Inscrição na biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicou 6 edições por ano

ISSN Imprimir: 2152-5102

ISSN On-line: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Variable Permeability Effect on Vortex Instability of Non-Darcian Mixed Convection Flow Over a Horizontal Permeable Surface Embedded in a Saturated Porous Medium

Volume 37, Edição 1, 2010, pp. 15-30
DOI: 10.1615/InterJFluidMechRes.v37.i1.20
Get accessGet access

RESUMO

A linear stability theory is used to analyze the vortex instability of a horizontal mixed convection boundary layer flow in a saturated porous medium. The non-Darcian effects, which include the inertia force and surface mass flux are examined. The variation of permeability in the vicinity of the solid boundary is approximated by an exponential function. The variation rate itself depends slowly on the streamwise coordinate, such as to allow the problem to possess a set of solutions, invariant under a group of transformations. Velocity and temperature profiles as well as local Nusselt number for the base flow are presented for the uniform permeability (UP) and variable permeability (VP) cases. An implicit finite difference method is used to solve the base flow and the resulting eigenvalue problems are solved numerically. The critical Peclet number and the associated wave number are obtained for both UP and VP cases. The results indicate that, the inertial coefficient reduces the heat transfer rate and destabilizes the flow to the vortex mode of disturbance. The effect of variable permeability tends to increase the heat transfer rate and destabilize the flow to the vortex mode of disturbance. Further, for blowing, the Nusselt numbers are lower than those for an impermeable surface and the flow is more susceptible to the vortex instability, while the opposite trend is true for suction.

CITADO POR
  1. Nield Donald A., Bejan Adrian, External Natural Convection, in Convection in Porous Media, 2017. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain