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We investigate parameter-dependent nonlinear dynamical systems consisting of ordinary differen-

tial equations or differential-algebraic equations. A single quantity of interest is observed, which

depends on the solution of a system. Our aim is to determine efficient approximations of the trajecto-

ries belonging to the quantity of interest in the time domain. We arrange a set of samples including

trajectories of this quantity. A proper orthogonal decomposition of this data yields a reduced basis.

Consequently, the mapping from the parameter domain to the basis coefficients is approximated. We

apply machine learning with artificial neural networks for this approximation, where the degrees of

freedom are fitted to the data of the sample trajectories in a nonlinear optimization. Alternatively,

we consider a polynomial approximation, which is identified by regression, for comparison. Further-

more, concepts of sensitivity analysis are examined to characterize the impact of an input parameter

on the output of the exact mapping or the approximations from the neural networks. We present

results of numerical computations for examples of nonlinear dynamical systems.

KEY WORDS: nonlinear dynamical system, differential-algebraic equation, initial value
problem, parametric model order reduction, proper orthogonal decomposition, machine
learning, neural network, polynomial regression, sensitivity analysis

1. INTRODUCTION

Mathematical modeling of real-world problems often yieldsdynamical systems in science and
engineering. We consider initial value problems for nonlinear systems of ordinary differential
equations (ODEs) or differential-algebraic equations (DAEs), which depend on physical param-
eters. A transient quantity of interest (QoI) is defined depending on the solution of a system.
Many evaluations of the QoI are required for different realizations of the parameters in some
tasks like optimization and uncertainty quantification; see Xiu (2010), for example. Often a time
integration of the dynamical system is costly for realisticapplications. Thus our aim is to deter-
mine efficient approximations of the trajectories associated with the parameter-dependent QoI.
An evaluation of this approximation should be cheap, while good accuracy is still achieved for
most of the relevant parameter values.

We determine the trajectories of the QoI for parameter samples in some bounded parame-
ter domain. Proper orthogonal decomposition (POD) represents a method for projection-based
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model order reduction (Antoulas, 2005; Kunisch and Volkwein, 2001). We use a similar POD
approach to obtain a reduced basis for the trajectories. Anytrajectory is approximated by a func-
tion in a low-dimensional space. The approximation is uniquely determined by the coefficients
in the reduced basis. Hence we obtain a mapping between finite-dimensional spaces, where a
parameter value is mapped to the basis coefficients.

Now the task is to determine an efficient approximation of themapping between finite-
dimensional spaces. This procedure can be seen as a kind of parametric model order reduc-
tion (pMOR) (Benner et al., 2015). Instead of solving the full-order model consisting of the
dynamical system, a parameter-dependent reduced-order model is constructed. However, our
reduced-order model is not a dynamical system anymore. On the one hand, we apply a concept
of machine learning based on artificial neural networks (Du and Swamy, 2014; Goodfellow et
al., 2017). On the other hand, we use a multivariate polynomial regression for comparison (Seber
and Lee, 2003). In both approaches, an optimization processis performed to identify the degrees
of freedom appropriately, where the data of the sample trajectories is included. This optimization
is called training in the case of machine learning. Neural networks (NNs) imply a nonlinear op-
timization problem, whereas the polynomial fit requires just the solution of linear least squares
problems. Both approaches represent data-driven methods.

Similar problems have also been tackled by NNs in previous works. The POD method was
used for parametric stationary solutions of partial differential equations in Hesthaven and Ub-
biali (2018) and Yu and Hesthaven (2019). Trajectories of solutions satisfying (non-parametric)
autonomous systems of ODEs were reproduced by Qin et al. (2019).

Furthermore, we discuss a variance-based sensitivity analysis of the input–output behav-
ior in the mapping between the finite-dimensional spaces. The total effect sensitivity indices
yield a quantification of the impact of the individual parameters (Saltelli et al., 2008; Sobol
and Kucherenko, 2009). Thus a ranking of the importance is feasible for the parameters. The
variance-based sensitivity analysis can be performed for both the exact mapping and an approx-
imation. Alternatively, we also investigate the weights ina trained NN to obtain information
about the sensitivities with respect to the input parameters.

We present numerical results for two examples, which are nonlinear systems of DAEs mod-
eling electric circuits. Both the machine learning approach and the polynomial regression are
used to obtain the approximations. The errors of the methodsare analyzed and compared. In
addition, we illustrate the sensitivity analysis by the examples.

In this article, we introduce parametric nonlinear dynamical systems and the investigated
problem in Section 2. The POD method yields the representation in the reduced basis, and
the polynomial approximation is outlined. The variance-based sensitivity indices are formu-
lated for our problem. In Section 3, we apply artificial NNs for the approximation. We define
the weight-based sensitivity measures. The sources of errors are discussed for the entire nu-
merical method. Finally, Section 4 demonstrates results ofnumerical computations for the two
examples.

2. PROBLEM DEFINITION

We describe the problem in this section, which will be tackled by artificial NNs.

2.1 Nonlinear Dynamical Systems

We consider nonlinear dynamical systems in the form
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M(p)ẋ(t, p) = f(t, x(t, p), p)

y(t, p) = g(x(t, p), p).
(1)

The mass matrixM and/or the right-hand sidef depend on physical parametersp ∈ Π ⊆ Rq.
Hence the state variables or inner variablesx : [t0, tend] × Π → R

n depend on time as well as
the parameters. If the mass matrix is non-singular, then we obtain a system of ODEs. In contrast,
a singular mass matrix implies a system of DAEs. Initial value problems (IVPs) are specified by

x(t0, p) = x0(p), (2)

with a predetermined functionx0 : Π → R

n. In the case of DAEs, the initial values have to
be consistent. The consistency conditions represent systems of algebraic equations. Consistent
initial values typically depend on the physical parametersof the system.

A QoI y: [t0, tend]×Π → R

nqoi is defined by the functiong depending on the solutionx of
the dynamical system [Eq. (1)]. We assume that a single QoI (nqoi = 1) is under investigation.
Often y depends linearly on the variablesx. Sometimesy coincides with a single component
of x.

We suppose that each parameter is located in a compact interval: pj ∈ [pj,min, pj,max] for
j = 1, . . . , q. Consequently, the parameter domain is a multidimensionalcuboid. Without loss
of generality, we assume that the parameter domain is the unit hypercubeHq = [0, 1]q. In this
standardization, the bijective mapping reads as

Ξ : Hq → Π, pj 7→ pj,min(1− pj) + pj,max pj for j = 1, . . . , q,

whereΠ is the multidimensional cuboid incorporating the physicalquantities.
The following strategy can be applied for boundary value problems (BVPs) of dynamical

systems as well, because only the information of the trajectories of the QoI is included. It does
not matter if the trajectories are computed by IVPs or BVPs. The techniques are data-driven.

2.2 Proper Orthogonal Decomposition

In Mifsud et al. (2016) POD was used for ensembles of solutions at different parameter values.
We employ this idea for the transient problems [Eq. (1)]. A set of parameter samples

S = {p1, . . . , pk} ⊂ Hq (3)

is generated. For example, random samples can be chosen inHq .
A discretization in time implies a grid with pointst1, . . . , tm satisfyingt0 ≤ t1 < t2 < · · · <

tm ≤ tend. The initial pointt0 may be included in the grid. Consequently, a time integration of
the IVPs [Eqs. (1) and (2)] yields the values of the QoI in the time points. We assume that
the errors of the time integration are negligible. LetY ∈ R

m×k be the matrix with entries
yij := y(ti, pj), which represent discrete observations at the parameter samples [Eq. (3)]. We
perform a POD by the singular value decomposition

Y = USV ⊤, (4)

with a diagonal matrixS ∈ Rm×k containing the singular valuesσ1,σ2, . . . ,σs in descending
order withs = min{m, k}. The orthogonal matrixU ∈ Rm×m includes the associated basis
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vectorsu1, . . . , um in its columns. Taking ther dominant singular values, we form the smaller
matrix Ũ ∈ Rm×r with the columnsu1, . . . , ur. Let a = (a1, . . . , ar)

⊤ ∈ Rr be coefficients.
If y(·, p) is a trajectory of the QoI for anyp ∈ Hq , then its representation in the reduced basis
reads as

w(p) :=







y(t1, p)
...

y(tm, p)






≈







ỹ(t1, p)
...

ỹ(tm, p)






:=

r
∑

ℓ=1

aℓuℓ = Ũa. (5)

The best approximation of the coefficientsa is obtained by the projection

â(p) = Ũ⊤w(p). (6)

The accuracy of the POD is characterized by the requirement

r
∑

ℓ=1

σ2
ℓ > δ

s
∑

ℓ=1

σ2
ℓ, (7)

including a user-specified toleranceδ, sayδ ≥ 0.999 (Benner et al., 2015, p. 502). The smallest
rankr is chosen such that the condition [Eq. (7)] is satisfied.

If the coefficients are given, then the right-hand side of Eq.(5) implies an approximation of
the transient QoI. The time integration produces the transient QoI in the left-hand side of Eq. (5)
and thus the projection [Eq. (6)] yields the mapping

Γ : Hq → R

r, p 7→ â. (8)

We want to approximate this nonlinear function between low-dimensional spaces.

2.3 Polynomial Regression

For comparison, we arrange a straightforward polynomial approximation of the mapping
[Eq. (8)]. We apply the Legendre polynomials as basis functions (Stoer and Bulirsch, 2002,
p. 177) because well-conditioned problems are expected in comparison to other bases like the
monomial basis, for example. The polynomial approximationreads as̃a : Hq → R

r with

ã(p) =
s
∑

i=1

ciΦi(p), (9)

including vectorsci = (γi1, . . . ,γir)
⊤ ∈ Rr. The multivariate basis polynomials are the prod-

ucts of the (univariate) Legendre polynomials

Φi(p) = Li1(p1)Li2(p2) · · ·Liq(pq), (10)

for i = 1, . . . , s with p = (p1, p2, . . . , pq)
⊤. There is a one-to-one mapping from the integersi

to the multiindices(i1, . . . , iq). The traditional Legendre polynomials are linearly transformed
from their domain of dependence[−1, 1] to [0, 1]. The degree ofLj : [0, 1] → R is exactlyj.
Hence the total degree of a multivariate polynomial [Eq. (10)] is i1 + · · · + iq. The number of
basis polynomials up to a total degreed is (Xiu, 2010, p. 65),

s =
(q + d)!

q!d!
. (11)
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Now we employ the set [Eq. (3)] consisting ofk parameter samples, which was also used for the
computation of the reduced basis in the POD method. Lets < k. We arrange a Vandermonde
matrixV ∈ Rk×s and right-hand sidesbℓ ∈ Rk for ℓ = 1, . . . , r by

V =











Φ1(p
(1)) Φ2(p

(1)) · · · Φs(p
(1))

Φ1(p
(2)) Φ2(p

(2)) · · · Φs(p
(2))

...
...

...
Φ1(p

(k)) Φ2(p
(k)) · · · Φs(p

(k))











and bℓ =











âℓ(p
(1))

âℓ(p
(2))

...
âℓ(p

(k))











.

Now we solve the linear least squares problems

min
zℓ∈Rs

‖V zℓ − bℓ‖2, (12)

including the Euclidean norm‖ · ‖2. Each solutionzℓ yields the coefficientsγ1ℓ, . . . ,γsℓ for
ℓ = 1, . . . , r. Therein, aQR-decomposition (Golub and van Loan, 1996) of the matrixV can be
reused for each right-hand side. Since this decomposition dominates the computational effort,
the dimensionr of the reduced basis is not significant. Consequently, the approximation [Eq. (9)]
is identified. This approach is also called (multivariate) polynomial regression as in Seber and
Lee (2003).

The polynomial regression may suffer from the effect of overfitting in the case of higher-
degree polynomials. A regularization like Tikhonov’s method or (discrete)L2-regularization
can prevent overfitting (Wang, 2019). However, a similar approximation error often results by
simply restricting to polynomials of lower degree.

Furthermore, we note that a polynomial approximation can beconstructed using the trajecto-
ries of the samples in the discrete time points (without a reduced basis). Thus the approximation
error of the POD method is avoided. The computation work doesnot become much larger than
in our approach, since the matrix of the linear least squaresproblems is identical in all time
points. Yet a separate polynomial occurs for each time point, which generates a large number of
polynomials. In contrast, the number of polynomials is equal to the dimension of the reduced
basis in our approach. Hence a more compact description of the problem is achieved.

2.4 Sensitivity Analysis

There are derivative-based sensitivity measures and variance-based sensitivity measures (Sobol
and Kucherenko, 2009). We consider a variance-based approach. LetHq = [0, 1]q be the unit
hypercube again. Given a functionf : Hq → R, we assume thatf ∈ L2(Hq). The total variance
of f reads as

V (f) =

∫

Hq

f(p)2 dp−

(∫

Hq

f(p) dp

)2

. (13)

A sensitivity analysis is obsolete in the case ofV (f) = 0, becausef becomes a constant func-
tion. Thus we assume thatV (f) > 0. Variance-based sensitivity measures often require the
computation of partial variances. We define the partial variances using polynomial chaos ex-
pansions (PCEs); see Sudret (2008) or Pulch and Narayan (2019). The functionf exhibits the
PCE

f(p) =
∞
∑

i=1

f̂iΦi(p), (14)

Volume 1, Issue 1, 2020



80 Pulch & Youssef

including the multivariate Legendre polynomials [Eq. (10)]; see Xiu (2010). The coefficients
read as

f̂i = 〈f,Φi〉 =

∫

Hq

f(p)Φi(p) dp, (15)

using the inner product of the Hilbert spaceL2(Hq). The series [Eq. (14)] converges in the norm
of L2(Hq). We define the index sets

Ij = {i ∈ N : Φi is non-constant inpj},

for j = 1, . . . , q. Now the partial variances read as

Vj(f) =
∑

i∈Ij

|f̂i|
2 for j = 1, . . . , q. (16)

An alternative formula of the same partial variances is given in Sobol (2001).
The total effect sensitivity indices are defined by

ST
j (f) =

Vj(f)

V (f)
for j = 1, . . . , q, (17)

using Eqs. (13) and (16). It follows that 0≤ ST
j ≤ 1 for eachj. The sensitivity indices [Eq. (17)]

quantify the impact of each parameter on the variability of the functionf .
In numerical methods, we have to replace the PCE [Eq. (14)] byapproximations like Eq. (9).

First, the series is truncated to a finite sum. Second, the coefficients in Eq. (15) are approxi-
mated. Since the inner products represent multivariate integrals, quadrature methods or cubature
methods can be used.

We consider the mapping of Eq. (8):Γ : Hq → R

r, p 7→ â(p). The above sensitivity analysis
is applicable to each component ofΓ separately. Thus the sensitivity indices areST

j (âi) for
j = 1, . . . , q andi = 1, . . . , r, which form an array ofrq quantities. However, the importance
of the coefficientŝai decreases for increasingi due to the decay of the singular values in the
decomposition [Eq. (4)]. Alternatively, we observe the sensitivity measures

ST
j

(

r
∑

i=1

â2
i

)

for j = 1, . . . , q, (18)

which allows for a more compact discussion. These sensitivity indices characterize the impacts
of the parameters on the (Euclidean) norm of the low-dimensional representation.

Furthermore, an approximatioñΓ of the mapping [Eq. (8)] can be used to compute the sensi-
tivity indices with a low computational effort, because theevaluations of̃Γ are cheaper than the
evaluations ofΓ. The approximations are obtained from either the above polynomial approach
or an artificial NN.

3. MACHINE LEARNING

We employ a strategy of machine learning to solve the problemintroduced in Section 2.
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3.1 Artificial Neural Networks

We apply an artificial NN (Du and Swamy, 2014; Genzel and Kutyniok, 2019) to represent the
input–output relation of the mapping [Eq. (8)]. A similar approach was used for spatial solutions
of partial differential equations in Yu and Hesthaven (2019).

Figure 1 illustrates the schematic of an NN with three hiddenlayers. In the general case,
let L + 1 be the total number of layers andNℓ be the number of neurons in theℓth layer for
ℓ = 0, 1, . . . , L. Hence the number of hidden layers isL− 1. The valuesN0 andNL denote the
numbers of input neurons and output neurons, respectively.The mathematical modeling of an
NN consists of a chain of operators

Ψ = TL ◦ ρ ◦ TL−1 ◦ ρ ◦ TL−2 ◦ · · · ◦ ρ ◦ T2 ◦ ρ ◦ T1. (19)

The operatorsTℓ : R
Nℓ−1 → R

Nℓ are affine-linear functions:

Tℓ(z) = Aℓz + bℓ,

with matricesAℓ ∈ R
Nℓ×Nℓ−1 and vectorsbℓ ∈ RNℓ . The entries ofAℓ andbℓ are called weights

and biases, respectively. The operatorρ represents a nonlinear activation functionρ : R → R;
for example, the hyperbolic tangent sigmoid function

ρ(x) =
2

1+ e−2x
− 1, (20)

or the rectified linear unit (ReLU)

ρ(x) =

{

0 for x < 0,
x for x ≥ 0.

In Eq. (19), the functionρ is evaluated on a vector separately for each component. If the number
of hidden layers is larger or equal to 3, then the model is called a deep NN (deep learning).
Otherwise, the model represents a shallow NN.

In our application, there areq inputs given by a parameter tuplep ∈ Hq. Ther outputs are
the coefficientsa in Eq. (5) associated with the reduced basis. The degrees of freedom (DOFs)
are the weights and biasesΘ = (Aℓ, bℓ)

L
ℓ=1 in the optimization problem. An appropriate choice

is determined by a minimization of the distancesΓ(pj) −Ψ(pj) for realizationspj ∈ Hq of the
parameters. A norm or distance function, which quantifies these differences, is called a perfor-
mance function in the context of NNs. Typical performance functions are the mean squared error
or the mean absolute error.
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FIG. 1: Artificial neural network with input layer (left), hidden layers (center), and output layer (right)
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In the determination of an NN, three sets of parameter samples

Strain = {p1, . . . , pk} ⊂ Hq, (21)

Svalid = {q1, . . . , qk′} ⊂ Hq , (22)

Stest = {r1, . . . , rk′′} ⊂ Hq, (23)

are arranged, which are pairwise disjoint. The training set[Eq. (21)] is used to identify the DOFs
in an iterative optimization method. Thus the performance function always decreases monotone
for the training set in the iteration. The validation set [Eq. (22)] yields additional data to prevent
an overfitting. The iteration is stopped if the performance function increases for the validation
set. The test set [Eq. (23)] is not used in the optimization method at all. This independent set
allows for an estimation of the accuracy achieved by a trained NN. In our application, we employ
the set of samples [Eq. (3)], used in the POD method, also as the training set [Eq. (21)].

Concerning the context of pMOR, a technique consists of an offline phase and an online
phase. In our offline phase, the sample trajectories are computed and an NN is trained. The com-
putation of the trajectories involves significant computation work, since the nonlinear dynamical
systems have to be solved. In our online phase, a trained NN isevaluated for possibly many
parameter values, which is cheap.

3.2 Errors of the Methods

The approximationsΨ(p) = ã(p) from Eq. (19) imply the approximate trajectoriesỹ(ti, p) for
each realizationp of the parameters in Eq. (5). The total error consists of three parts:

(1) The numerical error of the time integration,

(2) The approximation error with respect to the reduced basis from POD,

(3) The approximation error of the NN.

We impose high accuracy requirements in the numerical time integration. Consequently, the error
of part (1) becomes negligible. Although a toleranceδ ≈ 1 is applied in the condition [Eq. (7)],
the error of part (2) may be relatively large for some parameter values if the associated trajectory
is significantly different from the sample trajectories. Hence a decline of the error within part (2)
also requires an increase in the number of samples in the POD.In the alternative approach of
Section 2.3, just part (3) changes into the error of the polynomial approximation.

We estimate the error by a discreteL1-norm in time. Given a parameter tuplep ∈ Hq, this
error reads as

E(p) =
1

tend − t0

m−1
∑

i=1

(ti+1 − ti) |y(ti, p)− ỹ(ti, p)| , (24)

assumingt0 = t1 and tend = tm. Our reference valuesy(ti, p) will still include an error of
a numerical time integration. However, this error is negligible due to the high accuracy of the
time integration. In the case of sample sets [Eqs. (21)–(23)], we observe statistics of the errors
[Eq. (24)] like the mean value and the sample variance, for example.
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3.3 Sensitivity Analysis Using Weights

In the field of machine learning and NNs, there is a sensitivity analysis based on a layer-wise
relevance propagation and associated relevance scores (Montavon et al., 2018). However, the
relevance scores depend on the inputs of the NN; that is different input values imply different
relevance scores. In contrast, the variance-based sensitivity indices illustrated in Section 2.4
represent global sensitivity measures, which are defined for the complete parameter domain.
Thus we examine the variance-based sensitivity analysis for our problem.

If an NN represents a good approximation of the mapping [Eq. (8)] meaning thatΓ(p) ≈
Ψ(p) for all p, then the total effect sensitivity indices also agree for the mappingsΓ andΨ.
We investigate the magnitudes of the weights in a trained NN to obtain an alternative sensitiv-
ity analysis. In the NN model [Eq. (19)], the first operatorT1 describes the mapping from the
input layer to the first hidden layer. It holds thatT1(z) = A1z + b1 with matrixA1 ∈ RN1×q

and vectorb1 ∈ RN1. Let wij for i = 1, . . . , N1 andj = 1, . . . , q be the weights inA1. We
define sensitivity measures by the Euclidean norm of the set of weights associated to thejth
input:

SW
j =

N1
∑

i=1

w2
ij for j = 1, . . . , q. (25)

The square of the Euclidean norm is used for a comparison to the variance-based sensitivity
analysis, because the partial variances [Eq. (16)] are sumsof squares. We do not consider the
weights involved in the subsequent hidden layers, because such a weight cannot be assigned to
a specific input any more.

In general, the number of neurons in a hidden layer is often chosen larger than the num-
ber of input neurons. Thus it holds thatN1 > q. Numerical computations of test examples
show that a sensitivity coefficient [Eq. (25)] may not be small, even though the influence of the
associated parameter on the outputs is insignificant. It follows that the first hidden layer gets
input from a insignificant parameter, which is averaged out or canceled out in the subsequent
layers.

We propose an approach to avoid this behavior. Assume that anNN is sufficiently accurate
with L − 1 hidden layers of sizesN1, . . . , NL−1. We extend this network toL hidden layers
with sizesN̂1, . . . , N̂L usingN̂1 = N0, N̂ℓ = Nℓ−1 for ℓ = 2, . . . , L. The activation function
between the input layer and the first hidden layer is chosen purely linear (ρ(x) = x for all x);
that is the identity operator. This extended NN reads as

Ψ̂ = T̂L+1 ◦ ρ ◦ T̂L ◦ ρ ◦ T̂L−1 ◦ · · · ◦ ρ ◦ T̂3 ◦ ρ ◦ T̂2 ◦ T̂1. (26)

The approximation quality of the extended NN is at least as good as that in the original NN,
because choosinĝT1 as the identity and̂Tℓ = Tℓ−1 for ℓ = 2, . . . , L + 1 impliesΨ = Ψ̂.
However, the input information is not spread around a largernumber of neurons in the first
hidden layer. Hence this approach enforces a compact propagation of the information from the
inputs. Now the sensitivity measures [Eq. (25)] are investigated for the extended NN [Eq. (26)],
where it holds that̂N1 = N0 = q.

The concept of the sensitivity measures [Eq. (25)] is heuristic. We will investigate the com-
puted sensitivity indicators for the examples in Section 4.In particular, a comparison between
Eqs. (17) and (25) is presented.
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4. NUMERICAL RESULTS

We investigate two examples of nonlinear dynamical systems. All computations were performed
on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU with3.20 GHz (4 cores) and the
Microsoft Windows 10 operating system. The software package MATLAB (version
9.7.0.1190202/R2019b) produced the numerical results. The NNs were trained using its deep
learning toolbox.

4.1 Example: Transistor Amplifier

We consider the electric circuit of a transistor amplifier shown in Fig. 2. This circuit includes
three capacitances, six resistances, and a bipolar transistor. In Hairer and Wanner (1996), a math-
ematical model is given, which consists of five DAEs for five unknown node voltagesu1, . . . , u5

(n = 5). The mass matrix and the right-hand side of Eq. (1) read as

M =













−C1 C1 0 0 0
C1 −C1 0 0 0
0 0 −C2 0 0
0 0 0 −C3 C3

0 0 0 C3 −C3













f =

































u1

R0

u2(
1

R1
+

1

R2
) + (1− γ)w(u2 − u3)

u3

R3
− w(u2 − u3)

u4

R4
+ γw(u2 − u3)

u5

R5

































+

























−
uin

R0

−
uop

R2
0

−
uop

R4
0

























.

uout

uop

inu

FIG. 2: Electric circuit of a transistor amplifier
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The current-voltage relation of the bipolar transistor is described by the nonlinear function

w(u) = α

[

exp

(

u

β

)

− 1

]

, (27)

with constantsα = 10−6, β = 0.026, andγ = 0.99. We use nominal parameter values as given
in Hairer and Wanner (1996): capacitancesC1 = 10−6, C2 = 2 · 10−6, andC3 = 3 · 10−6;
resitancesR0 = 1000,R1 = · · · = R5 = 9000; and operating voltageuop = 6. The differential
index of the system is one. We supply a harmonic oscillation

uin(t) = A sin

(

2π
T

t

)

, (28)

with periodT = 0.01 and amplitudeA = 0.4 as input voltage. The output voltageuout = u5

represents the QoI.
We consider parameter variations in capacitances, resistances, and operating voltage. Vari-

ability of the parameters within the transistor model is notexamined. Thus the dimension of the
parameter domain isq = 10. Parameter variations of this example were also investigated for
another purpose in Pulch (2019). A variation of 20% around the above nominal value is set for
each parameter, which forms the multidimensional cuboidΠ ⊂ R10.

Concerning the numerical solution of IVPs, we use the function ode15s in MATLAB,
which is a multistep method based on the numerical differentiation formula (NDF; Shampine
and Reichelt, 1997). We specify the same initial condition as a starting value for all parameters
and the method determines consistent initial values [Eq. (2)] depending on the parameters. The
time integrations are performed in the interval[t0, tend] = [0, 0.03] with local error control using
relative toleranceεr = 10−6 and absolute toleranceεa = 10−8.

We produce the sets [Eqs. (21)–(23)] withk = k′ = k′′ = 1000 samples using pseudo
random numbers inH10. The QoI is obtained inm = 500 equidistant points in the time interval
[t0, tend] including t0 and tend, where the accuracy of the output agrees to the predetermined
tolerances. Figure 3 illustrates both the trajectory for the mean values of the parameters and
several trajectories for different parameter samples.

In the POD method, we apply the training set [Eq. (21)] only. The computed singular values
are shown in Fig. 4. We observe a fast decay of the singular values. The reduced dimensionr = 9
is the smallest number satisfying the accuracy requirement[Eq. (7)] for the thresholdδ = 0.999.

0 0.01 0.02 0.03
-3

-2

-1

0

1

2

0 0.01 0.02 0.03
-3

-2

-1

0

1

2

(a) (b)

FIG. 3: Trajectory of QoI for mean value of parameters (a) and 20 trajectories of QoI for different parameter
samples (b) produced by transistor amplifier circuit
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FIG. 4: Singular values from POD for matrix including the samples ofthe QoI in transistor amplifier
example

We train two NNs: a network with two hidden layers including 30 neurons in each layer and
a network with three hidden layers including 20 neurons. Theactivation function used is the
hyperbolic tangent relation [Eq. (20)]. The performance function is the mean squared error. The
Levenberg-Marquardt method (Du and Swamy, 2014, p. 130) executes the nonlinear optimiza-
tion. Figure 5 depicts the performance of the training in both NNs. The training is terminated
after a maximum number of 1000 iterations in each case, because the stopping criterion based on
the validation set is not satisfied yet. Imposing a maximum iteration number represents a kind of
regularization in the context of minimization. We observe that the achieved mean squared errors
are similar in both NNs. Figure 6 illustrates some samples for the trajectories of the QoI, where
the first NN yields the approximations.

Furthermore, we employ the polynomial approximation from Section 2.3 for comparison.
Let sd be the number of basis polynomials up to total degreed depending on 10 variables. We
discuss the casesd = 2, 3, 4. It follows thats2 = 66,s3 = 286, ands4 = 1001 due to Eq. (11).
We use only the training samples [Eq. (21)] in the least squares problem. Hence the validation
set becomes just an additional test set. In the case ofd = 4, the numbers4 of DOFs is larger than
the numberk = 1000 of training samples. Thus we extend the training set by just one sample
once. It follows that the polynomial regression changes into a polynomial interpolation in the
case ofd = 4.
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FIG. 5: Performance in training of NNs with two hidden layers (a) andthree hidden layers (b) in transistor
amplifier example
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FIG. 6: Trajectories of QoI for four different parameter samples: solution of IVPs (dotted line) and ap-
proximation from NN (solid line) in transistor amplifier example (time interval[0, 0.03] is standardized to
[0, 1])

Table 1 demonstrates the statistics of the errors [Eq. (24)]based on the discreteL1-norms.
The accuracy of the two NNs coincides. The errors of the polynomial regression with degree 2
are worse. Yet the accuracy of the polynomial approximationimproves for increasing total de-
gree in the case of the training set. The polynomial fit of degree 4 produces the same errors as
the NNs for the training set, whereas the error of the polynomial approximation is much larger
for the validation set as well as the test set. This typical phenomenon is an oversampling with
respect to the training samples. In the training routines ofthe NNs, the consideration of the val-
idation set would stop the training if an overfitting is detected. However, this stopping criterion
does not occur in the fitting of our two NNs, because the training terminates after the maxi-
mum number of iteration steps. Thus an important observation is that the training of NNs omits
overfitting without termination in this example. Moreover,the polynomial interpolation (d = 4)
features no approximation error in the training set. Hence this mean value is dominated by the
approximation error of the reduced basis from the POD approach, which is the error part (2)

TABLE 1: Statistics of errors in approximations by NNs and polynomials in transistor amplifier
example

NN NN Polynomial Polynomial Polynomial
2 layers 3 layers degree 2 degree 3 degree 4

Mean Training set 0.0223 0.0223 0.0443 0.0302 0.0223
Validation set 0.0223 0.0224 0.0465 0.0364 0.6611
Test set 0.0223 0.0224 0.0462 0.0367 0.6719

Standart Training set 0.0112 0.0112 0.0217 0.0140 0.0112
deviation Validation set 0.0099 0.0099 0.0195 0.0165 0.5204

Test set 0.0109 0.0108 0.0225 0.0194 0.5021
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in Section 3.2. We conclude that the approximation errors ofthe NNs are also negligible, since
their mean errors of all sets nearly coincide with the mean error of the polynomial approach for
d = 4 in the training set.

Since the validation set is not used in the polynomial regression, we perform an additional
numerical experiment. The polynomials are fitted to the dataof the union of training set and
validation set (2000 samples). Table 2 shows the statisticsof errors. The results are similar to the
previous polynomial approach. The effect of overfitting is reduced in the case of degree 4. How-
ever, the overfitting is still present and thus the errors areworse for the test set in comparison to
the NN models. A polynomial approximation of degree 5 would include 3003 basis polynomials,
which is a larger number than the total sample size.

We comment on the computing times. The polynomial regression with data size 1000/1001
required in seconds: 0.05 for degree 2, 0.21 for degree 3, and0.86 for degree 4. Thus the poly-
nomial approximation is cheap. In contrast, the training ofthe NN with two layers ran about
41 minutes. There is some potential to reduce the compution work in the training. On the one
hand, the number of iterations can be reduced. On the other hand, there are much cheaper iter-
ation techniques in comparison to the Levenberg-Marquardtmethod. However, the alternative
techniques yield worse accuracy in this example.

We compute the total effect sensitivity indices [Eq. (18)] for the varying physical parameters.
The approximations̃a are evaluated on the grid of the Stroud-5 cubature (Stroud, 1971), which
is exact for polynomials up to total degree 5. These evaluations yield approximate sensitivities
[Eq. (18)] using a non-intrusive method as given in Pulch et al. (2015). Figure 7(a) shows the

TABLE 2: Statistics of errors in approximations by polynomials withjoined set (union of
training set and validation set) for fitting in transistor amplifier example

Polynomial Polynomial Polynomial
degree 2 degree 3 degree 4

Mean Joined set 0.0443 0.0306 0.0249
Test set 0.0450 0.0334 0.0350

Standart Joined set 0.0207 0.0142 0.0105
deviation Test set 0.0223 0.0180 0.0208
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FIG. 7: Sensitivities for different physical parameters (capacitances 1-3, resistances 4-9, operating volt-
age 10) in transistor amplifier example: (a) total effect sensitivity indices [Eq. (18)] and (b) sensitivity
coefficients [Eq. (25)] obtained by NN in semilogarithmic scale
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sensitivity indices [Eq. (18)]. We emphasize that these values are computed directly from the
mapping [Eq. (8)] without an approximation by NNs or polynomial regression. Alternatively, we
consider the trained NN with two hidden layers to obtain the sensitivity coefficients [Eq. (25)]
depicted in Fig. 7(b). We recognize a good agreement for the relative positions of the sensitivity
indicators in the two concepts. In particular, the ranking of the parameters mostly coincides. The
operating voltage exhibits the largest influence. Furthermore, we train an extended NN [Eq. (26)]
with three hidden layers of sizeŝN1 = 10 andN̂2 = N̂3 = 30. Its sensitivity coefficients
[Eq. (25)] are shown in Fig. 8. The results are similar to the previous NN.

Finally, we reproduce the total effect sensitivity indicesbased on the approximate mappings.
In Eq. (18), the exact coefficientŝai are substituted by the approximationsãi. On the one hand,
the trained NN with two layers is used, where the NN model is evaluated at the nodes of the
Stroud-5 quadrature. On the other hand, the polynomial regression of degree 2, which fits to
1000 samples of the training set, yields the approximation [Eq. (9)], and the coefficientsci are
directly inserted in Eq. (16) to obtain approximations of the partial variances. Figure 9 illustrates
the resulting sensitivity indices. We observe that the outcomes of both methods agree roughly.
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FIG. 8: Sensitivities coefficients [Eq. (25)] for different physical parameters (capacitances 1-3, resistances
4-9, operating voltage 10) using an extended NN in transistor amplifier example
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FIG. 9: Total effect sensitivity indices [Eq. (18)] for different physical parameters (capacitances 1-3, re-
sistances 4-9, operating voltage 10) computed using NN (a) and polynomial approximation (b) both in
semilogarithmic scale for transistor amplifier
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The NN replicates the results in Fig. 7(a). The polynomial regression produces slightly different
values for small sensitivity values. This behavior reflectsthat the approximation of the NN is
more accurate.

4.2 Example: Schmitt Trigger

The electric circuit of a Schmitt trigger is illustrated in Fig. 10. There are five resistances, a
capacitance, and two bipolar transistors. This circuit acts as an analog-digital converter. A math-
ematical model is presented in Kampowsky et al. (1992) that consists of five DAEs for five
unknown node voltages. The mass matrix and the right-hand side of the system [Eq. (1)] are

M =













0 0 0 0 0
0 C 0 −C 0
0 0 0 0 0
0 −C 0 C 0
0 0 0 0 0
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The current-volatage relation of the bipolar transistors is given by Eq. (27) again using the same
physical parameters. The differential index of the system is one. We employ a harmonic oscilla-
tion [Eq. (28)] with periodT and amplitudeA = 5 as input voltageuin. The QoI is the output
voltageuout = u5.

We arrange a parameter variation in the capacitance, the fiveresistances, the operating volt-
age, and the period of the input oscillation. The mean valuesof the parameters read as capaci-
tanceC = 4·10−11; resistancesR1 = 200,R2 = 1600,R3 = 100,R4 = 3200, andR5 = 1600;
operating voltageuop = 0.2; and periodT = 0.002. Ranges of 20% around these mean values
are used for each parameter, except for the period varying just 5%. Thus the parameter domain
is a cuboidΠ ⊂ R8.

In Eqs. (21)–(23), we incorporatek = k′ = k′′ = 500 samples using a pseudo random num-
ber generator. The number of equidistant time points ism = 1000 now. Again the NDF schemes
yield the numerical solutions of the IVPs within the time interval[t0, tend] = [0, 0.006]. Starting

op

in

outu

u

u

FIG. 10: Electric circuit of a Schmitt trigger
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values for the initial values are always zero, whereas a consistent initial value [Eq. (2)] is de-
termined for each parameter tuple by the method. The local error control uses relative tolerance
εr = 10−3 and absolute toleranceεa = 10−5. Figure 11(a) depicts the trajectory associated
with the mean value of the parameters. Although the solutionof the DAE system is continuous,
the output voltage exhibits fast transitions, which behavelike jumps. The sinusoidal input signal
[Eq. (28)] is transformed into a digital output signal. Figure 11(b) illustrates the trajectories for
several parameter samples. The variation of the period shifts the locations of the jumps.

We perform the POD approach for the training samples. Figure12 displays the singular
values of the decomposition [Eq. (4)]. The decay of the singular values is slower in comparison
to the previous example shown in Fig. 4, since the trajectories vary to a higher extent. We set the
reduced dimension tor = 11, which is the smallest number satisfying Eq. (7) with the threshold
δ = 0.99.

We train two NNs of the same sizes as in the example of Section 4.1. A conjugate-gradient
method (Du and Swamy, 2014, p. 136) solves the nonlinear optimization problem iteratively. On
the one hand, a single iteration step is much cheaper in comparison to the Levenberg-Marquardt
method. On the other hand, more iteration steps are requiredin total. Yet the total computation
work is significantly lower now. Figure 13 shows the trainingprocedure of the two NNs. The
iteration is terminated at the 5189th step and the 10,258th step, respectively, since the perfor-
mance function does not decrease any more on the validation set in both cases. In the training,
the computing times were 22.2 seconds and 43.8 seconds, respectively.
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FIG. 11: Trajectory of QoI for mean value of parameters (a) and twentytrajectories of QoI for different
parameter samples (b) produced by Schmitt trigger circuit
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FIG. 12: Singular values from POD for matrix including the samples ofthe QoI in Schmitt trigger example
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FIG. 13: Performance in training of NNs with two hidden layers (a) andthree hidden layers (b) in Schmitt
trigger example

We use the first NN to approximate the trajectories of the QoI.Figure 14 demonstrates the
approximations together with the original trajectories ofthe time integration. We observe a good
agreement of the amplitudes and a good localization of the jumps. However, incorrect oscilla-
tions occur close to the jumps, which are caused by the reduced basis in the POD approximation.

We check the NNs against the polynomial regression from Section 2.3. The approximations
of total degreed = 2, 3, 4 are computed, where the number of basis polynomials iss2 = 45,
s3 = 165, ands4 = 495, respectively. Hence we solve linear least squares problems using the
training set [Eq. (21)]. The case ofd = 4 nearly coincides with a polynomial interpolation of
the training set due tos4 ≈ k. Table 3 contains the statistics of the discreteL1-errors [Eq. (24)].
We observe the same behavior as in the example of Section 4.1.Again the NNs are better than a
straightforward polynomial approximation.
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FIG. 14: Trajectories of QoI for four different parameter samples: solution of IVPs (dotted line) and ap-
proximation from NN (solid line) in Schmitt trigger example(time interval[0, 0.006] is standardized to
[0, 1])
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TABLE 3: Statistics of errors in approximations by NNs and polynomials in Schmitt trigger
example

NN NN Polynomial Polynomial Polynomial
2 layers 3 layers degree 2 degree 3 degree 4

Mean Training set 0.0089 0.0089 0.0246 0.0180 0.0089
Validation set 0.0092 0.0090 0.0269 0.0254 0.1896
Test set 0.0093 0.0092 0.0276 0.0263 0.1792

Standart Training set 0.0029 0.0030 0.0087 0.0060 0.0030
deviation Validation set 0.0034 0.0033 0.0093 0.0105 0.1463

Test set 0.0034 0.0035 0.0095 0.0107 0.1190

Again, we also fit the polynomials to the data of the union of training set and validation set
(1000 samples). Table 4 depicts the statistical errors. An overfitting occurs again and thus the
approximation of the NNs is more accurate. A polynomial approximation of degree 5 would
include 1287 basis polynomials, where the number of degreesof freedom is larger than the size
of the joined sample set.

Finally, we compute the total effect sensitivity indices [Eq. (18)] of the exact mapping as
well as the sensitivity coefficients [Eq. (25)] of the first NNshown in Fig. 15. The variance-based
concept identifies the operating voltage as most important,whereas the period dominates in the
weight-based approach. Although the varying period changes the positions of the jumps, the
(Euclidean) norm of the basis coefficients in Eq. (18) remains nearly the same. The total effect
sensitivity indices of the first two parameters are tiny. A more detailed investigation confirms that
these two parameters hardly influence the QoI, while they have some impact on other variables
of the solution. However, the sensitivity coefficients [Eq.(25)] from the NN are not small for the
two parameters. Thus we construct an extended NN [Eq. (26)] with three hidden layers of sizes
N̂1 = 8 andN̂2 = N̂3 = 30. Figure 16 displays the computed sensitivity coefficients [Eq. (25)].
Now the first two parameters are correctly detected as insignificant variables with respect to the
observed QoI.

5. CONCLUSIONS

We approximated trajectories of a QoI, which is the output ofa nonlinear dynamical system. Ar-
tificial NNs were fitted to data obtained by a POD. The numerical computations of test examples
demonstrate that neural networks with relatively low numbers of hidden layers are already suffi-
ciently accurate. Moreover, the NNs are superior in comparison to a multivariate polynomial ap-
proximation by regression. In addition, a variance-based sensitivity analysis of the input–output

TABLE 4: Statistics of errors in approximations by polynomials withjoined set (union of
training set and validation set) for fitting in Schmitt trigger example

Polynomial Polynomial Polynomial
degree 2 degree 3 degree 4

Mean Joined set 0.0250 0.0192 0.0140
Test set 0.0268 0.0228 0.0258

Standart Joined set 0.0087 0.0067 0.0046
deviation Test set 0.0091 0.0084 0.0124
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FIG. 15: Sensitivities for different physical parameters (capacitance 1, resistances 2-6, operating voltage 7,
period 8) in Schmitt trigger example: (a) total effect sensitivity indices [Eq. (18)] and (b) sensitivity coeffi-
cients [Eq. (25)] obtained by NN in semilogarithmic scale
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FIG. 16: Sensitivities coefficients [Eq. (25)] for different physical parameters (capacitance 1, resistances
2-6, operating voltage 7, period 8) using an extended NN in Schmitt trigger example

mapping was considered. We introduced an alternative concept based on the weights in a trained
NN. The variance-based technique already becomes cheap when an NN is applied to approxi-
mate the mapping. Alternatively, the sensitivity concept using the weights does not significantly
save computational effort but it provides some insight intothe input–output relation of an NN.
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