Inscrição na biblioteca: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

SCANNING PROBE METHODS FOR THERMAL AND THERMOELECTRIC PROPERTY MEASUREMENTS

pages 211-258
DOI: 10.1615/AnnualRevHeatTransfer.v16.80
Get accessGet access

RESUMO

The field of scanning thermal probe (SThP) microscopy was born when probes employed in scanning microscopy evolved to measure temperature and/or generate thermal gradients within investigated samples. SThP techniques are currently developed for a wide range of applications including thermal and thermoelectric properties characterization, temperature profile mapping, thermal nanomanufacturing, data storage, and topography imaging. This chapter reviews the field of thermal and thermoelectric properties characterization using scanning probe methods from ~2002 until early 2012. Developments surveyed here include thermal characterization using commercial micro− and nano−thermistor probes as well as microfabricated thermistor probes, high-resolution Seebeck and simultaneous thermal conductivity and Seebeck scanning microscopy, thermal characterization of nanostructures, devices and junctions using thermistor, thermocouple and nonspecialized probes and development of strategies for probe calibration, tip-sample heat transfer parameter calibrations, and quantitative thermal characterization. The chapter contains the following main sections: 1. Introduction; 2. Thermal Transport Characterization with Thermistor Probes; 3. Thermal Transport Characterization with Thermoelectric Probes; 4. Thermal Microscopy with Nonspecialized Tips; 5. Scanning Seebeck Coefficient Characterization; 6. Simultaneous Seebeck Coefficient and Thermal Conductivity Characterization; 7. Summary and Conclusions. Sections 2−6 discuss relevant experiments published in the last decade. Section 2 is used as the main conduit to illustrate probe heat transfer modeling approaches, probe-sample heat transfer, and thermal contact parameter calibrations, which are issues relevant for all SThP methods.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain