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We investigate parameter-dependent nonlinear dynamical systems consisting of ordinary differen-
tial equations or differential-algebraic equations. A single quantity of interest is observed, which
depends on the solution of a system. Our aim is to determine efficient approximations of the trajecto-
ries belonging to the quantity of interest in the time domain. We arrange a set of samples including
trajectories of this quantity. A proper orthogonal decomposition of this data yields a reduced basis.
Consequently, the mapping from the parameter domain to the basis coefficients is approximated. We
apply machine learning with artificial neural networks for this approximation, where the degrees of
freedom are fitted to the data of the sample trajectories in a nonlinear optimization. Alternatively,
we consider a polynomial approximation, which is identified by regression, for comparison. Further-
more, concepts of sensitivity analysis are examined to characterize the impact of an input parameter
on the output of the exact mapping or the approximations from the neural networks. We present
results of numerical computations for examples of nonlinear dynamical systems.

KEY WORDS: nonlinear dynamical system, differential-algebraic equation, initial value
problem, parametric model order reduction, proper orthogonal decomposition, machine
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1. INTRODUCTION

Mathematical modeling of real-world problems often yietgamical systems in science and
engineering. We consider initial value problems for nosdinsystems of ordinary differential
equations (ODESs) or differential-algebraic equations 38 which depend on physical param-
eters. A transient quantity of interest (Qol) is defined delieg on the solution of a system.
Many evaluations of the Qol are required for different reations of the parameters in some
tasks like optimization and uncertainty quantificatiorg ¥éu (2010), for example. Often a time
integration of the dynamical system is costly for realistgplications. Thus our aim is to deter-
mine efficient approximations of the trajectories assediatith the parameter-dependent Qol.
An evaluation of this approximation should be cheap, whdedjaccuracy is still achieved for
most of the relevant parameter values.

We determine the trajectories of the Qol for parameter sasnjpl some bounded parame-
ter domain. Proper orthogonal decomposition (POD) repitsse method for projection-based
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model order reduction (Antoulas, 2005; Kunisch and Volkw&i001). We use a similar POD
approach to obtain a reduced basis for the trajectoriestragctory is approximated by a func-
tion in a low-dimensional space. The approximation is ualguletermined by the coefficients
in the reduced basis. Hence we obtain a mapping between-dinitensional spaces, where a
parameter value is mapped to the basis coefficients.

Now the task is to determine an efficient approximation of thepping between finite-
dimensional spaces. This procedure can be seen as a kindashg@ic model order reduc-
tion (pPMOR) (Benner et al., 2015). Instead of solving thd-utder model consisting of the
dynamical system, a parameter-dependent reduced-orddel isoconstructed. However, our
reduced-order model is not a dynamical system anymore. ©uorik hand, we apply a concept
of machine learning based on artificial neural networks (Bd &wamy, 2014; Goodfellow et
al., 2017). On the other hand, we use a multivariate polyabragression for comparison (Seber
and Lee, 2003). In both approaches, an optimization prasg@esformed to identify the degrees
of freedom appropriately, where the data of the sampledt@ijies is included. This optimization
is called training in the case of machine learning. Neurévogks (NNs) imply a nonlinear op-
timization problem, whereas the polynomial fit required jhg solution of linear least squares
problems. Both approaches represent data-driven methods.

Similar problems have also been tackled by NNs in previouksvdrhe POD method was
used for parametric stationary solutions of partial défgfal equations in Hesthaven and Ub-
biali (2018) and Yu and Hesthaven (2019). Trajectories aftgms satisfying (non-parametric)
autonomous systems of ODEs were reproduced by Qin et al9j201

Furthermore, we discuss a variance-based sensitivityysisabf the input—output behav-
ior in the mapping between the finite-dimensional spaces. total effect sensitivity indices
yield a quantification of the impact of the individual pardere (Saltelli et al., 2008; Sobol
and Kucherenko, 2009). Thus a ranking of the importanceadsiliée for the parameters. The
variance-based sensitivity analysis can be performeddtr the exact mapping and an approx-
imation. Alternatively, we also investigate the weightsaitrained NN to obtain information
about the sensitivities with respect to the input paranseter

We present numerical results for two examples, which ardimesr systems of DAES mod-
eling electric circuits. Both the machine learning apptoand the polynomial regression are
used to obtain the approximations. The errors of the methoel@nalyzed and compared. In
addition, we illustrate the sensitivity analysis by therexdes.

In this article, we introduce parametric nonlinear dynahgystems and the investigated
problem in Section 2. The POD method vyields the represemtati the reduced basis, and
the polynomial approximation is outlined. The variancedshsensitivity indices are formu-
lated for our problem. In Section 3, we apply artificial NN$ fbe approximation. We define
the weight-based sensitivity measures. The sources ofseare discussed for the entire nu-
merical method. Finally, Section 4 demonstrates resultauaierical computations for the two
examples.

2. PROBLEM DEFINITION

We describe the problem in this section, which will be tadkby artificial NNs.

2.1 Nonlinear Dynamical Systems

We consider nonlinear dynamical systems in the form
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M (p)a(t,p) = f(t,x(t,p),p)

y(t,p) = g(x(t,p), p). 1)

The mass matrix/ and/or the right-hand sidg depend on physical parameters 11 C RY.

Hence the state variables or inner variahtes|to, tenq] x II — R"™ depend on time as well as
the parameters. If the mass matrix is non-singular, thenbteima system of ODEs. In contrast,
a singular mass matrix implies a system of DAESs. Initial eghnoblems (IVPs) are specified by

x(to, p) = zo(p), ()

with a predetermined functiony : II — R”. In the case of DAEs, the initial values have to
be consistent. The consistency conditions representragsté algebraic equations. Consistent
initial values typically depend on the physical parametéithe system.

A Qol y: [to, tena] X I — R™i is defined by the function depending on the solutianof
the dynamical system [Eq. (1)]. We assume that a single gl & 1) is under investigation.
Ofteny depends linearly on the variables Sometimeg; coincides with a single component
of x.

We suppose that each parameter is located in a compactahteyve [p; min, Pj,max] fOr
j =1,...,q. Consequently, the parameter domain is a multidimensicuabid. Without loss
of generality, we assume that the parameter domain is théwypercubet,, = [0, 1]9. In this
standardization, the bijective mapping reads as

= Hq %Ha Pj Hp],mln(lip])+p7,mdxp7 for .] = 17"'7Qa

wherell is the multidimensional cuboid incorporating the physipadntities.

The following strategy can be applied for boundary valuebprms (BVPs) of dynamical
systems as well, because only the information of the traj@t of the Qol is included. It does
not matter if the trajectories are computed by IVPs or BVR® Techniques are data-driven.

2.2 Proper Orthogonal Decomposition

In Mifsud et al. (2016) POD was used for ensembles of solstatrdifferent parameter values.
We employ this idea for the transient problems [Eq. (1)]. Acfgparameter samples

S:{pla"'apk}CHq (3)

is generated. For example, random samples can be cho%gn in

A discretization in time implies a grid with points, . . . , ¢, satisfyingtg < t; <t < - - <
tm < tenda. The initial pointty may be included in the grid. Consequently, a time integnatib
the IVPs [Egs. (1) and (2)] yields the values of the Qol in timeet points. We assume that
the errors of the time integration are negligible. Bétc R™** be the matrix with entries
yi; = y(t;, p;), which represent discrete observations at the paramataylea [Eq. (3)]. We
perform a POD by the singular value decomposition

Y =USVT, (4)

with a diagonal matrixs € R™** containing the singular values, o>, . . ., o, in descending
order withs = min{m, k}. The orthogonal matri¥/ € R™*™ includes the associated basis
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vectorsuy, . . ., u,, in its columns. Taking the dominant singular values, we form the smaller
matrix U € R™*" with the columnsuy, ..., u,. Leta = (a1,...,a,)" € R" be coefficients.

If y(-,p) is a trajectory of the Qol for any € #,, then its representation in the reduced basis
reads as

y(tlap) g(tlap) r
w(p) := : ~ ; =Y apuy =Ua. (5)
Y(tm,p) (tm,p) =
The best approximation of the coefficientss obtained by the projection
a(p) = UTw(p). 6)

The accuracy of the POD is characterized by the requirement

ET: 07> 6 ES: 07, (7)
=1 =1

including a user-specified tolerangesayd > 0.999 (Benner et al., 2015, p. 502). The smallest
rankr is chosen such that the condition [Eq. (7)] is satisfied.

If the coefficients are given, then the right-hand side of @&)jimplies an approximation of
the transient Qol. The time integration produces the teari€pol in the left-hand side of Eq. (5)
and thus the projection [Eq. (6)] yields the mapping

r:H, >R, p—a. (8)

We want to approximate this nonlinear function between tbmensional spaces.

2.3 Polynomial Regression

For comparison, we arrange a straightforward polynomigireximation of the mapping
[Eq. (8)]. We apply the Legendre polynomials as basis fumsti(Stoer and Bulirsch, 2002,
p. 177) because well-conditioned problems are expectedrimparison to other bases like the
monomial basis, for example. The polynomial approximatiads as : #, — R" with

S

a(p) =Y _ i®i(p), )

i=1

including vectors:; = (yi1,-..,vir) | € R". The multivariate basis polynomials are the prod-
ucts of the (univariate) Legendre polynomials

®;(p) = L, (p1) Li,(p2) - - - Li, (pq), (10)
fori=1,...,swithp = (p1,p2,...,p,) " . There is a one-to-one mapping from the integers
to the multiindiceg(i4, . .., i,). The traditional Legendre polynomials are linearly transfed

from their domain of dependen¢e1,1] to [0, 1]. The degree oL, : [0,1] — R is exactly;.
Hence the total degree of a multivariate polynomial [Eq)(i9i; + - - - + i,. The number of
basis polynomials up to a total degréés (Xiu, 2010, p. 65),

(g +d)!

S= o (11)
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Now we employ the set [Eq. (3)] consisting/oparameter samples, which was also used for the
computation of the reduced basis in the POD methodsLet k. We arrange a Vandermonde
matrix V € R*** and right-hand sidely € R* for/ =1,...,7 by

él(pg) @Z(I)g) e <I>s(pg;) de(pig)

P1(p Pa(p e Dy(p ae(p

. 1(. ) 2(. ) (_ ) and by — e(_ )
1 (pM) (M) oo @ (pW) ae(p™)

Now we solve the linear least squares problems

in |[|[Vz,—b 12
i [[Vze = bellz (12)
including the Euclidean norr - ||2. Each solutiorz, yields the coefficientsyy, . . ., vse for

¢=1,...,r. Therein, &) R-decomposition (Golub and van Loan, 1996) of the mditrigan be
reused for each right-hand side. Since this decompositonirtates the computational effort,
the dimensiom of the reduced basis is not significant. Consequently, thecaqomation [Eq. (9)]

is identified. This approach is also called (multivariatelypomial regression as in Seber and
Lee (2003).

The polynomial regression may suffer from the effect of &éttérg in the case of higher-
degree polynomials. A regularization like Tikhonov's medhor (discrete)C?-regularization
can prevent overfitting (Wang, 2019). However, a similarragjnation error often results by
simply restricting to polynomials of lower degree.

Furthermore, we note that a polynomial approximation cacdmestructed using the trajecto-
ries of the samples in the discrete time points (without aced basis). Thus the approximation
error of the POD method is avoided. The computation work shmtdecome much larger than
in our approach, since the matrix of the linear least squareklems is identical in all time
points. Yet a separate polynomial occurs for each time pwihich generates a large number of
polynomials. In contrast, the number of polynomials is édqaahe dimension of the reduced
basis in our approach. Hence a more compact descriptioregfrthblem is achieved.

2.4 Sensitivity Analysis

There are derivative-based sensitivity measures andngeribased sensitivity measures (Sobol
and Kucherenko, 2009). We consider a variance-based agprbat?, = [0, 1]? be the unit
hypercube again. Given a functign #, — R, we assume that € £2(H,,). The total variance
of f reads as

V() = f(p)zdp—( f(p)dp). (13)
H, H,

A sensitivity analysis is obsolete in the casé/ff) = 0, becausg¢ becomes a constant func-
tion. Thus we assume th&i(f) > 0. Variance-based sensitivity measures often require the
computation of partial variances. We define the partialaraseés using polynomial chaos ex-
pansions (PCEs); see Sudret (2008) or Pulch and Naraya@8)(2Zl¥e functionf exhibits the
PCE

fp) = Z fi®i(p), (14)
i=1
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including the multivariate Legendre polynomials [Eq. [1&ee Xiu (2010). The coefficients
read as

fi= (.0 = /H F(p)®:(p) dp, (15)

using the inner product of the Hilbert spat&#,,). The series [Eq. (14)] converges in the norm
of £L2(H,). We define the index sets

I; ={i e N : ®;isnon-constantip;},

forj =1,...,q. Now the partial variances read as
Vil =Y IfiF forj=1....q (16)
’iGIj

An alternative formula of the same partial variances isigiveSobol (2001).
The total effect sensitivity indices are defined by

Vi(f)
V()

using Egs. (13) and (16). It follows thatQ S;f < 1for eachj. The sensitivity indices [Eq. (17)]
quantify the impact of each parameter on the variabilityheffunctionf.

In numerical methods, we have to replace the PCE [Eq. (143pipyoximations like Eq. (9).
First, the series is truncated to a finite sum. Second, th#ideats in Eqg. (15) are approxi-
mated. Since the inner products represent multivariaggats, quadrature methods or cubature
methods can be used.

We consider the mapping of Eq. (&8): H, — R", p — a(p). The above sensitivity analysis
is applicable to each component Bfseparately. Thus the sensitivity indices aﬁﬁ(di) for
j=1...,qandi = 1, ... r, which form an array of-¢ quantities. However, the importance
of the coefficientsi; decreases for increasiriglue to the decay of the singular values in the
decomposition [Eq. (4)]. Alternatively, we observe thestvity measures

ST (Z a2> for j=1,....q, (18)
i=1

which allows for a more compact discussion. These senyiiivilices characterize the impacts
of the parameters on the (Euclidean) norm of the low-dinmrairepresentation.

Furthermore, an approximatidhof the mapping [Eq. (8)] can be used to compute the sensi-
tivity indices with a low computational effort, because tvaluations of” are cheaper than the
evaluations ofl". The approximations are obtained from either the abovenohyjal approach
or an artificial NN.

ST(f) = for j=1,...,q, (17)

3. MACHINE LEARNING

We employ a strategy of machine learning to solve the proliféraduced in Section 2.
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3.1 Artificial Neural Networks

We apply an artificial NN (Du and Swamy, 2014; Genzel and Kiaiyn2019) to represent the
input—output relation of the mapping [Eq. (8)]. A similaqapach was used for spatial solutions
of partial differential equations in Yu and Hesthaven (2019

Figure 1 illustrates the schematic of an NN with three hididsmrs. In the general case,
let L + 1 be the total number of layers aid be the number of neurons in tif¢h layer for
¢=0,1,..., L. Hence the number of hidden layerdis- 1. The valuesVy and N;, denote the
numbers of input neurons and output neurons, respectiVhl.mathematical modeling of an
NN consists of a chain of operators

U=TropoTlr_10pod_r0---opoTropoTy. (29)
The operator§}, : RV¢-1 — R™¢ are affine-linear functions:
Tg(z) = Az + by,

with matricesd, € RV¢*Ne-1 and vectors, € R™V¢. The entries ofd, andb, are called weights
and biases, respectively. The opergioepresents a nonlinear activation functon R — R;
for example, the hyperbolic tangent sigmoid function

2

“Tyez 7t (20)

p(z)

or the rectified linear unit (ReLU)

0 forx <0,
p(z) = { v

xz forxz >0.

In Eq. (19), the functiom is evaluated on a vector separately for each component Hulmber
of hidden layers is larger or equal to 3, then the model issdadl deep NN (deep learning).
Otherwise, the model represents a shallow NN.

In our application, there arginputs given by a parameter tugles #H,. Ther outputs are
the coefficients: in Eq. (5) associated with the reduced basis. The degregseddm (DOFs)
are the weights and bias€s= (A, b,)%_, in the optimization problem. An appropriate choice
is determined by a minimization of the distand¥p,) — ¥ (p;) for realizationgy; € H, of the
parameters. A norm or distance function, which quantifiesehdifferences, is called a perfor-
mance function in the context of NNs. Typical performanaetions are the mean squared error
or the mean absolute error.

Ve ekl
= v;‘é“ﬁ,;é
O 9 o e

FIG. 1: Artificial neural network with input layer (left), hiddenyars (center), and output layer (right)
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In the determination of an NN, three sets of parameter sample

Strain = {p17 ce 7pk} C qu (21)
Svalid = {QL ey Qk’} C an (22)
Stest = {Tlv e 7Tk7//} C an (23)

are arranged, which are pairwise disjoint. The trainingEet (21)] is used to identify the DOFs
in an iterative optimization method. Thus the performangefion always decreases monotone
for the training set in the iteration. The validation set [E2R)] yields additional data to prevent
an overfitting. The iteration is stopped if the performanaection increases for the validation
set. The test set [Eq. (23)] is not used in the optimizatiothae at all. This independent set
allows for an estimation of the accuracy achieved by a tchivi. In our application, we employ
the set of samples [Eq. (3)], used in the POD method, alsoeatsaming set [Eq. (21)].

Concerning the context of pMOR, a technique consists of imefphase and an online
phase. In our offline phase, the sample trajectories are gmd@and an NN is trained. The com-
putation of the trajectories involves significant compiotatvork, since the nonlinear dynamical
systems have to be solved. In our online phase, a trained NMalsiated for possibly many
parameter values, which is cheap.

3.2 Errors of the Methods

The approximation® (p) = a(p) from Eq. (19) imply the approximate trajectorigg;, p) for
each realizatiop of the parameters in Eq. (5). The total error consists oktipats:

(1) The numerical error of the time integration,
(2) The approximation error with respect to the reducedddfasm POD,

(3) The approximation error of the NN.

We impose high accuracy requirements in the numerical titegration. Consequently, the error
of part (1) becomes negligible. Although a toleraice 1 is applied in the condition [Eq. (7)],
the error of part (2) may be relatively large for some par@metlues if the associated trajectory
is significantly different from the sample trajectoriesride a decline of the error within part (2)
also requires an increase in the number of samples in the ROBe alternative approach of
Section 2.3, just part (3) changes into the error of the patyial approximation.

We estimate the error by a discrefé-norm in time. Given a parameter tuptes H,,, this
error reads as

1 m—1

B(p) = ——— Y (tiya—t:) ly(ti,p) — §(ts,p)| (24)

t —t
end 0 i—1

assumingto = t; andte,q = t,,. Our reference valueg(t;, p) will still include an error of
a numerical time integration. However, this error is nagligg due to the high accuracy of the
time integration. In the case of sample sets [Eqs. (21)}(2&) observe statistics of the errors
[Eq. (24)] like the mean value and the sample variance, fangte.
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3.3 Sensitivity Analysis Using Weights

In the field of machine learning and NNs, there is a sengjtigitalysis based on a layer-wise
relevance propagation and associated relevance scoregddn et al., 2018). However, the
relevance scores depend on the inputs of the NN; that isrelifféenput values imply different
relevance scores. In contrast, the variance-based ségsitidices illustrated in Section 2.4
represent global sensitivity measures, which are definedhis complete parameter domain.
Thus we examine the variance-based sensitivity analysisuioproblem.

If an NN represents a good approximation of the mapping [BY.reaning thal'(p) =~
U(p) for all p, then the total effect sensitivity indices also agree f@ thappingd” and .
We investigate the magnitudes of the weights in a trained dlbbtain an alternative sensitiv-
ity analysis. In the NN model [Eq. (19)], the first operafardescribes the mapping from the
input layer to the first hidden layer. It holds tHE{(z) = A1z + by with matrix A; € RNx4
and vectorh; € RM. Letw;; fori = 1,...,N;andj = 1,...,q be the weights imM;. We
define sensitivity measures by the Euclidean norm of the fsete@hts associated to thgh
input:

1
S;’V:waj for j=1,...,q. (25)

The square of the Euclidean norm is used for a comparisonetovdahiance-based sensitivity
analysis, because the partial variances [Eq. (16)] are sdiraguares. We do not consider the
weights involved in the subsequent hidden layers, becaigdeasweight cannot be assigned to
a specific input any more.

In general, the number of neurons in a hidden layer is ofte@seh larger than the num-
ber of input neurons. Thus it holds th&h > ¢. Numerical computations of test examples
show that a sensitivity coefficient [Eq. (25)] may not be dpwlen though the influence of the
associated parameter on the outputs is insignificant. libvial that the first hidden layer gets
input from a insignificant parameter, which is averaged autamceled out in the subsequent
layers.

We propose an approach to avoid this behavior. Assume thidt\ais sufficiently accurate
with L — 1 hidden Iayers of suzerl, ..., Nr_1. We extend this network t@, hidden layers
with S|zesN1, .. NL usmgNl No, N, = N,_, for ¢ = 2,..., L. The activation function
between the mput layer and the first hidden layer is choseelylinear @(z) = z for all z);
that is the identity operator. This extended NN reads as

U =Tp0poTropoly_q0---0poTsopoTyoly. (26)

The approximation quality of the extended NN is at least amdgas that in the original NN,
because choosm@ﬁl as the identity andy, = T, 4 for ¢ = 2,...,L+1implies¥ = 0.
However, the input information is not spread around a Iargfmber of neurons in the first
hidden layer. Hence this approach enforces a compact patipagf the information from the
inputs. Now the sensitivity measures [Eq. (25)] are ingzggd for the extended NN [Eq. (26)],
where it holds thatV; = No = q.

The concept of the sensitivity measures [Eq. (25)] is h&arigve will investigate the com-
puted sensitivity indicators for the examples in Sectioin4particular, a comparison between
Egs. (17) and (25) is presented.
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4. NUMERICAL RESULTS

We investigate two examples of nonlinear dynamical systéthsomputations were performed
on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU vdtA0 GHz (4 cores) and the
Microsoft Windows 10 operating system. The software paekdgATLAB (version
9.7.0.1190202/R2019b) produced the numerical results.NiKs were trained using its deep
learning toolbox.

4.1 Example: Transistor Amplifier

We consider the electric circuit of a transistor amplifieowh in Fig. 2. This circuit includes
three capacitances, six resistances, and a bipolar tramsisHairer and Wanner (1996), a math-
ematical model is given, which consists of five DAESs for fivé&known node voltages;, . . . , us

(n = 5). The mass matrix and the right-hand side of Eq. (1) read as

-C, O 0 0 0
ci, —-Ci O 0 0
M = 0 o -C, O 0
0 0 0 —-C; (3
0 0 0 C; —C3
ug
Ry Uin
1 1 "R
— 4y — 1— — 0
Uz(Rl + Rz) + (1= vy)w(uz — ua) | tiop
U
f= Fz—w(uz—w) + §2
Uu. Uo
R—i—f—yw(uz—ug) —R—Z
us 0
Rs
Uoo} (D
Uout
l uin Bl

FIG. 2: Electric circuit of a transistor amplifier
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The current-voltage relation of the bipolar transistorésatibed by the nonlinear function

wlu) = « [exp (%) - 1] : 27)

with constantsx = 107%, B = 0.026, andy = 0.99. We use nominal parameter values as given
in Hairer and Wanner (1996): capacitancgs = 1075, C, = 2- 107, andC3; = 3- 107,

resitanced?y = 1000,R; = - -- = Rs = 9000; and operating voltage,, = 6. The differential
index of the system is one. We supply a harmonic oscillation
Uin () = Asin <2%t) , (28)

with periodT = 0.01 and amplituded = 0.4 as input voltage. The output voltagg.; = us
represents the Qol.

We consider parameter variations in capacitances, rasesaand operating voltage. Vari-
ability of the parameters within the transistor model is@a@mined. Thus the dimension of the
parameter domain ig = 10. Parameter variations of this example were also invatstityfor
another purpose in Pulch (2019). A variation of 20% arourmdahove nominal value is set for
each parameter, which forms the multidimensional cubbid R*°.

Concerning the numerical solution of IVPs, we use the fumctide15s in MATLAB,
which is a multistep method based on the numerical difféaat formula (NDF; Shampine
and Reichelt, 1997). We specify the same initial conditismatarting value for all parameters
and the method determines consistent initial values [E§d&pending on the parameters. The
time integrations are performed in the interftgl t..q] = [0, 0.03] with local error control using
relative tolerance, = 10-% and absolute toleraneg = 10~8.

We produce the sets [Egs. (21)—(23)] with= k' = k" = 1000 samples using pseudo
random numbers if1o. The Qol is obtained im = 500 equidistant points in the time interval
[to, tena] including tg andt.,q, Where the accuracy of the output agrees to the predeteiimine
tolerances. Figure 3 illustrates both the trajectory fa thean values of the parameters and
several trajectories for different parameter samples.

In the POD method, we apply the training set [Eq. (21)] onlye Tomputed singular values
are shown in Fig. 4. We observe a fast decay of the singulaesall he reduced dimensien= 9
is the smallest number satisfying the accuracy requirefient(7)] for the threshold = 0.999.

0 0.01 0.02 0.03
time
(a)
FIG. 3: Trajectory of Qol for mean value of parameters (a) and 2@¢tajies of Qol for different parameter
samples (b) produced by transistor amplifier circuit
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singular values
=
[
S o o
N o N
S

[
<
I

=
S,
(2]

100 200 300 400 500

order
FIG. 4: Singular values from POD for matrix including the samplegt# Qol in transistor amplifier
example

o

We train two NNs: a network with two hidden layers includingrdeurons in each layer and
a network with three hidden layers including 20 neurons. dti@ation function used is the
hyperbolic tangent relation [Eq. (20)]. The performanagction is the mean squared error. The
Levenberg-Marquardt method (Du and Swamy, 2014, p. 13@utge the nonlinear optimiza-
tion. Figure 5 depicts the performance of the training irhbléiNs. The training is terminated
after a maximum number of 1000 iterations in each case, Isedhe stopping criterion based on
the validation set is not satisfied yet. Imposing a maxim@ration number represents a kind of
regularization in the context of minimization. We observattthe achieved mean squared errors
are similar in both NNs. Figure 6 illustrates some sample$ife trajectories of the Qol, where
the first NN yields the approximations.

Furthermore, we employ the polynomial approximation froett®n 2.3 for comparison.
Let sy be the number of basis polynomials up to total degtelepending on 10 variables. We
discuss the cases= 2, 3,4. It follows thats, = 66, s3 = 286, ands; = 1001 due to Eq. (11).
We use only the training samples [Eq. (21)] in the least sepiproblem. Hence the validation
set becomes just an additional test set. In the cade-ofl, the numbes, of DOFs is larger than
the numbert = 1000 of training samples. Thus we extend the training seublygne sample
once. It follows that the polynomial regression changes apolynomial interpolation in the
case ofd = 4.

10* = 10* ==
3 —Train 3 —Train
= 10 —
e 2 —Validation 2 10 —Validation
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= 10 = 1
£ 100 g 10
g 10 g 10°
=10t o g
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g 10 g5
g 103 Z 10
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10° 10
0 500 1000 0 500 1000
iteration steps iteration steps
(@) (b)

FIG. 5: Performance in training of NNs with two hidden layers (a) &mee hidden layers (b) in transistor
amplifier example
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FIG. 6: Trajectories of Qol for four different parameter sampleduson of IVPs (dotted line) and ap-
proximation from NN (solid line) in transistor amplifier exple (time interval0, 0.03] is standardized to
(0, 1))

Table 1 demonstrates the statistics of the errors [Eq. (229gd on the discreté'-norms.
The accuracy of the two NNs coincides. The errors of the potyial regression with degree 2
are worse. Yet the accuracy of the polynomial approximaitigoroves for increasing total de-
gree in the case of the training set. The polynomial fit of degt produces the same errors as
the NNs for the training set, whereas the error of the polyimbapproximation is much larger
for the validation set as well as the test set. This typicanamenon is an oversampling with
respect to the training samples. In the training routingb®MNNSs, the consideration of the val-
idation set would stop the training if an overfitting is degslc However, this stopping criterion
does not occur in the fitting of our two NNs, because the tngirierminates after the maxi-
mum number of iteration steps. Thus an important obsenvadithat the training of NNs omits
overfitting without termination in this example. Moreovigre polynomial interpolationd(= 4)
features no approximation error in the training set. Hehégrnean value is dominated by the
approximation error of the reduced basis from the POD agmpr,oahich is the error part (2)

TABLE 1: Statistics of errors in approximations by NNs and polyndsiiatransistor amplifier
example

NN NN Polynomial  Polynomial Polynomial
2layers 3layers  degree?2 degree 3 degree4

Mean  Training set 0.0223  0.0223 0.0443 0.0302 0.0223

Validation set  0.0223  0.0224 0.0465 0.0364 0.6611

Test set 0.0223  0.0224 0.0462 0.0367 0.6719
Standart Training set 0.0112  0.0112 0.0217 0.0140 0.0112
deviation Validationset 0.0099  0.0099 0.0195 0.0165 520

Test set 0.0109 0.0108 0.0225 0.0194 0.5021
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in Section 3.2. We conclude that the approximation errotb@MNNs are also negligible, since
their mean errors of all sets nearly coincide with the meaor &f the polynomial approach for
d = 4in the training set.

Since the validation set is not used in the polynomial regjoes we perform an additional
numerical experiment. The polynomials are fitted to the détdne union of training set and
validation set (2000 samples). Table 2 shows the statistiegors. The results are similar to the
previous polynomial approach. The effect of overfittingdduced in the case of degree 4. How-
ever, the overfitting is still present and thus the errorsanese for the test set in comparison to
the NN models. A polynomial approximation of degree 5 woualdude 3003 basis polynomials,
which is a larger number than the total sample size.

We comment on the computing times. The polynomial regressith data size 1000/1001
required in seconds: 0.05 for degree 2, 0.21 for degree 30 &tdfor degree 4. Thus the poly-
nomial approximation is cheap. In contrast, the traininghef NN with two layers ran about
41 minutes. There is some potential to reduce the computark i the training. On the one
hand, the number of iterations can be reduced. On the otimel, tfzere are much cheaper iter-
ation techniques in comparison to the Levenberg-Marquaethod. However, the alternative
techniques yield worse accuracy in this example.

We compute the total effect sensitivity indices [Eq. (18)]the varying physical parameters.
The approximationg are evaluated on the grid of the Stroud-5 cubature (Strd@idl )] which
is exact for polynomials up to total degree 5. These evalnatyield approximate sensitivities
[Eg. (18)] using a non-intrusive method as given in Pulchlef2015). Figure 7(a) shows the

TABLE 2: Statistics of errors in approximations by polynomials wjtined set (union of
training set and validation set) for fitting in transistor@ifier example

Polynomial Polynomial Polynomial
degree2 degree 3 degree 4
Mean Joined set 0.0443 0.0306 0.0249
Test set 0.0450 0.0334 0.0350
Standart  Joined set 0.0207 0.0142 0.0105
deviation Test set 0.0223 0.0180 0.0208
10° 10t
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FIG. 7: Sensitivities for different physical parameters (caawes 1-3, resistances 4-9, operating volt-
age 10) in transistor amplifier example: (a) total effects#rity indices [Eq. (18)] and (b) sensitivity
coefficients [Eq. (25)] obtained by NN in semilogarithmiakec
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sensitivity indices [Eqg. (18)]. We emphasize that theseieslare computed directly from the
mapping [Eqg. (8)] without an approximation by NNs or polyriahnegression. Alternatively, we
consider the trained NN with two hidden layers to obtain thesgtivity coefficients [Eq. (25)]
depicted in Fig. 7(b). We recognize a good agreement foralagive positions of the sensitivity
indicators in the two concepts. In particular, the rankihthe parameters mostly coincides. The
operating voltage exhibits the largest influence. Furtlieenwe train an extended NN [Eq. (26)]
with three hidden layers of size§; = 10 andN, = N3 = 30. Its sensitivity coefficients
[Eg. (25)] are shown in Fig. 8. The results are similar to trevpus NN.

Finally, we reproduce the total effect sensitivity inditesed on the approximate mappings.
In Eqg. (18), the exact coefficients are substituted by the approximatiails On the one hand,
the trained NN with two layers is used, where the NN model elwated at the nodes of the
Stroud-5 quadrature. On the other hand, the polynomiakssjwn of degree 2, which fits to
1000 samples of the training set, yields the approximatitm [9)], and the coefficients are
directly inserted in Eq. (16) to obtain approximations @ gartial variances. Figure 9 illustrates
the resulting sensitivity indices. We observe that the @utes of both methods agree roughly.
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FIG. 8: Sensitivities coefficients [Eq. (25)] for different phyaiparameters (capacitances 1-3, resistances
4-9, operating voltage 10) using an extended NN in trans#stplifier example
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FIG. 9: Total effect sensitivity indices [Eq. (18)] for differenhpsical parameters (capacitances 1-3, re-
sistances 4-9, operating voltage 10) computed using NNr{d)pmlynomial approximation (b) both in
semilogarithmic scale for transistor amplifier
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The NN replicates the results in Fig. 7(a). The polynomigtession produces slightly different
values for small sensitivity values. This behavior reflabtst the approximation of the NN is
more accurate.

4.2 Example: Schmitt Trigger

The electric circuit of a Schmitt trigger is illustrated ingF10. There are five resistances, a
capacitance, and two bipolar transistors. This circus astan analog-digital converter. A math-
ematical model is presented in Kampowsky et al. (1992) tbasists of five DAEs for five
unknown node voltages. The mass matrix and the right-haledaithe system [Eq. (1)] are

u

g~ (L= Y)wle —us) i
U2 U2 — Ug R
0 0 0 O — = yw(us — ug) 1
0 C 0 -C 0 R Hs Uop
M=10 0 0 0 0 = *w(U17U3)+—3*w(U47U3) + ](%)2
O -¢c 0o C O . 0

4— U2
0 0 0 009 B e SR (S O I

u
—Fi — yw(ugq — ugz) Rs

The current-volatage relation of the bipolar transistergiven by Eq. (27) again using the same
physical parameters. The differential index of the systeomie. We employ a harmonic oscilla-
tion [EqQ. (28)] with periodl” and amplituded = 5 as input voltage:;,,. The Qol is the output
voltageuy,s = us.

We arrange a parameter variation in the capacitance, thesfigtances, the operating volt-
age, and the period of the input oscillation. The mean vabfi¢se parameters read as capaci-
tanceC = 4-10~%; resistance®; = 200,R, = 1600,R3 = 100, R, = 3200, andRs = 1600;
operating voltage:,, = 0.2; and periodl" = 0.002. Ranges of 20% around these mean values
are used for each parameter, except for the period varysidpfh. Thus the parameter domain
is a cuboidl C R&.

In Egs. (21)—(23), we incorporate= k' = k” = 500 samples using a pseudo random num-
ber generator. The number of equidistant time points is 1000 now. Again the NDF schemes
yield the numerical solutions of the IVPs within the timeeintal [to, tena] = [0, 0.00§. Starting

FIG. 10: Electric circuit of a Schmitt trigger
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values for the initial values are always zero, whereas aistams initial value [Eq. (2)] is de-
termined for each parameter tuple by the method. The locat eontrol uses relative tolerance
e, = 1072 and absolute tolerancg, = 10~°. Figure 11(a) depicts the trajectory associated
with the mean value of the parameters. Although the solwfdhe DAE system is continuous,
the output voltage exhibits fast transitions, which beHikesjumps. The sinusoidal input signal
[Eq. (28)] is transformed into a digital output signal. Figu 1(b) illustrates the trajectories for
several parameter samples. The variation of the periotsshi# locations of the jumps.

We perform the POD approach for the training samples. Fig2relisplays the singular
values of the decomposition [Eq. (4)]. The decay of the deagealues is slower in comparison
to the previous example shown in Fig. 4, since the trajeesorary to a higher extent. We set the
reduced dimension to= 11, which is the smallest number satisfying Eq. (7) with tireshold
5 =10.99.

We train two NNs of the same sizes as in the example of SectlbnrMconjugate-gradient
method (Du and Swamy, 2014, p. 136) solves the nonlineamigation problem iteratively. On
the one hand, a single iteration step is much cheaper in aisopao the Levenberg-Marquardt
method. On the other hand, more iteration steps are requiriedal. Yet the total computation
work is significantly lower now. Figure 13 shows the trainimgpcedure of the two NNs. The
iteration is terminated at the 5189th step and the 10,258} sespectively, since the perfor-
mance function does not decrease any more on the validatdan both cases. In the training,
the computing times were 22.2 seconds and 43.8 secondsctivsty.
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FIG. 11: Trajectory of Qol for mean value of parameters (a) and twératgctories of Qol for different
parameter samples (b) produced by Schmitt trigger circuit
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FIG. 12: Singular values from POD for matrix including the samplethefQol in Schmitt trigger example
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FIG. 13: Performance in training of NNs with two hidden layers (a) &mée hidden layers (b) in Schmitt
trigger example

We use the first NN to approximate the trajectories of the ®@mgure 14 demonstrates the
approximations together with the original trajectorieshef time integration. We observe a good
agreement of the amplitudes and a good localization of thgfu However, incorrect oscilla-
tions occur close to the jumps, which are caused by the relcheess in the POD approximation.

We check the NNs against the polynomial regression fromi@e2t3. The approximations
of total degreel = 2, 3,4 are computed, where the number of basis polynomiads is 45,
s3 = 165, ands, = 495, respectively. Hence we solve linear least squaredgmsbusing the
training set [EqQ. (21)]. The case df= 4 nearly coincides with a polynomial interpolation of
the training set due te, ~ k. Table 3 contains the statistics of the discréteerrors [Eq. (24)].
We observe the same behavior as in the example of SectioAdain the NNs are better than a
straightforward polynomial approximation.
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FIG. 14: Trajectories of Qol for four different parameter sampleguson of IVPs (dotted line) and ap-
proximation from NN (solid line) in Schmitt trigger examp(éme interval[0, 0.00€ is standardized to
[0,1])
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TABLE 3: Statistics of errors in approximations by NNs and polyndsiia Schmitt trigger
example

NN NN Polynomial Polynomial Polynomial
2layers 3layers  degree?2 degree 3 degree4

Mean  Training set 0.0089  0.0089 0.0246 0.0180 0.0089

Validation set  0.0092  0.0090 0.0269 0.0254 0.1896

Test set 0.0093  0.0092 0.0276 0.0263 0.1792
Standart Training set 0.0029  0.0030 0.0087 0.0060 0.0030
deviation Validationset  0.0034  0.0033 0.0093 0.0105 (B146

Test set 0.0034  0.0035 0.0095 0.0107 0.1190

Again, we also fit the polynomials to the data of the union afrting set and validation set
(1000 samples). Table 4 depicts the statistical errors. verfitting occurs again and thus the
approximation of the NNs is more accurate. A polynomial agpnation of degree 5 would
include 1287 basis polynomials, where the number of degreesedom is larger than the size
of the joined sample set.

Finally, we compute the total effect sensitivity indicegj[E18)] of the exact mapping as
well as the sensitivity coefficients [Eq. (25)] of the first MNown in Fig. 15. The variance-based
concept identifies the operating voltage as most importeiméreas the period dominates in the
weight-based approach. Although the varying period chsutige positions of the jumps, the
(Euclidean) norm of the basis coefficients in Eq. (18) remaiearly the same. The total effect
sensitivity indices of the first two parameters are tiny. Arendetailed investigation confirms that
these two parameters hardly influence the Qol, while theyg lsawme impact on other variables
of the solution. However, the sensitivity coefficients [E2p)] from the NN are not small for the
two parameters. Thus we construct an extended NN [Eq. (2@)]twee hidden layers of sizes
N; = 8 andN, = N3 = 30. Figure 16 displays the computed sensitivity coefficigit). (25)].
Now the first two parameters are correctly detected as iifgignt variables with respect to the
observed Qol.

5. CONCLUSIONS

We approximated trajectories of a Qol, which is the outpwt nbnlinear dynamical system. Ar-
tificial NNs were fitted to data obtained by a POD. The numédomputations of test examples
demonstrate that neural networks with relatively low nursted hidden layers are already suffi-
ciently accurate. Moreover, the NNs are superior in congparto a multivariate polynomial ap-
proximation by regression. In addition, a variance-basegisivity analysis of the input—output

TABLE 4: Statistics of errors in approximations by polynomials wjtined set (union of
training set and validation set) for fitting in Schmitt trezgexample

Polynomial Polynomial Polynomial
degree2 degree 3 degree 4
Mean Joined set 0.0250 0.0192 0.0140
Test set 0.0268 0.0228 0.0258
Standart  Joined set 0.0087 0.0067 0.0046
deviation Test set 0.0091 0.0084 0.0124
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FIG. 15: Sensitivities for different physical parameters (capauit 1, resistances 2-6, operating voltage 7,
period 8) in Schmitt trigger example: (a) total effect séwisy indices [Eq. (18)] and (b) sensitivity coeffi-
cients [Eqg. (25)] obtained by NN in semilogarithmic scale
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FIG. 16: Sensitivities coefficients [Eq. (25)] for different phyaigparameters (capacitance 1, resistances
2-6, operating voltage 7, period 8) using an extended NN im$it trigger example

mapping was considered. We introduced an alternative @heased on the weights in a trained
NN. The variance-based technique already becomes cheapavhsN is applied to approxi-
mate the mapping. Alternatively, the sensitivity conceging the weights does not significantly
save computational effort but it provides some insight thiinput—output relation of an NN.
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