Inscrição na biblioteca: Guest
Catalysis in Green Chemistry and Engineering

Publicou 4 edições por ano

ISSN Imprimir: 2572-9896

ISSN On-line: 2572-990X

H-Index: 2

Indexed in

KINETICS OF REVERSE WATER-GAS SHIFT REACTION OVER CuO/ZnO/Al2O3 CATALYST

Volume 3, Edição 2, 2020, pp. 141-151
DOI: 10.1615/CatalGreenChemEng.2020036423
Get accessGet access

RESUMO

The reverse water-gas shift (RWGS) is a candidate technique for the production of carbon monoxide (CO), which could be further hydrogenated to methanol. In this work, the kinetics of the RWGS reaction were investigated using a commercial CuO/ZnO/Al2O3 catalyst. Activity trials were performed in a fixed-bed flow reactor at 0.1 MPa in the 513-533 K range by feeding a mixture of hydrogen (H2) and carbon dioxide (CO2) in the 1-4 mol/mol range. The space time was varied, in the 0.04-0.11 g h/L range. The reactor was operated as a differential plug flow reactor (CO2 conversion < 10%). From the temperature dependence of the reaction rates, the activation energy value was found to be equal to 72.4 kJ/mol. The associative and surface redox mechanisms were considered to describe the CO formation pathway, and the latter appeared dominant over the CuO/ZnO/Al2O3 catalyst.

Referências
  1. Ayastuy, J.L., Gutierrez-Ortiz, M.A., Gonzalez-Marcos, J.A., Aranzabal, A., and Gonzalez-Velasco, J.R., Kinetics of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst, Ind. Eng. Chem. Res., vol. 44, pp. 41-50, 2005.

  2. Centi, G., Cum, G., Fierro, J.L.G., and Lopez Nieto, J.M., Direct Conversion of Methane, Ethane and Carbon Dioxide to Fuels and Chemicals, CAP Report, The Catalyst Group Resources, 2008.

  3. Centi, G., and Perathoner, S., Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels, Catal. Today, vol. 148, pp. 191-205,2009.

  4. Chen, C.S. and Cheng, W.H., Study on the Mechanism of CO Formation in Reverse Water Gas Shift Reaction over Cu/SiO2 Catalyst by Pulse Reaction, TPD and TPR, Catal. Lett., vol. 83, pp. 121-126,2002.

  5. Chen, C.S., Cheng, W.H., and Lin, S.S., Mechanism of CO Formation in Reverse Water-Gas Shift Reaction over Cu/Al2O3 Catalyst, Catal. Lett., vol. 68, pp. 45-48,2000.

  6. Ernst, K.H., Campbell, C.T., and Moretti, G., Kinetics of the Reverse Water-Gas Shift Reaction over Cu(110), J. Catal, vol. 134, pp. 66-74,1992.

  7. Fujita, S.I., Usui, M., and Takezawa, N., Mechanism of the Reverse Water Gas Shift Reaction over Cu/ZnO Catalyst, J. Catal., vol. 134, pp. 220-225,1992.

  8. Gines, M.J.L., Marchi, A.J., and Apesteguia, C.R., Kinetic Study of the Reverse Water-Gas Shift Reaction over CuO/ZnO/Al2O3 Catalysts, Appl. Catal, A, vol. 154, pp. 155-171,1997.

  9. Goguet, A., Shekhtman, S.O., Burch, R., Hardacre, C., Meunier, F.C., and Yablonsky, G.S., Pulse-Response TAP Studies of the Reverse Water-Gas Shift Reaction over a Pt/CeO2 Catalyst, J. Catal., vol. 237, pp. 102-110,2006.

  10. Jadhav, S.G., Vaidya, P.D., Bhanage, B.M., and Joshi, J.B., Kinetics of Reverse Water Gas Shift Reaction over Pt/Al2O3 Catalyst, Can. J. Chem. Eng., vol. 94, pp. 101-106,2015.

  11. Joo, O.S. and Jung, K.D., Stability of ZnAl2O4 Catalyst for Reverse-Water-Gas-Shift Reaction (RWGSR), Bull. Korean Chem. Soc., vol. 24, pp. 86-90,2003.

  12. Joo, O.S., Jung, K.D., Han, S.H., Uhm, S.J., Lee, D.K., and Ihm, S.K., Migration and Reduction of Formate to Form Methanol on CuZnO Catalysts, Appl. Catal, A, vol. 135, pp. 273-286,1996.

  13. Joo, O.S., Jung, K.D., Moon, I., Rozovskii, A.Y., Lin, G.I., Han, S.H., and Uhm, S.J., Carbon Dioxide Hydrogenation to Form Methanol via a Reverse-Water-Gas-Shift Reaction (the CAMERE Process), Ind. Eng. Chem. Res., vol. 38, pp. 1808-1812,1999.

  14. Jun, K.W., Shen, W.J., Rama Rao, K.S., and Lee, K.W., Residual Sodium Effect on the Catalytic Activity of Cu/ZnO/Al2O3 in Methanol Synthesis from CO2 Hydrogenation, Appl. Catal., A, vol. 174, pp. 231-238,1998.

  15. Kim, S.S., Lee, H.H., and Hong, S.C., A Study on the Effect of Support's Reducibility on the Reverse Water-Gas Shift Reaction over Pt Catalysts, Appl. Catal, A, vols. 423-424, pp. 100-107,2012.

  16. Rotaru, P., Kinetics and Mechanism of Reverse Water-Gas Shift Reaction on a Cu-ZnO-Al2O3 Catalyst, J. Indian Chem. Soc., vol. 78, pp. 352-359,2001.

  17. Shido, T. and Iwasawa, Y., The Effect of Coadsorbates in Reverse Water-Gas Shift Reaction on ZnO, in Relation to Reactant- Promoted Reaction Mechanism, J. Catal., vol. 140, pp. 575-584,1993.

  18. Spencer, M.S., On the Activation Energies of the Forward and Reverse Water-Gas Shift Reaction, Catal. Lett., vol. 32, pp. 9-13, 1995.

  19. Stirling, D., Stone, F.S., and Spencer, M.S., Catalytic Activity of Reduced CuxZn(1-x)O and CuO/CuxZn(1-x)O in CO2/H2 Reactions, Stud. Surf. Sci. Catal, vol. 75, pp. 1507-1518,1993.

  20. Stone, F.S. and Waller, D., Cu-ZnO and Cu-ZnO/Al2O3 Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts, Top. Catal, vol. 22, pp. 305-318,2003.

  21. Sun, Q., Liu, C.W., Pan, W., Zhu, Q.M., and Deng, J.F., In Situ IR Studies on the Mechanism of Methanol Synthesis over an Ultrafine Cu/ZnO/Al2O3 Catalyst, Appl. Catal, A, vol. 171, pp. 301-308,1998.

  22. van Herwijnen, T. and de Jong, W.A., Kinetics and Mechanism of the CO Shift on CuZnO: 1. Kinetics of the Forward and Reverse CO Shift Reactions, J. Catal, vol. 63, pp. 83-93,1980.

  23. Waller, D., Stirling, D., Stone, F.S., and Spencer, M.S., Copper-Zinc Oxide Catalysts. Activity in Relation to Precursor Structure and Morphology, Faraday Discuss. Chem. Soc., vol. 87, pp. 107-120,1989.

  24. Yang, J.I., Park, J.H., and Kim, J.N., Kinetic Study of the Reverse Water-Gas Shift Reaction over CuO/ZnO/Al2O3 Catalyst at Low Temperature, HwahakKonghak, vol. 41, pp. 558-563,2003.

  25. Zhu, M., Ge, Q., and Zhu, X., Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts, Transact. Tianjin Univ., vol. 26,pp. 172-187,2020.

CITADO POR
  1. Bhattacharyya Sohini, Roy Soumyabrata, Ajayan P. M., An Overview of Catalytic CO2 Conversion, in Energy Transition: Climate Action and Circularity, 1412, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain