Inscrição na biblioteca: Guest
Catalysis in Green Chemistry and Engineering

Publicou 4 edições por ano

ISSN Imprimir: 2572-9896

ISSN On-line: 2572-990X

H-Index: 2

Indexed in

SOME RECENT DEVELOPMENTS IN VALORIZATION OF CHITOSAN TO A VALUABLE PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL (5-HMF): A SHORT REVIEW

Volume 5, Edição 2, 2022, pp. 1-18
DOI: 10.1615/CatalGreenChemEng.2022041504
Get accessGet access

RESUMO

Production of 5-hydroxymethylfurfural (5-HMF) using chitosan will have great relevance in the net-carbon neutral economy. Chitosan is a common natural biopolymer with a wide range of uses in pharmacology, controlled drug delivery, healing materials, biosorbents, wastewater treatment, and other fields. Chitosan may be converted into a variety ofderivatives and composites, as well as modification and grafting for particular applications. 5-HMF is a very useful platform chemical, and many laboratories and industries throughout the globe are working to produce it in a more sustainable manner utilizing greener biomass. The focus of this brief review is on recent research into 5-HMF synthesis from chitin and chitosan under diverse circumstances, with a particular emphasis on the previous five years. The review gives future scope for sustainable research and innovation in 5-HMF production from chitin biomass.

Figures

  • Sources of chitin and chitosan (reprinted from Jardine and Sayed with permission from Elsevier, copyright 2016)
  • Major fractionation methods for shells. Reprinted with permission from Chen et al. (2016). Copyright 2016Wiley Online
Library.
  • An overview of chitin conversion into various chemicals (reprinted from Chen et al. with permission fromWiley, copyright
2016)
  • Statistics on the number of publications for past 10 years listed by Science direct, specifying the “HMF from chitosan” as
the keyword plotted against the publication year
  • Proposed reaction pathways for 5-HMF, LA, 3A5AF, and Chromogens production from chitin and chitosan as source
(reprinted from Chen et al. with permission from Wiley, copyright 2016)
  • Catalytic conversion of biomass derived HMF into various valuable products (reprinted from Hu et al. with permission
from American Chemical Society, copyright 2018)
  • Proposed reaction pathways for chitin conversion to acetic acid and other organic acids (reprinted from Gao et al. with
permission from American Chemical Society, copyright 2016)
  • Direct carbonization of chitin into N-doped materials (reprinted from Chen et al. with permission from Elsevier, copyright
2017)
Referências
  1. Affes, S., Aranaz, I., Hamdi, M., Acosta, N., Ghorbel-Bellaaj, O., Heras, A., Nasri, M., and Maalej, H., Preparation of a Crude Chitosanase from Blue Crab Viscera as Well as Its Application in the Production of Biologically Active Chito-Oligosaccharides from Shrimp Shells Chitosan, Inter. J. Biol. Macromol, vol. 139, pp. 558-569,2019. DOI: 10.1016/j.ijbiomac.2019.07.116.

  2. Agarwal, B., Kailasam, K., Sangwan, R.S., and Elumalai, S., Traversing the History of Solid Catalysts for Heterogeneous Synthesis of 5-Hydroxymethylfurfural from Carbohydrate Sugars: A Review, Renew. Sustain. Energy Rev., vol. 82, pp. 2408-2425,2018. DOI: 10.1016/j.rser.2017.08.088.

  3. Aguilera, D.A., Tanchoux, N., Fochi, M., and Bernardi, L., Blue Chemistry. Marine Polysaccharide Biopolymers in Asymmetric Catalysis: Challenges and Opportunities, Europ. J. Org. Chem., vol. 2020, no. 25, pp. 3779-3795, 2020. DOI: 10.1002/ejoc.201901924.

  4. Amado, I.R., Gonzalez, M.P., Murado, M.A., and Vazquez, J.A., Shrimp Wastewater as a Source of Astaxanthin and Bioactive Peptides, J. Chem. Tech. Biotech, vol. 91, no. 3, pp. 793-805,2016. DOI: 10.1002/jctb.4647.

  5. Aniceto, J.P.S., Portugal, I., and Silva, C.M.,Biomass-BasedPolyols throughOxypropylationReaction, Chem. Sus. Chem., vol. 5, no. 8, pp. 1358-1368,2012. DOI: 10.1002/cssc.201200032.

  6. Araujo, D., Ferreira, I.C., Torres, C.A.V., Neves, L., and Freitas, F., Chitinous Polymers: Extraction from Fungal Sources, Characterization and Processing towards Value-Added Applications, J. Chem. Technol. Biotechnol, vol. 95, no. 5, pp. 1277-1289, 2020. DOI: 10.1002/jctb.6325.

  7. Balakrishnan, M., Batra, V.S., Hargreaves, J.S.J., andPulford, I.D., Waste Materials - Catalytic Opportunities: An Overview of the Application of Large Scale Waste Materials as Resources for Catalytic Applications, Green Chem., vol. 13, no. 1, pp. 16-24, 2011. DOI: 10.1039/c0gc00685h.

  8. Barber, P.S., Griggs, C.S., Bonner, J.R., and Rogers, R.D., Electrospinning of Chitin Nanofibers Directly from an Ionic Liquid Extract of Shrimp Shells, Green Chem, vol. 15, no. 3,pp. 601-607,2013. DOI: 10.1039/c2gc36582k.

  9. Bayu, A., Abudula, A., and Guan, G., Reaction Pathways and Selectivity in Chemo-Catalytic Conversion of Biomass-Derived Carbohydrates to High-Value Chemicals: A Review, Fuel Proc. Tech., vol. 196, p. 106162, 2019. DOI: 10.1016/j.fuproc.2019.106162.

  10. Bobbink, F.D., Zhang, J., Pierson, Y., Chen, X., and Yan, N., Conversion of Chitin Derived N-Acetyl-D-Glucosamine (NAG) into Polyols over Transition Metal Catalysts and Hydrogen in Water, Green Chem., vol. 17, no. 2, pp. 1024-1031,2015. DOI: 10.1039/c4gc01631a.

  11. Bozell, J.J. and Petersen, G.R., Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates-The US Department of Energy's "Top 10" Revisited, Green Chem., vol. 12, no. 4, pp. 539-555, 2010. DOI: 10.1039/b922014c.

  12. Brethauer, S. and Wyman, C.E., Review: Continuous Hydrolysis and Fermentation for Cellulosic Ethanol Production, Bioresource Tech., vol. 101, no. 13, pp. 4862-4874,2010. DOI: 10.1016/j.biortech.2009.11.009.

  13. Brun, N., Hesemann, P., and Esposito, D., Expanding the Biomass Derived Chemical Space, Chem. Sci., vol. 8, no. 7, pp. 4724-4738,2017. DOI: 10.1039/c7sc00936d.

  14. Cai, X., Wang, Z., Ye, Y., Wang, D., Zhang, Z., Zheng, Z., Liu, Y., and Li, S., Conversion of Chitin Biomass into 5- Hydroxymethylfurfural: A Review, Renew. Sustain. Energy Rev., vol. 150, p. 111452,2020. DOI: 10.1016/j.rser.2021.111452.

  15. Chen, C., Wang, Z., Zhang, B., Miao, L., Cai, J., Peng, L., and Huang, Y., et al., Nitrogen-Rich Hard Carbon as a Highly Durable Anode for High-Power Potassium-Ion Batteries, Energy Storage Mater., vol. 8, pp. 161-168, 2017. DOI: 10.1016/j.ensm.2017.05.010.

  16. Chen, C., Wang, L., Zhu, B., Zhou, Z., El-Hout, S.I., Yang, J., and Zhang, J., 2,5-Furandicarboxylic Acid Production via Catalytic Oxidation of 5-Hydroxymethylfurfural: Catalysts, Processes and Reaction Mechanism, J. Energy Chem., vol. 54, pp. 528-554, 2021. DOI: 10.1016/j.jechem.2020.05.068.

  17. Chen, X., Chew, S.L.,Kerton, F.M., and Yan, N., Direct Conversion of Chitin into a N-Containing Furan Derivative, Green Chem., vol. 16, no. 4, pp. 2204-2212,2014. DOI: 10.1039/c3gc42436g.

  18. Chen, X., Liu, Y., Kerton, F.M., and Yan, N., Conversion of Chitin and N-Acetyl-D-Glucosamine into a N-Containing Furan Derivative in Ionic Liquids, RSC Adv., vol. 5, no. 26, pp. 20073-20080,2015. DOI: 10.1039/c5ra00382b.

  19. Chen, X. and Yan, N., Novel Catalytic Systems to Convert Chitin and Lignin into Valuable Chemicals, Catalysis Surveys Asia, vol. 18, no. 4, pp. 164-176,2014. DOI: 10.1007/s10563-014-9171-1.

  20. Chen, X., Yang, H., and Yan, N., Shell Biorefinery: Dream or Reality?, Chem. Europ. J, vol. 22, no. 38, pp. 13402-13421,2016. DOI: 10.1002/chem.201602389.

  21. Chen, Y. and Mu, T., Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion, Green Energ Environ., vol. 4, no. 2, pp. 95-115,2019. DOI: 10.1016/j.gee.2019.01.012.

  22. Choudhary, V., Mushrif, S.H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N.S., Frenkel, A.I., Sandler, S.I., and Vla- chos, D.G., Insights into the Interplay of Lewis and Bransted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)-Furfural and Levulinic Acid in Aqueous Media, J. Amer. Chem. Soc., vol. 135, no. 10, pp. 3997-4006,2013. DOI: 10.1021/ja3122763.

  23. Cui, M., Wu, Z., Huang, R., Qi, W., Su, R., and He, Z., Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-(Hydroxymethyl)-Furfural, Renew. Energy, vol. 125, pp. 327-333,2018. DOI: 10.1016/j.renene.2018.02.085.

  24. Das, S., Dey, P., Roy, D., Maiti, M.K., and Sen, R., N-Acetyl-D-Glucosamine Production by a Chitinase of Marine Fungal Origin: A Case Study of Potential Industrial Significance for Valorization of Waste Chitins, Appl. Biochem. Biotech., vol. 187, no. 1, pp. 407-423,2019. DOI: 10.1007/s12010-018-2822-3.

  25. Deng, F. and Amarasekara, A.S., Catalytic Upgrading of Biomass Derived Furans, Indust. Crops Products, vol. 159, p. 113055, 2021. DOI: 10.1016/j.indcrop.2020.113055.

  26. Deng, W., Wang, Y., and Yan, N., Production of Organic Acids from Biomass Resources, Curr. Opinion Green Sustain. Chem., vol. 2, pp. 54-58,2016. DOI: 10.1016/j.cogsc.2016.10.002.

  27. Devi, R. and Dhamodharan, R., Pretreatment in Hot Glycerol for Facile and Green Separation of Chitin from Prawn Shell Waste, ACSSustain. Chem. Engin., vol. 6,no. 1,pp. 846-853,2018. DOI: 10.1021/acssuschemeng.7b03195.

  28. Dhakshinamoorthy, A., Jacob, M., Vignesh, N.S., and Varalakshmi, P., Pristine and Modified Chitosan as Solid Catalysts for Catalysis and Biodiesel Production: A Minireview, Intern. J. Biol. Macromol., vol. 167, pp. 807-833, 2021. DOI: 10.1016/j.ijbiomac.2020.10.216.

  29. Dhana Lakshmi, D., Srinivasa Rao, B., Yogita, and Lingaiah, N., Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran over Mesoporous Silica Supported Copper Catalysts, Mat. Sci. Energy Technol, vol. 4, pp. 357-366,2021. DOI: 10.1016/j.mset.2021.08.012.

  30. Dhepe, P.L. and Fukuoka, A., Cellulose Conversion under Heterogeneous Catalysis, Chem. Sus. Chem., vol. 1, no. 12, pp. 969-975, 2008. DOI: 10.1002/cssc.200800129.

  31. Drover, M.W., Omari, K.W., Murphy, J.N., and Kerton, F.M., Formation of a Renewable Amide, 3-Acetamido-5-Acetylfuran, via Direct Conversion of N-Acetyl-D-Glucosamine, RSC Adv, vol. 2, no. 11, pp. 4642-4644,2012. DOI: 10.1039/c2ra20578e.

  32. Erythropel, H.C., Zimmerman, J.B., de Winter, T.M., Petitjean, L., Melnikov, F., Lam, C.H., and Lounsbury, A.W., et al., The Green ChemisTREE: 20 Years after Taking Root with the 12 Principles, Green Chem., vol. 20, no. 9, pp. 1929-1961, 2018. DOI: 10.1039/c8gc00482j.

  33. Falade, A.O., Valorization of Agricultural Wastes for Production of Biocatalysts of Environmental Significance: Towards a Sustainable Environment, Envir. Sustain, vol. 4, no. 2, pp. 317-328,2021. DOI: 10.1007/s42398-021-00183-9.

  34. Franich, R.A., Goodin, S.J., and Wilkins, A.L., Acetamidofurans, Acetamidopyrones, and Acetamidoacetaldehyde from Pyrolysis of Chitin and n-Acetylglucosamine, J. Anal. Appl. Pyrol., vol. 7, nos. 1-2, pp. 91-100, 1984. DOI: 10.1016/0165-2370(84)80043-1.

  35. Gao, X., Chen, X., Zhang, J., Guo, W., Jin, F., and Yan, N., Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole, ACS Sustain. Chem. Eng., vol. 4, no. 7, pp. 3912-3920,2016. DOI: 10.1021/acssuschemeng.6b00767.

  36. Gawade, A.B., Tiwari, M.S., and Yadav, G.D., Biobased Green Process: Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethyl Furan under Mild Conditions Using Pd-Cs2.5H0.5PW12O40/K-10 Clay, ACS Sustain. Chem. Eng., vol. 4, no. 8, pp. 4113-4123,2016. DOI: 10.1021/acssuschemeng.6b00426.

  37. Ghosh, N. and Dhepe, P.L., HPLC Method Development for Chitin and Chitosan Valorisation Chemistry, Carbohyd. Polymer Tech. Appl., vol. 2, p. 100139,2021. DOI: 10.1016/j.carpta.2021.100139.

  38. Glrio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., and Bogel-Lukasik, R., Hemicelluloses for Fuel Ethanol: A Review., Bioresource Tech., vol. 101, no. 13, pp. 4775-4800,2010. DOI: 10.1016/j.biortech.2010.01.088.

  39. Guerrero-Torres, A., Jimenez-Gomez, C.P., Cecilia, J.A., Porras-Vazquez, J.M., Garcia-Sancho, C., Quirante-Sanchez, J.J., Guerrero-Ruiz, F., Moreno-Tost, R., and Maireles-Torres, P., Synthesis of Catalysts by Pyrolysis of Cu-Chitosan Complexes and Their Evaluation in the Hydrogenation of Furfural to Value-Added Products, Mole. Catal., vol. 512, 2021. DOI: 10.1016/j.mcat.2021.111774.

  40. Guo, F., Fang, Z., Xu, C.C., and Smith, R.L., Solid Acid Mediated Hydrolysis of Biomass for Producing Biofuels, Prog. Energy Comb. Sci., vol. 38, no. 5, pp. 672-690,2012. DOI: 10.1016/j.pecs.2012.04.001.

  41. Guo, Z., Yan, N., and Lapkin, A.A., Towards Circular Economy: Integration of Bio-Waste into Chemical Supply Chain, Curr. Opin. Chem. Eng., vol. 26, pp. 148-156,2019. DOI: 10.1016/j.coche.2019.09.010.

  42. Gupta, K.C., Jeti, M.A., and Kumar, N.V.R., An Overview on Chitin and Chitosan Applications with an Emphasis on Controlled Drug Release Formulations, vol. 1797, pp. 273-308,2016. DOI: 10.1081/MC-100102399.

  43. Hammi, N., Chen, S., Dumeignil, F., Royer, S., and El Kadib, A., Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses, Mat. Today Sustain. vol. 10, p. 100053,2020. DOI: 10.1016/j.mtsust.2020.100053.

  44. Holladay, J.E., White, J.F., Bozell, J.J., and Johnson, D., Top Value-Added Chemicals from Biomass Volume 2-Results of Screening for Potential Candidates from Biorefinery Lignin, vol. 2, available from https://www. pnnl.gov/main/publications/external/technical_reports/PNNL-16983.pdf, 2007.

  45. Hou, W., Liu, L., and Shen, H., Selective Conversion of Chitosan to Levulinic Acid Catalysed by Acidic Ionic Liquid: Intriguing NH2 Effect in Comparison with Cellulose, Carbohyd. Polymers, vol. 195, pp. 267-274, 2018. DOI: 10.1016/j.carbpol.2018.04.099.

  46. Hu, D., Zhang, M., Xu, H., Wang, Y., and Yan, K., Recent Advance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural, Renew. Sustain. Energy Rev, vol. 147,2021. DOI: 10.1016/j.rser.2021.111253.

  47. Hu, L., Wu, Z., Jiang, Y., Wang, X., He, A., Song, J., Xu, J., Zhou, S., Zhao, Y., and Xu, J., Recent Advances in Catalytic and Autocatalytic Production of Biomass-Derived 5-Hydroxymethylfurfural, Renew. Sustain. Energy Rev., vol. 134, p. 110317, 2020. DOI: 10.1016/j.rser.2020.110317.

  48. Hu, L., Xu, J., Zhou, S., He, A., Tang, X., Lin, L., Xu, J., and Zhao, Y., Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran, ACS Catal, vol. 8, no. 4, pp. 2959-2980,2018. DOI: 10.1021/acscatal.7b03530.

  49. Huang, W.C., Zhao, D., Guo, N., Xue, C., and Mao, X., Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent, J. Agricult. Food Chem., vol. 66, no. 45, pp. 11897-11901,2018. DOI: 10.1021/acs.jafc.8b03847.

  50. Hulsey, M.J., Shell Biorefinery: A Comprehensive Introduction, Green Energy Environ., vol. 3, no. 4, pp. 318-327, 2018. DOI: 10.1016/j.gee.2018.07.007.

  51. Hulsey, M.J., Yang, H., and Yan, N., Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals, ACS Sustain. Chem. Eng., vol. 6, no. 5, pp. 5694-5707,2018. DOI: 10.1021/acssuschemeng.8b00612.

  52. Ismail, S.A., Microbial Valorization of Shrimp Byproducts via the Production of Thermostable Chitosanase and Antioxidant Chitooligosaccharides, Biocatal. Agricul. Biotech, vol. 20, p. 101269,2019. DOI: 10.1016/j.bcab.2019.101269.

  53. Jardine, A. and Sayed, S., Challenges in the Valorisation of Chitinous Biomass within the Biorefinery Concept, Curr. Opin. Green Sustain. Chem, vol. 2, no. 2016, pp. 34-39,2016. DOI: 10.1016/j.cogsc.2016.09.007.

  54. Jeong, G.-T., Production of Levulinic Acid from Glucosamine by Dilute-Acid Catalyzed Hydrothermal Process, Indust. Crops Products, vol. 62, pp. 77-83,2014. DOI: 10.1016/j.indcrop.2014.08.006.

  55. Jiang, Y., Zang, H., Han, S., Yan, B., Yu, S., and Cheng, B., Direct Conversion of Chitosan to 5-Hydroxymethylfurfural in Water Using Bransted-Lewis Acidic Ionic Liquids as Catalysts, RSC Adv., vol. 6, no. 105, p. 103774-81, 2016. DOI: 10.1039/c6ra21289a.

  56. John, R.P., Anisha, G.S., Nampoothiri, K.M., and Pandey, A., Direct Lactic Acid Fermentation: Focus on Simultaneous Saccharification and Lactic Acid Production, Biotechnol. Adv., vol. 27, no. 2, pp. 145-152,2009. DOI: 10.1016/j.biotechadv.2008.10.004.

  57. Joseph, S.M., Krishnamoorthy, S., Paranthaman, R., Moses, J.A., and Anandharamakrishnan, C., A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan, Carbohyd. Polymer Tech. Appl., vol. 2, p. 100036, 2021. DOI: 10.1016/j .carpta.2021. 100036.

  58. Kalane, N.D., Krishnan, R.A., Yadav, V.D., Jain, R., and Dandekar, P., Synergistic Effect of Hetero- and Homo-Catalysts on the 'Green' Synthesis of 5-Hydroxymethylfurfural from Chitosan Biomass, Cellulose, vol. 26, no. 4, pp. 2805-2819, 2019. DOI: 10.1007/s10570-019-02256-9.

  59. Kayser, H., Muller, C.R., Garcla-Gonzalez, C.A., Smirnova, I., Leitner, W., and Domlnguez De Maria, P., Dried Chitosan-Gels as Organocatalysts for the Production of Biomass-Derived Platform Chemicals, Appl. Catalysis A: Gen., vols. 445-446, pp. 180-186,2012. DOI: 10.1016/j.apcata.2012.08.014.

  60. Kayser, H., PienkoB, F., and Dominguez De Maria, P., Chitosan-Catalyzed Biodiesel Synthesis: Proof-of-Concept and Limitations, Fuel, vol. 116, pp. 267-272,2014. DOI: 10.1016/j.fuel.2013.08.013.

  61. Kerton, F.M., Liu, Y., Omari, K.W., and Hawboldt, K., Green Chemistry and the Ocean-Based Biorefinery, Green Chem., vol. 15, no. 4, pp. 860-871,2013. DOI: 10.1039/c3gc36994c.

  62. Kim, H.S., Kim, S.K., and Jeong, G.T., Efficient Conversion of Glucosamine to Levulinic Acid in a Sulfamic Acid-Catalyzed Hydrothermal Reaction, RSC Adv., vol. 8, no. 6, pp. 3198-3205,2018. DOI: 10.1039/c7ra12980g.

  63. Kim, H.S., Park, M.R., Jeon, Y.J., Kim, S.K., Hong, Y.K., and Jeong, G.T., Valorization of Chitosan as Food Waste of Aquatic Organisms into 5-Hydroxymethylfurfural by Sulfamic Acid-Catalyzed Conversion Process, Energy Tech., vol. 6, no. 9, pp. 1747-1754,2018. DOI: 10.1002/ente.201700868.

  64. Kim, H.S., Park, M.R., Kim, S.K., and Jeong, G.T., Valorization of Chitosan into Levulinic Acid by Hydrothermal Catalytic Conversion with Methanesulfonic Acid, Korean J. Chem. Eng., vol. 35, no. 6, pp. 1290-1296,2018. DOI: 10.1007/s11814-018-0035-7.

  65. Kim, S. and Dale, B.E., Global Potential Bioethanol Production from Wasted Crops and Crop Residues, Biomass Bioenergy, vol. 26, no. 4, pp. 361-375,2004. DOI: 10.1016/j.biombioe.2003.08.002.

  66. Kobayashi, H., Techikawara, K., and Fukuoka, A., Hydrolytic Hydrogenation of Chitin to Amino Sugar Alcohol, Green Chem., vol. 19, no. 14, pp. 3350-3356,2017. DOI: 10.1039/c7gc01063j.

  67. Krolicka, M., Hinz, S.W.A., Koetsier, M.J., Joosten, R., Eggink, G., van den Broek, L.A.M., and Boeriu, C.G., Chitinase Chi1 from Myceliophthora Thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization, J. Agricul. Food Chem., vol. 66, no. 7, pp. 1658-1669,2018. DOI: 10.1021/acs.jafc.7b04032.

  68. Kuhlborn, J., GroB, J., and Opatz, T., Making Natural Products from Renewable Feedstocks: Back to the Roots?, Natural Prod. Rep., vol. 37, no. 3,pp. 380-424,2020. DOI: 10.1039/c9np00040b.

  69. Kumar, M., Olajire Oyedun, A., and Kumar, A., A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock, Renew. Sustain. Energy Rev., vol. 81, pp. 1742-1770,2018. DOI: 10.1016/j.rser.2017.05.270.

  70. Lee, S.B. and Jeong, G.T., Catalytic Conversion of Chitosan to 5-Hydroxymethylfurfural under Low Temperature Hydrothermal Process, Appl. Biochem. Biotech., vol. 176, no. 4, pp. 1151-1161,2015. DOI: 10.1007/s12010-015-1636-9.

  71. Li, C., Zhao, X., Wang, A., Huber, G.W., and Zhang, T., Catalytic Transformation of Lignin for the Production of Chemicals and Fuels, 2020. DOI: 10.1021/acs.chemrev.5b00155.

  72. Li, M., Zang, H., Feng, J., Yan, Q., Yu, N., Shi, X., and Cheng, B., Efficient Conversion of Chitosan into 5-Hydroxymethylfurfural via Hydrothermal Synthesis in Ionic Liquids Aqueous Solution, Polymer Degrad. Stabil., vol. 121, pp. 331-339, 2015. DOI: 10.1016/j.polymdegradstab.2015.09.009.

  73. Lin, Y., Lu, G. P., Zhao, X., Cao, X., Yang, L., Zhou, B., Zhong, Q., and Chen, Z., Porous Cobalt@N-Doped Carbon Derived from Chitosan for Oxidative Esterification of 5-Hydroxymethylfurfural: The Roles of Zinc in the Synthetic and Catalytic Process, Mol. Catal., vol. 482, p. 110695,2020. DOI: 10.1016/j.mcat.2019.110695.

  74. Lucas, N., Athawale, A.A., and Rode, C.V., Valorization of Oceanic Waste Biomass: A Catalytic Perspective, Chem. Rec., vol. 19, no. 9, pp. 1995-2021,2019. DOI: 10.1002/tcr.201800195.

  75. Mascal, M. and Nikitin, E.B., Dramatic Advancements in the Saccharide to 5-(Chloromethyl)Furfural Conversion Reaction, Chem. Sus. Chem, vol. 2, no. 9, pp. 859-861,2009. DOI: 10.1002/cssc.200900136.

  76. Meramo-Hurtado, S.I. and Gonzalez-Delgado, A.D., Biorefinery Synthesis and Design Using Sustainability Parameters and Hierarchical/3D Multi-Objective Optimization, J. Cleaner Prod. vol. 240,2019. DOI: 10.1016/j.jclepro.2019.118134.

  77. Mogol, B.A. and Gokmen, V., Effect of Chitosan on the Formation of Acrylamide and Hydroxymethylfurfural in Model, Biscuit and Crust Systems, FoodFunct., vol. 7, no. 8, pp. 3431-3436,2016. DOI: 10.1039/c6fo00755d.

  78. Mondala, A.H., Direct Fungal Fermentation of Lignocellulosic Biomass into Itaconic, Fumaric, and Malic Acids: Current and Future Prospects, J. Indust. Microbiol. Biotech., vol. 42, no. 4, pp. 487-506,2015. DOI: 10.1007/s10295-014-1575-4.

  79. Morone, A., Apte, M., and Pandey, R.A., Levulinic Acid Production from Renewable Waste Resources: Bottlenecks, Potential Remedies, Advancements and Applications, Renew. Sustain. Energy Rev., vol. 51, pp. 548-565, 2015. DOI: 10.1016/j.rser.2015.06.032.

  80. Negi, H., Verma, P., and Singh, R.K., A Comprehensive Review on the Applications of Functionalized Chitosan in Petroleum Industry, Carbohyd. Polymers, vol. 266, p. 118125,2021. DOI: 10.1016/j.carbpol.2021.118125.

  81. Ngee, E.L.S., Gao, Y., Chen, X., Lee, T.M., Hu, Z., Zhao, D., and Yan, N., Sulfated Mesoporous Niobium Oxide Catalyzed 5-Hydroxymethylfurfural Formation from Sugars, Ind. Eng. Chem. Res., vol. 53, no. 37, pp. 14225-14233, 2014. DOI: 10.1021/ie501980t.

  82. Offers, T.S., Year, H.B., and Period, F., Global Chitosan Market, pp. 2021-2026,2021.

  83. Omari, K.W., Besaw, J.E., and Kerton, F.M., Hydrolysis of Chitosan to Yield Levulinic Acid and 5-Hydroxymethylfurfural in Water under Microwave Irradiation, Green Chem., vol. 14,no. 5,pp. 1480-1487,2012. DOI: 10.1039/c2gc35048c.

  84. Omari, K.W., Dodot, L., and Kerton, F.M., A Simple One-Pot Dehydration Process to Convert N-Acetyl-D-Glucosamine into a Nitrogen-Containing Compound, 3-Acetamido-5-Acetylfuran, Chem. Sus. Chem., vol. 5, no. 9, pp. 1767-1772, 2012. DOI: 10.1002/cssc.201200113.

  85. Osada, M., Kikuta, K., Yoshida, K., Totani, K., Ogata, M., and Usui, T., Non-Catalytic Synthesis of Chromogen I and III from N-Acetyl-D-Glucosamine in High-Temperature Water, Green Chem., vol. 15, no. 10, pp. 2960-2966, 2013. DOI: 10.1039/c3gc41161c.

  86. Osada, M., Kobayashi, H., Miyazawa, T., Suenaga, S., and Ogata, M., Non-Catalytic Conversion of Chitin into Chromogen I in High-Temperature Water, Int. J. Biol. Macromol, vol. 136, pp. 994-999,2019. DOI: 10.1016/j.ijbiomac.2019.06.123.

  87. Pacheco, N., Garnica-Gonzalez, M., Gimeno, M., Barzana, E., Trombotto, S., David, L., and Shirai, K., Structural Characterization of Chitin and Chitosan Obtained by Biological and Chemical Methods, Biomacromolecules, vol. 12, no. 9, pp. 3285-3290,2011. DOI: 10.1021/bm200750t.

  88. Palermo, V., Sathicq, A.G., and Romanelli, G.P., Suitable Transformation of Compounds Present in Biomass Using Heteropoly Compounds as Catalysts, Curr. Opin. Green Sustain. Chem., vol. 25, p. 100362,2020. DOI: 10.1016/j.cogsc.2020.100362.

  89. Pandit, A., Khare, L., Ganatra, P., Jain, R., and Dandekar, P., Intriguing Role of Novel Ionic Liquids in Stochastic Degradation of Chitosan, Carbohyd. Polymers, vol. 260, p. 117828,2021. DOI: 10.1016/j.carbpol.2021.117828.

  90. Pandit, A., Indurkar, A., Deshpande, C., Jain, R., and Dandekar, P., A Systematic Review of Physical Techniques for Chitosan Degradation, Carbohyd. Polymer Tech. Appl., vol. 2, p. 100033,2021. DOI: 10.1016/j.carpta.2021.100033.

  91. Park, M.R., Kim, H.S., Kim, S.K., and Jeong, G.T., Thermo-Chemical Conversion for Production of Levulinic and Formic Acids from Glucosamine, Fuel Process. Tech, vol. 172, pp. 115-124,2018. DOI: 10.1016/j.fuproc.2017.12.016.

  92. Park, M.R., Kim, S.K., and Jeong, G.T., Production of Levulinic Acid from Glucosamine Using Zirconium Oxychloride, J. Indust. Engineer. Chem., vol. 61, pp. 119-123,2018. DOI: 10.1016/j.jiec.2017.12.008.

  93. Pham, T.T., Gozaydin, G., Sohnel, T., Yan, N., and Sperry, J., Oxidative Ring-Expansion of a Chitin-Derived Platform Enables Access to Unexplored 2-Amino Sugar Chemical Space, Euro. J. Org. Chem., vol. 2019, no. 6, pp. 1355-1360, 2019. DOI: 10.1002/ejoc.201801683.

  94. Pierson, Y., Chen, X., Bobbink, F.D., Zhang, J., and Yan, N., Acid-Catalyzed Chitin Liquefaction in Ethylene Glycol, ACS Sustain. Chem. Eng., vol. 2, no. 8, pp. 2081-2089,2014. DOI: 10.1021/sc500334b.

  95. Portillo Perez, G., Mukherjee, A., and Dumont, M.J., Insights into HMF Catalysis, J. Ind. Eng. Chem, vol. 70, pp. 1-34, 2019. DOI: 10.1016/j.jiec.2018.10.002.

  96. Ramli, N.A.S. and Amin, N.A.S., Catalytic Conversion of Carbohydrate Biomass in Ionic Liquids to 5-Hydroxymethyl Furfural and Levulinic Acid: A Review, BioenergyRes., vol. 13, no. 3,pp. 693-736,2020. DOI: 10.1007/s12155-020-10125-8.

  97. Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., and Weckhuysen, B.M., Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis, Angewandte Chemie-International Edition, vol. 55, no. 29, pp. 8164-8215,2016. DOI: 10.1002/anie.201510351.

  98. Saikia, K., Rathankumar, A.K., Varghese, B.A., Kalita, S., Subramanian, S., Somasundaram, S., andKumar, V. V., Magnetically Assisted Commercially Attractive Chemo-Enzymatic Route for the Production of 5-Hydroxymethyl Furfural from Inulin, Biomass Convers. BioreSnery, 2020. DOI: 10.1007/s13399-020-00622-3.

  99. Sanderson, K., Lignocellulose: A Chewy Problem., Nature, vol. 474, no. 7352, p. S12-514,2011. DOI: 10.1038/474S012a.

  100. Savitri, E., Juliastuti, S.R., Handaratri, A., Sumarno, S., and Roesyadi, A., Degradation of Chitosan by Sonication in Very-Low-Concentration Acetic Acid, Polymer Degrad. Stabil., vol. 110, pp. 344-352, 2014. DOI: 10.1016/j.polymdegradstab.2014.09.010.

  101. Setoguchi, T., Kato, T., Yamamoto, K., and Kadokawa, J., Facile Production of Chitin from Crab Shells Using Ionic Liquid and Citric Acid, Int. J. Biol. Macromol, vol. 50, no. 3, pp. 861-864,2012. DOI: 10.1016/j.ijbiomac.2011.11.007.

  102. Shamshina, J.L. and Berton, P., Use of Ionic Liquids in Chitin Biorefinery: A Systematic Review, Frontiers Bioengineer. Biotech., vol. 8,2020. DOI: 10.3389/fbioe.2020.00011.

  103. Shamshina, J.L., Berton, P., and Rogers, R.D., Advances in Functional Chitin Materials: A Review, ACS Sustain. Chem. Eng., vol. 7, no. 7, pp. 6444-6457,2019. DOI: 10.1021/acssuschemeng.8b06372.

  104. Sheldon, R.A., Green and Sustainable Manufacture of Chemicals from Biomass: State of the Art, Green Chem., vol. 16, no. 3, pp. 950-963,2014. DOI: 10.1039/c3gc41935e.

  105. Shen, G., Andrioletti, B., and Queneau, Y., Furfural and 5-(Hydroxymethyl)Furfural: Two Pivotal Intermediates for Bio-Based Chemistry, Curr. Opin. Green Sustain. Chem., vol. 26, p. 100384,2020. DOI: 10.1016/j.cogsc.2020.100384.

  106. Shi, X., Ye, X., Zhong, H., Wang, T., and Jin, F., Sustainable Nitrogen-Containing Chemicals and Materials from Natural Marine Resources Chitin andMicroalgae, Mol. Catal., vol. 505, p. 111517,2021. DOI: 10.1016/j.mcat.2021.111517.

  107. Siankevich, S., Fei, Z., Scopelliti, R., Laurenczy, G., Katsyuba, S., Yan, N., and Dyson, P.J., Enhanced Conversion of Carbohydrates to the Platform Chemical 5-Hydroxymethylfurfural Using Designer Ionic Liquids, Chem. Sus. Chem, vol. 7, no. 6, pp. 1647-1654,2014. DOI: 10.1002/cssc.201301368.

  108. Stahlberg, T., Rodriguez-Rodriguez, S., Fristrup, P., and Riisager, A., Metal-Free Dehydration of Glucose to 5- (Hydroxymethyl)Furfural in Ionic Liquids with Boric Acid as a Promoter, Chem. Euro. J., vol. 17, no. 5, pp. 1456-1564, 2011. DOI: 10.1002/chem.201002171.

  109. Sun, Y. and Cheng, J., Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review., Bioresource Tech., vol. 83, no. 1,pp. 1-11,2002. DOI: 10.1016/s0960-8524(01)00212-7.

  110. Szabolcs, A., Molnar, M., Dibo, G., and Mika, L.T., Microwave-Assisted Conversion of Carbohydrates to Levulinic Acid: An Essential Step in Biomass Conversion, Green Chem., vol. 15, no. 2, pp. 439-445,2013. DOI: 10.1039/c2gc36682g.

  111. Tian, Y., Zhang, F., Wang, J., Cao, L., and Han, Q., A Review on Solid Acid Catalysis for Sustainable Production of Levulinic Acid and Levulinate Esters from Biomass Derivatives, Bioresource Tech., vol. 342, p. 125977, 2021. DOI: 10.1016/j.biortech.2021.125977.

  112. Tuck, C.O., Perez, E., Horvath, I.T., Sheldon, R.A., and Poliakoff, M., Valorization of Biomass: Deriving More Value from Waste, Science, vol. 337, no. 6095, pp. 695-699,2012. DOI: 10.1126/science.1218930.

  113. Tzeng, T.W., Bhaumik, P., and Chung, P.W., Understanding the Production of 5-Hydroxymethylfurfural (HMF) from Chitosan Using Solid Acids, Mol. Catal, vol. 479,p. 110627,2019. DOI: 10.1016/j.mcat.2019.110627.

  114. Ubando, A.T., del Rosario, A.J.R., Chen, W.H., and Culaba, A.B., A State-of-the-Art Review of Biowaste Biorefinery, Environ. Poll., vol. 269, p. 116149,2021. DOI: 10.1016/j.envpol.2020.116149.

  115. van Putten, R.J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., and de Vries, J.G., Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources, Chem. Rev., vol. 113, no. 3, pp. 1499-1597, 2013. DOI: 10.1021/cr300182k.

  116. Vedula, S.S. and Yadav, G.D., Chitosan-Based Membranes Preparation and Applications: Challenges and Opportunities, J. Indian Chem. Soc.,p. 100017,2021. DOI: 10.1016/j.jics.2021. 100017.

  117. Verma, S., Nadagouda, M.N., and Varma, R.S., Porous Nitrogen-Enriched Carbonaceous Material from Marine Waste: Chitosan-Derived Carbon Nitride Catalyst for Aerial Oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid, Sci. Rep., vol. 7, no. 1,pp. 1-6,2017. DOI: 10.1038/s41598-017-14016-5.

  118. Wang, X. and Rinaldi, R., A Route for Lignin and Bio-Oil Conversion: Dehydroxylation of Phenols into Arenes by Catalytic Tandem Reactions, Angewandte Chemie.

  119. Wang, Y., Pedersen, C.M., Deng, T., Qiao, Y., and Hou, X., Direct Conversion of Chitin Biomass to 5-Hydroxymethylfurfural in ConcentratedZnCl2 Aqueous Solution,Bioresource Tech, vol. 143,pp. 384-390,2013. DOI: 10.1016/j.biortech.2013.06.024.

  120. Wu, H., Li, H., and Fang, Z., Hydrothermal Amination of Biomass to Nitrogenous Chemicals, Green Chem.., 2021. DOI: 10.1039/d1gc02505h.

  121. Xie, S., Jia, C., Go Ong, S.S., Wang, Z., Zhu, M.-J., Wang, Q., Yang, Y., and Lin, H., A Shortcut Route to Close Nitrogen Cycle: Bio-Based Amines Production via Selective Deoxygenation of Chitin Monomers over Ru/C in Acidic Solutions, iScience, vol. 23, no. 5, p. 101096,2020. DOI: 10.1016/j.isci.2020.101096.

  122. Xin, Y., Li, S., Wang, H., Chen, L., Li, S., and Liu, Q., Selective 5-Hydroxymethylfurfural Hydrogenolysis to 2,5-Dimethylfuran over Bimetallic Pt-Feox/Ac Catalysts, Catalysts, vol. 11, no. 8, 2021. DOI: 10.3390/catal11080915.

  123. Xu, Z.L., Wang,X.Y., Shen, M.Y., andDu, C.H., Synthesis of 5-Hydroxymethylfurfural from Glucose in aBiphasic Medium with AlCl3 and Boric Acid as the Catalyst, Chem. Papers, vol. 70, no. 12, pp. 1649-1657,2016. DOI: 10.1515/chempap-2016-0101.

  124. Yan, N. and Wang, Y., Catalyst: Is the Amino Acid a New Frontier for Biorefineries?, Chem., vol. 5, no. 4, pp. 739-741, 2019. DOI: 10.1016/j.chempr.2019.03.016.

  125. Yang, H., Gozaydln, G., Nasaruddin, R.R., Har, J.R.G., Chen, X., Wang, X., and Yan, N., Toward the Shell Biorefinery: Processing Crustacean Shell Waste Using Hot Water and Carbonic Acid, ACS Sustain. Chem. Eng., vol. 7, no. 5, pp. 5532-5542, 2019. DOI: 10.1021/acssuschemeng .8b06853.

  126. Younes, I. andRinaudo,M., Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications, Marine Drugs, vol. 13, no. 3, pp. 1133-1174,2015. DOI: 10.3390/md13031133.

  127. Yu, H., Kim, K.A., Kang, M.J., Hwang, S.Y., and Cha, H.G., Carbon Support with Tunable Porosity Prepared by Carbonizing Chitosan for Catalytic Oxidation of 5-Hydroxylmethylfurfural, ACS Sustain. Chem. Eng., vol. 7, no. 4, pp. 3742-3748,2019. DOI: 10.1021/acssuschemeng. 8b03775.

  128. Yu, S., Zang, H., Chen, S., Jiang, Y., Yan, B., and Cheng, B., Efficient Conversion of Chitin Biomass into 5-Hydroxymethylfurfural over Metal Salts Catalysts in Dimethyl Sulfoxide-Water Mixture under Hydrothermal Conditions, Polymer Degrad. Stabil., vol. 134, pp. 105-114,2016. DOI: 10.1016/j.polymdegradstab.2016.09.035.

  129. Zakrzewska, M.E., Bogel-Lukasik, E., and Bogel-Lukasik, R., Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural-A Promising Biomass-Derived Building Block, Chem. Rev., vol. 111, no. 2, pp. 397-417,2011. DOI: 10.1021/cr100171a.

  130. Zang, H., Lou, J., Jiao, S., Li, H., Du, Y., and Wang, J., Valorization of Chitin Derived N-Acetyl-D-Glucosamine into High Valuable N-Containing 3-Acetamido-5-Acetylfuran Using Pyridinium-BasedIonic Liquids, J. Mol. Liq, vol. 330, p. 115667,2021. DOI: 10.1016/j.molliq.2021.115667.

  131. Zang, H., Yu, S., Yu, P., Ding, H., Du, Y., Yang, Y., and Zhang, Y., Hydrothermal Conversion of N-Acetyl-D-Glucosamine to 5-Hydroxymethylfurfural Using Ionic Liquid as a Recycled Catalyst in a Water-Dimethyl Sulfoxide Mixture, Carbohyd. Res., vol. 442, no. 5, pp. 1-8,2017. DOI: 10.1016/j.carres.2017.02.002.

  132. Zdanowicz, M., Wilpiszewska, K., and Spychaj, T., Deep Eutectic Solvents for Polysaccharides Processing. A Review, Carbohyd. Polymers, vol. 200, pp. 361-380,2018. DOI: 10.1016/j.carbpol.2018.07.078.

  133. Zhang, H., Li, H., Xu, C.C., and Yang, S., Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production, ACS Catalysis, vol. 9, no. 12, pp. 10990-11029, 2019. DOI: 10.1021/acscatal.9b02748.

  134. Zhang, J., Formic Acid-Aided Biomass Valorization, Curr. Opin. Green Sustain. Chem., vol. 24, pp. 67-71, 2020. DOI: 10.1016/j.cogsc.2020.03.004.

  135. Zhang, J. and Yan, N., Formic Acid-Mediated Liquefaction of Chitin, Green Chem., vol. 18, no. 18, pp. 5050-5058,2016. DOI: 10.1039/c6gc01053a.

  136. Zhang, M., Zang, H., Ma, B., Zhang, X., Xie, R., and Cheng, B., Green Synthesis of 5-Hydroxymethylfurfural from Chitosan Biomass Catalyzed by Benzimidazole-Based Ionic Liquids, Chem. Select, vol. 2, no. 32, pp. 10323-10328,2017. DOI: 10.1002/slct.201702029.

  137. Zhang, T., Li, W., Jin, Y., and Ou, W., Synthesis of Sulfonated Chitosan-Derived Carbon-Based Catalysts and Their Applications in the Production of 5-Hydroxymethylfurfural, Int. J. Biol. Macromol., vol. 157, pp. 368-376, 2020. DOI: 10.1016/j.ijbiomac.2020.04.148.

  138. Zhao, L., Baccile, N., Gross, S., Zhang, Y., Wei, W., Sun, Y., Antonietti, M., and Titirici, M.M., Sustainable Nitrogen-Doped Carbonaceous Materials from Biomass Derivatives, Carbon, vol. 48, no. 13, pp. 3778-3787, 2010. DOI: 10.1016/j.carbon.2010.06.040.

  139. Zhou, D., Shen, D., Lu, W., Song, T., Wang, M., Feng, H., Shentu, J., and Long, Y., Production of 5-Hydroxymethylfurfural from Chitin Biomass: A Review, Molecules, vol. 25, no. 3, pp. 1-15,2020. DOI: 10.3390/molecules25030541.

  140. Zhu, J.Y. and Pan, X.J., Woody Biomass Pretreatment for Cellulosic Ethanol Production: Technology and Energy Consumption Evaluation, Bioresource Tech, vol. 101, no. 13, pp. 4992-5002,2010. DOI: 10.1016/j.biortech.2009.11.007.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain