Inscrição na biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicou 6 edições por ano

ISSN Imprimir: 2152-5102

ISSN On-line: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Hydrobionic Principles of Drag Reduction

Volume 30, Edição 2, 2003, 22 pages
DOI: 10.1615/InterJFluidMechRes.v30.i2.10
Get accessGet access

RESUMO

Features of organism's systems and their interaction in a course of motion of aquatic animals, which reduces the power consumption, are the subject of investigation. The principles of operation of the hydrobionts, the morphological and physiological features of the skeleton, muscles, skin integuments, circulatory system and innervation of dolphins are considered with allowance made for the influence of the environment on the organism. It is studied how the velocity of swimming, the non-stationarity of the flow, the non-traditional mode of creation of the traction and the specific structure of a body influence the organism's systems. A temperature on the surface of a body, distribution of the elasticity, damping properties of the skin and characteristics of the turbulent boundary layer are measured at various modes of motion of a dolphin. The operation of the organism's systems and the mechanisms of control of the mechanical properties of a skin, which depend on the velocity of swimming, are considered. The hydrodynamic simulation of the organism's systems is performed. The experimental results for some models of the organism's systems of the hydrobionts are presented.

CITADO POR
  1. References, in Boundary Layer Flow over Elastic Surfaces, 2012. Crossref

  2. Babenko V.V., Korobov V.I., Moroz V.V., Bionics principles in hydrodynamics of automotive unmanned underwater vehicles, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), 3, 2000. Crossref

  3. References, in Experimental Hydrodynamics of Fast-Floating Aquatic Animals, 2020. Crossref

  4. Bibliography, in Experimental Hydrodynamics for Flow Around Bodies, 2021. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain