv. Funct. Mater., vol. 19, no. 15, pp. 2445-2452, 2009.

  14. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3, J. Phys. Chem. Solids, vol. 58, no. 7, pp. 1119-1125, 1997.

  15. Chan, W.R., Bermel, P., Pilawa-Podgurski, R.C., Marton, C.H., Jensen, K.F., Senkevich, J.J., Joannopoulos, J.D., Soljacic, M., and Celanovic, I., Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics, Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 14, pp. 5309-5314, 2013.

  16. Chen, C.-H. and Ronney, P.D., Three-Dimensional Effects in Counterflow Heat-Recirculating Combustors, Proc. Combust. Inst., vol. 33, no. 2, pp. 3285-3291, 2011.

  17. Chen, J., Gao, X., and Xu, D., Kinetic Effects of Hydrogen Addition on the Catalytic Self-Ignition of Methane over Platinum in Micro-Channels, Chem. Eng. J., vol. 284, pp. 1028-1034, 2016a.

  18. Chen, J., Liu, B., Gao, X., and Xu, D., Experimental and Numerical Investigation of Hetero-/Homogeneous Combustion-Based HCCI of Methane-Air Mixtures in Free-Piston Micro-Engines, Energy Convers. Manage., vol. 119, pp. 227-238, 2016b.

  19. Chen, J., Yan, L., and Song, W., Study on Catalytic Combustion Characteristics of the Micro-Engine with Detailed Chemical Kinetic Model of Methane-Air Mixture, Combust. Sci. Technol., vol. 187, no. 4, pp. 505-524, 2015.

  20. Chen, W.-L., Huang, C.-W., Li, Y.-H., Kao, C.-C., and Cong, H.T., Biosyngas-Fueled Platinum Reactor Applied in Micro Combined Heat and Power System with a Thermophotovoltaic Array and Stirling Engine, Energy, vol. 194, p. 116862, 2020.

  21. Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L., Development of Micro Power Generators-A Review, Appl. Energy, vol. 88, no. 1, pp. 1-16, 2011.

  22. Chou, S.K., Yang, W.M., Li, J., and Li, Z.W., Porous Media Combustion for Micro Thermophotovoltaic System Applications, Appl. Energy, vol. 87, no. 9, pp. 2862-2867, 2010.

  23. Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., and Kanatzidis, M.G., CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications, Science, vol. 287, no. 5455, pp. 1024-1027, 2000.

  24. Davidow, J. and Gelbstein, Y., A Comparison between the Mechanical and Thermoelectric Properties of Three Highly Efficient p-Type GeTe-Rich Compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-Doped Ge087Pb013Te, J. Electron. Mater., vol. 42, no. 7, pp. 1542-1549, 2013.

  25. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., and Gogna, P., New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater., vol. 19, no. 8, pp. 1043-1053, 2007.

  26. Dunn-Rankin, D., Leal, E.M., and Walther, D.C., Personal Power Systems, Prog. Energy Combust. Sci., vol. 31, nos. 5-6, pp. 422-465, 2005.

  27. Duong, A.T., Nguyen, V.Q., Duvjir, G., Duong, V.T., Kwon, S., Song, J.Y., Lee, J.K., Lee, J.E., Park, S., Min, T., Lee, J., Kim, J., and Cho, S., Achieving ZT=2.2 with Bi-Doped n-Type SnSe Single Crystals, Nat. Commun., vol. 7, no. 1, p. 13713, 2016.

  28. Epstein, A.H., Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines, J. Eng. Gas Turbines Power, vol. 126, no. 2, pp. 205-226, 2004.

  29. Fan, A., Wan, J., Liu, Y., Pi, B., Yao, H., and Liu, W., Effect of Bluff Body Shape on the Blow-Off Limit of Hydrogen/Air Flame in a Planar Micro-Combustor, Appl. Therm. Eng., vol. 62, no. 1, pp. 13-19, 2014.

  30. Fan, A., Wan, J., Liu, Y., Pi, B., Yao, H., Maruta, K., and Liu, W., The Effect of the Blockage Ratio on the Blow-Off Limit of a Hydrogen/Air Flame in a Planar Micro-Combustor with a Bluff Body, Int. J. Hydrogen Energy, vol. 38, no. 26, pp. 11438-11445, 2013.

  31. Fan, A., Zhang, H., and Wan, J., Numerical Investigation on Flame Blow-Off Limit of a Novel Microscale Swiss-Roll Combustor with a Bluff-Body, Energy, vol. 123, pp. 252-259, 2017.

  32. Faramarzpour, H., Mazaheri, K., and Alipoor, A., Effect of Backward Facing Step on Radiation Efficiency in a Micro Combustor, Int. J. Therm. Sci., vol. 132, pp. 129-136, 2018.

  33. Federici, J.A., Norton, D.G., Bruggemann, T., Voit, K.W., Wetzel, E.D., and Vlachos, D.G., Catalytic Microcombustors with Integrated Thermoelectric Elements for Portable Power Production, J. Power Sources, vol. 161, no. 2, pp. 1469-1478, 2006.

  34. Fernandez-Pello, A.C., Micropower Generation Using Combustion: Issues and Approaches, Proc. Combust. Inst., vol. 29, no. 1, pp. 883-899, 2002.

  35. Fu, C., Bai, S., Liu, Y., Tang, Y., Chen, L., Zhao, X., and Zhu, T., Realizing High Figure of Merit in Heavy-Band p-Type Half-Heusler Thermoelectric Materials, Nat. Commun., vol. 6, no. 1, p. 8144, 2015.

  36. Goldsmid, H.J., Sheard, A.R., and Wright, D.A., The Performance of Bismuth Telluride Thermojunctions, Br J. Appl. Phys., vol. 9, no. 9, p. 365, 1958.

  37. Haas-Wittmuess, R., Paesler, L., Pillai, R., Yildiz, G., vom Schloss, J., Lucka, K., Koehne, H., and Schulte, F.J., Microscale Combined Heat and Power System for Liquid Fuels, Int. J. Energy Clean Environ., vol. 11, nos. 1-4, pp. 163-176, 2010.

  38. He, Z., Yan, Y., Fang, R., Ou, Z., Zhang, Z., Yang, Z., and Zhang, Z., Numerical Investigation of a Novel Micro Combustor with a Central and Bilateral Slotted Blunt Body, Int. J. Hydrogen Energy, vol. 46, no. 45, pp. 23564-23579, 2021.

  39. He, Z., Yan, Y., Feng, S., Li, X., Yang, Z., Ran, J., and Gan, Y., Investigation on Premixed Methane/Air Combustion Characteristics in Heat Recirculation Micro Combustor with Separating Cylinder, Chem. Eng. Process. Process Intensif., vol. 153, p. 107987, 2020.

  40. Hinterleitner, B., Knapp, I., Poneder, M., Shi, Y., Muller, H., Eguchi, G., Eisenmenger-Sittner, C., Stoger-Pollach, M., Kakefuda, Y., Kawamoto, N., Guo, Q., Baba, T., Mori, T., Ullah, S., Chen, X.-Q., and Bauer, E., Thermoelectric Performance of a Metastable Thin-Film Heusler Alloy, Nature, vol. 576, no. 7785, pp. 85-90, 2019.

  41. Hiranandani, K., Aravind, B., Kishore, V.R., and Kumar, S., Development of a Numerical Model for Performance Prediction of an Integrated Microcombustor-Thermoelectric Power Generator, Energy, vol. 192, p. 116624, 2020.

  42. Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, vol. 303, no. 5659, pp. 818-82f, 2004.

  43. Jiang, D., Yang, W., Chua, K.J., and Ouyang, J., Thermal Performance of Micro-Combustors with Baffles for Thermophotovoltaic System, Appl. Therm. Eng., vol. 61, no. 2, pp. 670-677, 2013.

  44. Jiaqiang, E., Zuo, W., Liu, X., Peng, Q., Deng, Y., and Zhu, H., Effects of Inlet Pressure on Wall Temperature and Exergy Efficiency of the Micro-Cylindrical Combustor with a Step, Appl. Energy, vol. 175, pp. 337-345, 2016.

  45. Joffe, A.F. and Stil'bans, L.S., Physical Problems of Thermoelectricity, Rep. Prog. Phys., vol. 22, no. 1, p. 167, 1959.

  46. Jones, E., Microscale Combustor/Evaporator Development, in DARPA/MEMS Project Summaries, vol. 16, 2001.

  47. Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z., Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys, NanoLett., vol. 8, no. 12, pp. 4670-4674, 2008.

  48. Ju, Y. and Maruta, K., Microscale Combustion: Technology Development and Fundamental Research, Prog. Energy Combust. Sci., vol. 37, no. 6, pp. 669-715, 2011.

  49. Kaisare, N.S. and Vlachos, D.G., A Review on Microcombustion: Fundamentals, Devices and Applications, Prog. Energy Combust. Sci., vol. 38, no. 3, pp. 321-359, 2012.

  50. Kang, X. and Veeraragavan, A., Experimental Investigation of Flame Stability Limits of a Mesoscale Combustor with Thermally Orthotopic Walls, Appl. Therm. Eng., vol. 85, pp. 234-242, 2015.

  51. Kang, X. and Veeraragavan, A., Experimental Demonstration of a Novel Approach to Increase Power Conversion Potential of a Hydrocarbon Fuelled, Portable, Thermophotovoltaic System, Energy Convers. Manage., vol. 133, pp. 127-137, 2017.

  52. Karana, D.R. and Sahoo, R.R., Effect of Design Parameters on the Performance of a New Modified Annular TEG System, Int. J. Energy Clean Environ., vol. 20, no. 4, pp. 351-371, 2019.

  53. Karnik, S.V., Hatalis, M.K., and Kothare, M.V., Palladium Based Micro-Membrane for Water Gas Shift Reaction and Hydrogen Gas Separation, in Microreaction Technology, M. Matlosz, W. Ehrfeld, and J.P. Baselt, Eds., Berlin: Springer, pp. 295-302, 2001.

  54. Kelsall, G.J. and Soothill, C.D., Power Generation for a Cleaner Environment-A Perspective, Int. J. Energy Clean Environ., vol. 4, no. 3, pp. 203-222, 2003.

  55. Khandelwal, B., Deshpande, A.A., and Kumar, S., Experimental Studies on Flame Stabilization in a Three Step Rearward Facing Configuration Based Micro Channel Combustor, Appl. Therm. Eng., vol. 58, nos. 1-2, pp. 363-368, 2013.

  56. Khandelwal, B., Sahota, G.P. S., and Kumar, S., Investigations into the Flame Stability Limits in a Backward Step Micro Scale Combustor with Premixed Methane-Air Mixtures, J. Micromech. Microeng., vol. 20, no. 9, p. 095030, 2010.

  57. Kurdyumov, V.N., Pizza, G., Frouzakis, C.E., and Mantzaras, J., Dynamics of Premixed Flames in a Narrow Channel with a Step-Wise Wall Temperature, Combust. Flame, vol. 156, no. 11, pp. 2190-2200, 2009.

  58. Leach, T.T. and Cadou, C.P., The Role of Structural Heat Exchange and Heat Loss in the Design of Efficient Silicon Micro-Combustors, Proc. Combust. Inst., vol. 30, no. 2, pp. 2437-2444, 2005.

  59. Leavitt, F.A., Elsner, N.B., and Bass, J.C., Use, Application and Testing of Hi-Z Thermoelectric Modules, in Proc. of 15th Int. Conf. on Thermoelectrics, Pasadena, CA, 1996.

  60. LeBlanc, S., Thermoelectric Generators: Linking Material Properties and Systems Engineering for Waste Heat Recovery Applications, Sustainable Mater. Technol., vol. 1-2, pp. 26-35, 2014.

  61. Lee, S.I., Um, D.H., and Kwon, O.C., Performance of a Micro-Thermophotovoltaic Power System Using an Ammonia-Hydrogen Blend-Fueled Micro-Emitter, Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9330-9342, 2013.

  62. Li, G., Zheng, Y., Guo, W., Zhu, D., and Tang, Y., Mesoscale Combustor-Powered Thermoelectric Generator: Experimental Optimization and Evaluation Metrics, Appl. Energy, vol. 272, p. 115234, 2020.

  63. Li, J., Huang J., Chen, X., Zhao, D., Shi, B., Wei, Z., and Wang, N., Effects of Heat Recirculation on Combustion Characteristics of n-Heptane in Micro Combustors, Appl. Therm. Eng., vol. 109, pp. 697-708, 2016a.

  64. Li, J., Li, Q., Wang, Y., Guo, Z., and Liu, X., Fundamental Flame Characteristics of Premixed H2-Air Combustion in a Planar Porous Micro-Combustor, Chem. Eng. J., vol. 283, pp. 1187-1196, 2016b.

  65. Li, J., Wang, Y., Chen, J., Shi, J., and Liu, X., Experimental Study on Standing Wave Regimes of Premixed H2-Air Combustion in Planar Micro-Combustors Partially Filled with Porous Medium, Fuel, vol. 167, pp. 98-105, 2016c.

  66. Li, L., Yang, W., and Fan, A., Effect of the Cavity Aft Ramp Angle on Combustion Efficiency of Lean Hydrogen/Air Flames in a Micro Cavity-Combustor, Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5623-5632, 2019a.

  67. Li, Q., Li, J., Shi, J., and Guo, Z., Effects of Heat Transfer on Flame Stability Limits in a Planar Micro-Combustor Partially Filled with Porous Medium, Proc. Combust. Inst., vol. 37, no. 4, pp. 5645-5654, 2019b.

  68. Li, Y.-H. and Hong, J.-R., Performance Assessment of Catalytic Combustion-Driven Thermophotovoltaic Platinum Tubular Reactor, Appl. Energy, vol. 211, pp. 843-853, 2018a.

  69. Li, Y.-H. and Hong, J.-R., Power Generation Performance of Hydrogen-Fueled Micro Thermophotovoltaic Reactor, Int. J. Hydrogen Energy, vol. 43, no. 3, pp. 1459-1469, 2018b.

  70. Li, Y.-H., Li, H.-Y., Dunn-Rankin, D., and Chao, Y.-C., Enhancing Thermal, Electrical Efficiencies of a Miniature Combustion-Driven Thermophotovoltaic System, Prog. Photovoltaics Res. Appl., vol. 17, no. 7, pp. 502-512, 2009.

  71. Lloyd, S.A. and Weinberg, F.J., A Burner for Mixtures of Very Low Heat Content, Nature, vol. 251, pp. 47-49, 1974.

  72. Ma, L., Fang, Q., Zhang, C., and Chen, G., A Novel Swiss-Roll Micro-Combustor with Double Combustion Chambers: A Numerical Investigation on Effect of Solid Material on Premixed CH4/Air Flame Blow- Off Limit, Int. J. Hydrogen Energy, vol. 46, no. 29, pp. 16116-16126, 2021.

  73. Madou, M., Fundamentals of Microfabrication, Boca Raton, FL: CRC Press, 1997.

  74. Maruta, K., Micro and Mesoscale Combustion, Proc. Combust. Inst., vol. 33, no. 1, pp. 125-150, 2011.

  75. Maruta, K., Kataoka, T., Kim, N.I., Minaev, S., and Fursenko, R., Characteristics of Combustion in a Narrow Channel with a Temperature Gradient, Proc. Combust. Inst., vol. 30, no. 2, pp. 2429-2436, 2005.

  76. Maruta, K., Takeda, K., Ahn, J., Borer, K., Sitzki, L., Ronney, P.D., and Deutschmann, O., Extinction Limits of Catalytic Combustion in Microchannels, Proc. Combust. Inst., vol. 29, no. 1, pp. 957-963, 2002.

  77. May, A.F., Toberer, E.S., Saramat, A., and Snyder, G.J., Characterization and Analysis of Thermoelectric Transport in n-type Ba8Ga16-xGe30+x, Phys. Rev. B, vol. 80, no. 12, p. 125205, 2009.

  78. Merotto, L., Fanciulli, C., Donde, R., and De Iuliis, S., Study of a Thermoelectric Generator Based on a Catalytic Premixed Meso-Scale Combustor, Appl. Energy, vol. 162, pp. 346-353, 2016.

  79. Miesse, C., Masel, R.I., Short, M., and Shannon, M.A., Diffusion Flame Instabilities in a 0.75 mm Non-Premixed Microburner, Proc. Combust. Inst., vol. 30, no. 2, pp. 2499-2507, 2005.

  80. Minaev, S.S., Terletskii, I.A., and Kumar, S., Evaluating the Efficiency of Thermo-Electric Conversion of Heat from Gas Combustion in a Small-Scale System with Counterflow Heat Exchange, Thermophys. Aeromech., vol. 23, no. 4, pp. 581-589, 2016.

  81. Mustafa, K.F., Abdullah, S., Abdullah, M.Z., and Sopian, K., Experimental Analysis of a Porous Burner Operating on Kerosene-Vegetable Cooking Oil Blends for Thermophotovoltaic Power Generation, Energy Convers. Manage., vol. 96, pp. 544-560, 2015.

  82. Mustafa, K.F., Abdullah, S., Abdullah, M.Z., and Sopian, K., A Review of Combustion-Driven Thermoelectric (TE) and Thermophotovoltaic (TPV) Power Systems, Renewable Sustainable Energy Rev., vol. 71, pp. 572-584, 2017.

  83. Nakamura, H., Fan, A., Minamizono, H., Maruta, K., Kobayashi, H., and Niioka, T., Bifurcations of Stretched Premixed Flame Stabilized by a Hot Wall, Proc. Combust. Inst., vol. 32, no. 1, pp. 1367-1374, 2009.

  84. Ni, S., Zhao, D., Becker, S., and Tang, A., Thermodynamics and Entropy Generation Studies of a T-Shaped Micro-Combustor: Effects of Porous Medium and Ring-Shaped Ribs, Appl. Therm. Eng., vol. 175, p. 115374, 2020.

  85. Niu, J., Ran, J., Li, L., Du, X., Wang, R., and Ran, M., Effects of Trapezoidal Bluff Bodies on Blow Out Limit of Methane/Air Combustion in a Micro-Channel,Appl. Therm. Eng., vol. 95, pp. 454-461, 2016.

  86. Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B., Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications, Appl. Phys. Lett., vol. 73, no. 2, pp. 178-180, 1998.

  87. Nolas, G.S., Kaeser, M., Littleton IV, R.T., and Tritt, T.M., High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials, Appl. Phys. Lett., vol. 77, no. 12, pp. 1855-1857, 2000.

  88. Norton, D.G., Wetzel, E.D., and Vlachos, D.G., Thermal Management in Catalytic Microreactors, Ind. Eng. Chem. Res., vol. 45, no. 1, pp. 76-84, 2006.

  89. Paesler, L., vom Schloss, J., Jaschinski, C., Lucka, K., Koehne, H., Kulisiewicz, L., Ausmeier, S., and Delgado, A., Practical Results of a Small-Scale Burner Development, Int. J. Energy Clean Environ., vol. 11, no. 1-4, pp. 177-187, 2010.

  90. Pan, J., Miao, N., Lu, Z., Lu, Q., Yang, W., Pan, Z., and Zhang, Y., Experimental and Numerical Study on the Transition Conditions and Influencing Factors of Hetero-/Homogeneous Reaction for H2/Air Mixture in Micro Catalytic Combustor, Appl. Therm. Eng., vol. 154, pp. 120-130, 2019.

  91. Pan, J., Wu, D., Liu, Y., Zhang, H., Tang, A., and Xue, H., Hydrogen/Oxygen Premixed Combustion Characteristics in Micro Porous Media Combustor, Appl. Energy, vol. 160, pp. 802-807, 2015.

  92. Pan, J., Zhang, R., Lu, Q., Zha, Z., and Bani, S., Experimental Study on Premixed Methane-Air Catalytic Combustion in Rectangular Micro Channel, Appl. Therm. Eng., vol. 117, pp. 1-7, 2017a.

  93. Pan, J., Zhu, J., Liu, Q., Zhu, Y., Tang, A., and Lu, Q., Effect of Micro-Pin-Fin Arrays on the Heat Transfer and Combustion Characteristics in the Micro-Combustor, Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23207-23217, 2017b.

  94. Peng, Q., Jiaqiang, E., Yang, W.M., Xu, H., Chen, J., Meng, T., and Qiu, R., Effects Analysis on Combustion and Thermal Performance Enhancement of a Nozzle-Inlet Micro Tube Fueled by the Premixed Hydrogen/Air, Energy, vol. 160, pp. 349-360, 2018a.

  95. Peng, Q., Jiaqiang, E., Yang, W.M., Xu, H., Chen, J., Zhang, F., Meng, T., and Qiu, R., Experimental and Numerical Investigation of a Micro-Thermophotovoltaic System with different Backward-Facing Steps and Wall Thicknesses, Energy, vol. 173, pp. 540-547, 2019a.

  96. Peng, Q., Jiaqiang, E., Zhang, Z., Hu, W., and Zhao, X., Investigation on the Effects of Front-Cavity on Flame Location and Thermal Performance of a Cylindrical Micro Combustor, Appl. Therm. Eng., vol. 130, pp. 541-551, 2018b.

  97. Peng, Q., Wu, Y., Jiaqiang, E., Yang, W., Xu, H., and Li, Z., Combustion Characteristics and Thermal Performance of Premixed Hydrogen-Air in a Two-Rearward-Step Micro Tube, Appl. Energy, vol. 242, pp. 424-438, 2019b.

  98. Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., and Boulouchos, K., Three-Dimensional Simulations of Premixed Hydrogen/Air Flames in Microtubes, J. FluidMech., vol. 658, pp. 463-491, 2010.

  99. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., and Vashaee, D., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science, vol. 320, no. 5876, pp. 634-638, 2008.

  100. Poudeu, P.F.P., D'Angelo, J., Downey, A.D., Short, J.L., Hogan, T.P., and Kanatzidis, M.G., High Thermo-electric Figure of Merit and Nanostructuring in Bulk p-type Na1-xPbmSb Tem+2, Angew. Chem. Int. Ed., vol. 45, no. 23, pp. 3835-3839, 2006.

  101. Pourali, M., Esfahani, J.A., and Fanaee, S.A., Two-Dimensional Analytical Investigation of Conjugate Heat Transfer in a Finite-Length Planar Micro-Combustor for a Hydrogen-Air Mixture, Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 12176-12187, 2019.

  102. Pourali, M., Esfahani, J.A., Fanaee, S.A., Bastiaans, R.J.M., and Kim, K.C., Effect of Hydrogen Addition on Conjugate Heat Transfer in a Planar Micro-Combustor with the Detailed Reaction Mechanism: An Analytical Approach, Int. J. Hydrogen Energy, vol. 45, no. 30, pp. 15425-15440, 2020.

  103. Qian, P., Liu, M., Li, X., Xie, F., Huang, Z., Luo, C., and Zhu, X., Combustion Characteristics and Radiation Performance of Premixed Hydrogen/Air Combustion in a Mesoscale Divergent Porous Media Combustor, Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 5002-5013, 2020.

  104. Qian, P., Yuan, X., Chen, Z., Luo, C., Huang, Z., Zhu, X., and Liu, M., Experimental Study on a High Efficient and Ultra-Lean Burn Meso-Scale Thermoelectric System Based on Porous Media Combustion, Energy Convers. Manage., vol. 234, p. 113966, 2021.

  105. Quaye, E.K., Pan, J., Lu, Q., Zhang, Y., Wang, Y., and Alubokin, A.A., Study on Combustion Characteristics of Premixed Methane-Oxygen in a Cylindrical Porous Media Combustor, Chem. Eng. Process. Process Intensif., vol. 159, p. 108207, 2021.

  106. Rana, U., Chakraborty, S., and Som, S.K., Prediction of Flame Speed and Exergy Analysis of Premixed Flame in a Heat Recirculating Cylindrical Micro Combustor, Energy, vol. 126, pp. 658-670, 2017.

  107. Ronney, P.D., Analysis of Non-Adiabatic Heat-Recirculating Combustors, Combust. Flame, vol. 135, no. 4, pp. 421-439, 2003.

  108. Rortveit, G.J., Stromman, A.H., Ditaranto, M., and Hustad, J.E., Emissions from Combustion of H2 and CH4 Mixtures in Catalytic Burners for Small-Scale Heat and Power Applications, Int. J. Energy Clean Environ., vol. 6, no. 2, pp. 187-194, 2005.

  109. Rowe, D.M., Ed., CRC Handbook of Thermoelectrics, Boca Raton, FL: CRC Press, 1995.

  110. Rowe, D.M. and Min, G., Evaluation of Thermoelectric Modules for Power Generation, J. Power Sources, vol. 73, no. 2, pp. 193-198, 1998.

  111. Sahota, G.P.S., Khandelwal, B., and Kumar, S., Experimental Investigations on a New Active Swirl Based Microcombustor for an Integrated Micro-Reformer System, Energy Convers. Manage., vol. 52, no. 10, pp. 3206-3213, 2011.

  112. Schlapbach, L., Hydrogen as a Fuel and Its Storage for Mobility and Transport, MRS Bull., vol. 27, no. 9, pp. 675-679, 2002.

  113. Selvan, K.V. and Ali, M.S.M., Micro-Scale Energy Harvesting Devices: Review of Methodological Performances in the Last Decade, Renewable Sustainable Energy Rev., vol. 54, pp. 1035-1047, 2016.

  114. Shimokuri, D., Taomoto, Y., and Matsumoto, R., Development of a Powerful Miniature Power System with a Meso-Scale Vortex Combustor, Proc. Combust. Inst., vol. 36, no. 3, pp. 4253-4260, 2017.

  115. Shin, W., Tajima, K., Choi, Y., Nishibori, M., Izu, N., Matsubara, I., and Murayama, N., Micro-Thermoelectric Devices with Ceramic Combustors, Sensors Actuators, A, vols. 130-131, pp. 411-418, 2006.

  116. Shirsat, V. and Gupta, A.K., A Review of Progress in Heat Recirculating Meso-Scale Combustors, Appl. Energy, vol. 88, no. 12, pp. 4294-4309, 2011a.

  117. Shirsat, V. and Gupta, A.K., Performance Characteristics of Methanol and Kerosene Fuelled Meso-Scale Heat-Recirculating Combustors, Appl. Energy, vol. 88, no. 12, pp. 5069-5082, 2011b.

  118. Shirsat, V. and Gupta, A.K., Extinction, Discharge, and Thrust Characteristics of Methanol Fueled Meso-Scale Thrust Chamber, Appl. Energy, vol. 103, pp. 375-392, 2013.

  119. Shuai, J., Geng, H., Lan, Y., Zhu, Z., Wang, C., Liu, Z., Bao, J., Chu, C.-W., Sui, J., and Ren, Z., Higher Thermoelectric Performance of Zintl Phases (Eu05Yb05)1-xCaxMg2Bi2 by Band Engineering and Strain Fluctuation, Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 29x, pp. E4125-E4132, 2016.

  120. Srivastava, N., Aravind, B., Kishore Velamati, R., Minaev, S., and Kumar, S., Numerical Investigations on Behaviour Bifurcation of Premixed H2-Air Flames in Mesoscale Tubes, Combust. Theor. Model., vol. 23, no. 6, pp. 969-993, 2019.

  121. Su, Y., Song, J., Chai, J., Cheng, Q., Luo, Z., Lou, C., and Fu, P., Numerical Investigation of a Novel Micro Combustor with Double-Cavity for Micro-Thermophotovoltaic System, Energy Convers. Manage., vol. 106, pp. 173-180, 2015.

  122. Sviridenko, I. and Shevielov, D.V., Thermosiphon-Based Passive Heat Removal System for Simultaneous Cooldown of Reactor and Pressurizer, Int. J. Energy Clean Environ., vol. 13, nos. 1-4, pp. 153-167, 2012.

  123. Tang, A., Cai, T., Deng, J., Xu, Y., and Pan, J., Experimental Investigation on Combustion Characteristics of Premixed Propane/Air in a Micro-Planar Heat Recirculation Combustor, Energy Convers. Manage., vol. 152, pp. 65-71, 2017.

  124. Tang, A., Cai, T., Huang, Q., Deng, J., and Pan, J., Numerical Study on Energy Conversion Performance of Micro-Thermophotovoltaic System Adopting a Heat Recirculation Micro-Combustor, Fuel Process. Technol., vol. 180, pp. 23-31, 2018.

  125. Tang, X., Zhang, Q., Chen, L., Goto, T., and Hirai, T., Synthesis and Thermoelectric Properties of p-Type- and n-Type-Filled Skutterudite RyMxCo4-xSb12 (R: Ce, Ba, Y; M: Fe, Ni), J. Appl. Phys, vol. 97, no. 9, p. 093712, 2005.

  126. Taywade, U.W., Deshpande, A.A., and Kumar, S., Thermal Performance of a Micro Combustor with Heat Recirculation, Fuel Process. Technol., vol. 109, pp. 179-188, 2013.

  127. Tortora, G.J. and Derrickson, B.H., Introduction to the Human Body, New York: John Wiley & Sons, 2017.

  128. Tsuboi, Y., Yokomori, T., and Maruta, K., Lower Limit of Weak Flame in a Heated Channel, Proc. Combust. Inst., vol. 32, no. 2, pp. 3075-3081, 2009.

  129. Um, D.H., Kim, T.Y., and Kwon, O.C., Power and Hydrogen Production from Ammonia in a Micro-Thermophotovoltaic Device Integrated with a Micro-Reformer, Energy, vol. 73, pp. 531-542, 2014.

  130. Veeraragavan, A., On Flame Propagation in Narrow Channels with Enhanced Wall Thermal Conduction, Energy, vol. 93, pp. 631-640, 2015.

  131. Veeraragavan, A., Dellimore, K., and Cadou, C., Two-Dimensional Analytical Model of Heat Transfer for Flames in Channels, J. Thermophys. Heat Transf., vol. 23, no. 3, pp. 551-559, 2009.

  132. Veetil, J.E., Aravind, B., Mohammad, A., Kumar, S., and Velamati, R.K., Effect of Hole Pattern on the Structure of Small Scale Perorated Plate Burner Flames, Fuel, vol. 216, pp. 722-733, 2018.

  133. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, vol. 413, no. 6856, pp. 597-602, 2001.

  134. Vijayan, V. and Gupta, A.K., Combustion and Heat Transfer at Meso-Scale with Thermal Recuperation, Appl. Energy, vol. 87, no. 8, pp. 2628-2639, 2010a.

  135. Vijayan, V. and Gupta, A.K., Flame Dynamics of a Meso-Scale Heat Recirculating Combustor, Appl. Energy, vol. 87, no. 12, pp. 3718-3728, 2010b.

  136. Vijayan, V. and Gupta, A.K., Thermal Performance of a Meso-Scale Liquid-Fuel Combustor, Appl. Energy, vol. 88, no. 7, pp. 2335-2343, 2011.

  137. Voss, S., Posdziech, O., Valldorf, J., and Trimis, D., Preliminary Operational Results of a Domestic SOFC Based Micro-CHP System, Int. J. Energy Clean Environ., vol. 12, no. 1, pp. 1-13, 2011.

  138. Walther, D.C. and Ahn, J., Advances and Challenges in the Development of Power-Generation Systems at Small Scales, Prog. Energy Combust. Sci., vol. 37, no. 5, pp. 583-610, 2011.

  139. Wan, J. and Fan, A., Recent Progress in Flame Stabilization Technologies for Combustion-Based Micro Energy and Power Systems, Fuel, vol. 286, p. 119391, 2021.

  140. Wan, J., Fan, A., Liu, Y., Yao, H., Liu, W., Gou, X., and Zhao, D., Experimental Investigation and Numerical Analysis on Flame Stabilization of CH4/Air Mixture in a Mesoscale Channel with Wall Cavities, Combust. Flame, vol. 162, no. 4, pp. 1035-1045, 2015a.

  141. Wan, J., Fan, A., Maruta, K., Yao, H., and Liu, W., Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor with a Bluff Body, Int. J. Hydrogen Energy, vol. 37, no. 24, pp. 19190-19197, 2012.

  142. Wan, J., Fan, A., Yao, H., and Liu, W., A Non-Monotonic Variation of Blow-Off Limit of Premixed CH4/Air Flames in Mesoscale Cavity-Combustors with Different Thermal Conductivities, Fuel, vol. 159, pp. 1-6, 2015b.

  143. Wan, J., Fan, A., Yao, H., and Liu, W., Effect of Thermal Conductivity of Solid Wall on Combustion Efficiency of a Micro-Combustor with Cavities, Energy Convers. Manage., vol. 96, pp. 605-612, 2015c.

  144. Wan, J., Fan, A., Yao, H., and Liu, W., Experimental Investigation and Numerical Analysis on the Blow-ff Limits of Premixed CH4/Air Flames in a Mesoscale Bluff-Body Combustor, Energy, vol. 113, pp. 193-203, 2016.

  145. Wan, J., Shang, C., and Zhao, H., Dynamics of Methane/Air Premixed Flame in a Mesoscale Diverging Combustor with/without a Cylindrical Flame Holder, Fuel, vol. 232, pp. 659-665, 2018a.

  146. Wan, J., Xu, Z., and Zhao, H., Methane/Air Premixed Flame Topology Structure in a Mesoscale Combustor with a Plate Flame Holder and Preheating Channels, Energy, vol. 165, pp. 802-811, 2018b.

  147. Wan, J., Yang, W., Fan, A., Liu, Y., Yao, H., Liu, W., Du, Y., and Zhao, D., A Numerical Investigation on Combustion Characteristics of H2/Air Mixture in a Micro-Combustor with Wall Cavities, Int. J. Hydrogen Energy, vol. 39, no. 15, pp. 85138-8146, 2014.

  148. Wan, J. and Zhao, H., Effect of Thermal Condition of Solid Wall on the Stabilization of a Preheated and Holder-Stabilized Laminar Premixed Flame, Energy, vol. 200, p. 117548, 2020.

  149. Wang, M., Li, P., and Wang, F., Dependence of the Blowout Limit on Flow Structure, Heat Transfer, and Pressure Loss in a Bluff-Body Micro-Combustor, Int. J. Hydrogen Energy, vol. 45, no. 38, pp. 19912-19925, 2020a.

  150. Wang, S., Li, L., and Fan, A., Suppression of Flame Instability by a Short Catalytic Segment on the Wall of a Micro Channel with a Prescribed Wall Temperature Profile, Fuel, vol. 234, pp. 1329-1336, 2018a.

  151. Wang, S., Li, L., Xia, Y., Fan, A., and Yao, H., Effect of a Catalytic Segment on Flame Stability in a Micro Combustor with Controlled Wall Temperature Profile, Energy, vol. 165, pp. 522-531, 2018b.

  152. Wang, S., Yuan, Z., and Fan, A., Experimental Investigation on Non-Premixed CH4/Air Combustion in a Novel Miniature Swiss-Roll Combustor, Chem. Eng. Process. Process Intensif., vol. 139, pp. 44-50, 2019a.

  153. Wang, W., Jia, F., Huang, Q., and Zhang, J., A New Type of Low Power Thermoelectric Micro-Generator Fabricated by Nanowire Array Thermoelectric Material, Microelectron. Eng., vol. 77, no. 3-4, pp. 223-229, 2005.

  154. Wang, W., Zhao, Z., Kuang, N., Chen, H., Liu, J., and Zuo, Z., Experimental Study and Optimization of a Combustion-Based Micro Thermoelectric Generator, Appl. Therm. Eng., vol. 181, p. 115431, 2020b.

  155. Wang, W., Zuo, Z., and Liu, J., Experimental Study and Numerical Analysis of the Scaling Effect on the Flame Stabilization of Propane/Air Mixture in the Micro-Scale Porous Combustor, Energy, vol. 174, pp. 509-518, 2019b.

  156. Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., and Ren, Z.F., Enhanced Thermoelectric Figure of Merit in Nano-structured n-Type Silicon Germanium Bulk Alloy,Appl. Phys. Lett., vol. 93, no. 19, p. 193121, 2008.

  157. Weinberg, F. J., The First Half-Million Years of Combustion Research and Today's Burning Problems, Prog. Energy Combust. Sci., vol. 1, no. 1, pp. 17-31, 1975.

  158. Wierzbicki, T.A., Lee, I.C., and Gupta, A.K., Combustion of Propane with Pt and Rh Catalysts in a Meso-Scale Heat Recirculating Combustor, Appl. Energy, vol. 130, pp. 350-356, 2014a.

  159. Wierzbicki, T.A., Lee, I.C., and Gupta, A.K., Performance of Synthetic Jet Fuels in a Meso-Scale Heat Recirculating Combustor, Appl. Energy, vol. 118, pp. 41-47, 2014b.

  160. Wierzbicki, T.A., Lee, I.C., and Gupta A.K., Rh Assisted Catalytic Oxidation of Jet Fuel Surrogates in a Meso-Scale Combustor, Appl. Energy, vol. 145, pp. 1-7, 2015.

  161. Wood, C., Materials for Thermoelectric Energy Conversion, Rep. Prog. Phys., vol. 51, no. 4, pp. 459-539, 1988.

  162. Xu, B. and Ju, Y., Experimental Study of Spinning Combustion in a Mesoscale Divergent Channel, Proc. Combust. Inst., vol. 31, no. 2, pp. 3285-3292, 2007.

  163. Xu, B. and Ju, Y., Studies on Non-Premixed Flame Streets in a Mesoscale Channel, Proc. Combust. Inst., vol. 32, no. 1, pp. 1375-1382, 2009.

  164. Yadav, S., Yamasani, P., and Kumar, S., Experimental Studies on a Micro Power Generator Using Thermo-Electric Modules Mounted on a Micro-Combustor, Energy Convers. Manage., vol. 99, pp. 1-7, 2015.

  165. Yan, X., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y., Wang, D., Chen, G., and Ren, Z.F., Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2 7Se0 3, Nano Lett., vol. 10, no. 9, pp. 3373-3378, 2010.

  166. Yan, Y., Wu, G., Huang, W., Zhang, L., Li, L., and Yang, Z., Numerical Comparison Study of Methane Catalytic Combustion Characteristic between Newly Proposed Opposed Counter-Flow Micro-Combustor and the Conventional Ones, Energy, vol. 170, pp. 403-410, 2019.

  167. Yan, Y., Yan, H., Zhang, L., Li, L., Zhu, J., and Zhang, Z., Numerical Investigation on Combustion Characteristics of Methane/Air in a Micro-Combustor with a Regular Triangular Pyramid Bluff Body, Int. J. Hydrogen Energy, vol. 43, no. 15, pp. 7581-7590, 2018.

  168. Yang, W., Wang, Y., Zhou, J., Yao, Y., Zhu, X., and Cen, K., Simulation of Hetero/Homogeneous Combustion Characteristics of CH4/Air in a Half Packed-Bed Catalytic Combustor, Chem. Eng. Sci., vol. 211, p. 115247, 2020a.

  169. Yang, W.M., Chou, S.K., Chua, K.J., An, H., Karthikeyan, K., and Zhao, X., An Advanced Micro Modular Combustor-Radiator with Heat Recuperation for Micro-TPV System Application, Appl. Energy, vol. 97, pp. 749-753, 2012.

  170. Yang, W.M., Chou, S.K., and Li, J., Microthermophotovoltaic Power Generator with High Power Density, Appl. Therm. Eng., vol. 29, nos. 14-15, pp. 3144-3148, 2009.

  171. Yang, W.M., Chou, S.K., Shu, C., Li, Z.W., and Xue, H., Development of Microthermophotovoltaic System, Appl. Phys. Lett., vol. 81, no. 27, pp. 5255-5257, 2002.

  172. Yang, W.M., Chou, S.K., Shu, C., Li, Z.W., and Xue, H., Research on Micro-Thermophotovoltaic Power Generators, Sol. Energy Mater. Sol. Cells, vol. 80, no. 1, pp. 95-104, 2003.

  173. Yang, W.M., Chou, S.K., Shu, C., Li, Z.W., and Xue, H., Study of Catalytic Combustion and Its Effect on Microthermophotovoltaic Power Generators, J. Phys. D: Appl. Phys., vol. 38, no. 23, p. 4252, 2005.

  174. Yang, W.M., Chua, K.J., Pan, J.F., Jiang, D.Y., and An, H., Development of Micro-Thermophotovoltaic Power Generator with Heat Recuperation, Energy Convers. Manage., vol. 78, pp. 81-87, 2014.

  175. Yang, W.M., Jiang, D., Chua, K.Y.K., Zhao, D., and Pan, J., Combustion Process and Entropy Generation in a Novel Microcombustor with a Block Insert, Chem. Eng. J., vol. 274, pp. 231-237, 2015.

  176. Yang, X., He, Z., Cha, S., Zhao, L., Dong, S., and Tan, H., Parametric Analysis on the Combustion and Thermal Performance of a Swirl Micro-Combustor for Micro Thermophotovoltaic System, Energy, vol. 198, p. 117312, 2020b.

  177. Yang, X., Yang, W., Dong, S., and Tan, H., Flame Stability Analysis of Premixed Hydrogen/Air Mixtures in a Swirl Micro-Combustor, Energy, vol. 209, p. 118495, 2020c.

  178. Yang, X., Zhao, L., He, Z., Dong, S., and Tan, H., Comparative Study of Combustion and Thermal Performance in a Swirling Micro Combustor under Premixed and Non-Premixed Modes, Appl. Therm. Eng., vol. 160, p. 114110, 2019.

  179. Yedala, N. and Kaisare, N.S., Modeling of Thermal Integration of a Catalytic Microcombustor with a Thermoelectric for Power Generation Applications, Energy Fuels, vol. 35, no. 6, pp. 5141-5152, 2021.

  180. Yoshida, K., Tanaka, S., Tomonari, S., Satoh, D., and Esashi, M., High-Energy Density Miniature Thermoelectric Generator Using Catalytic Combustion, J. Microelectromech. Syst., vol. 15, no. 1, pp. 195-203, 2006.

  181. Zeng, G., Bahk, J.-H., Bowers, J.E., Zide, J.M.O., Gossard, A.C., Bian, Z., Singh, R., Shakouri, A., Kim, W., Singer, S.L., and Majumdar, A., ErAs:(InGaAs)1-x(InAlAs)x Alloy Power Generator Modules, Appl. Phys. Lett., vol. 91, no. 26, p. 263510, 2007. ".

  182. Zhang, C., Najafi, K., Bernal, L.P., and Washabaugh, P.D., Micro Combustion-Thermionic Power Generation: Feasibility, Design and Initial Results, in TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), Boston, MA, USA: IEEE, pp. 40-44, 2003.

  183. Zhang, J., Song, L., Pedersen, S.H., Yin, H., Le, T.H., and Iversen, B.B., Discovery of High-Performance Low-Cost n-type Mg3Sb2-Based Thermoelectric Materials with Multi-Valley Conduction Bands, Nat. Commun., vol. 8, no. 1, p. 13901, 2017.

  184. Zhang, X. and Zhao, L.-D., Thermoelectric Materials: Energy Conversion between Heat and Electricity, J. Materiomics, vol. 1, no. 2, pp. 92-105, 2015.

  185. Zhang, Z., Wu, K., Yuen, R., Yao, W., and Wang, J., Numerical Investigation on the Performance of Bluff Body Augmented Micro Cavity-Combustor, Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 4932-4945, 2020.

  186. Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., and Kanatzidis, M.G., Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, Nature, vol. 508, no. 7496, pp. 373-377, 2014.

  187. Zhong, B.-J., Yu, Y.-W., and Yang, F., Effect of Catalyst Length and Hydrogen Addition on the Combustion Characteristics of n-Butane in a Catalytic Swiss-Roll Combustor, Combust. Sci. Technol., vol. 187, no. 10, pp. 1504-1519, 2015.

  188. Zuo, W., Jiaqiang, E., Han, D., and Jin, Y., Numerical Investigations on Thermal Performance of Double- Layer Four-Channel Micro Combustors for Micro-Thermophotovoltaic System, Energy Convers. Manage., vol. 150, pp. 343-355, 2017a.

  189. Zuo, W., Jiaqiang, E., Hu, W., Jin, Y., and Han, D., Numerical Investigations on Combustion Characteristics of H2/Air Premixed Combustion in a Micro Elliptical Tube Combustor, Energy, vol. 126, pp. 1-12, 2017b.

  190. Zuo, W., Jiaqiang, E., and Lin, R., Numerical Investigations on an Improved Counterflow Double-Channel Micro Combustor Fueled with Hydrogen for Enhancing Thermal Performance, Energy Convers. Manage., vol. 159, pp. 163-174, 2018a.

  191. Zuo, W., Jiaqiang, E., Lin, R., Jin, Y., and Han, D., Numerical Investigations on Different Configurations of a Four-Channel Meso-Scale Planar Combustor Fueled by Hydrogen/Air Mixture, Energy Convers. Manage., vol. 160, pp. 1-13, 2018b.

  192. Zuo, W., Jiaqiang, E., Liu, H., Peng, Q., Zhao, X., and Zhang, Z., Numerical Investigations on an Improved Micro-Cylindrical Combustor with Rectangular Rib for Enhancing Heat Transfer, Appl. Energy, vol. 184, pp. 77-87, 2016a.

  193. Zuo, W., Jiaqiang, E., Liu, X., Peng, Q., Deng, Y., and Zhu, H., Orthogonal Experimental Design and Fuzzy Grey Relational Analysis for Emitter Efficiency of the Micro-Cylindrical Combustor with a Step, Appl. Therm. Eng., vol. 103, pp. 945-951, 2016b.

  194. Zuo, W., Zhang, Y., Li, Q., Li, J., and He, Z., Numerical Investigations on Hydrogen-Fueled Micro-Cylindrical Combustors with Cavity for Micro-Thermophotovoltaic Applications, Energy, vol. 223, p. 120098, 2021.

CITADO POR
  1. E Jiaqiang, Mei Yaqian, Feng Changling, Ding Jiangjun, Cai Lei, Luo Bo, A review of enhancing micro combustion to improve energy conversion performance in micro power system, International Journal of Hydrogen Energy, 47, 53, 2022. Crossref

  2. Aimbetova Indira O., Kuzmin Andrey, Myrkheyeva Dana N. , Aimbetova Elmira O., Kalimoldina Laila , AN EFFECT OF HYDROTHERMAL SYNTHESIS TIME ON THE SPECIFIC CAPACITANCE OF VANADIUM PENTOXIDE , International Journal of Energy for a Clean Environment, 24, 2, 2023. Crossref

Próximos artigos

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain