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This paper presents a data-driven method of estimating stochastic models that describe spatial uncertainties. Relating
these uncertainties to the spatial statistics literature, we describe a general framework that can handle heterogeneous
random processes by providing a parameterization for the nonstationary covariance function in terms of a transfor-
mation function and then estimating the unknown hyperparameters from data using Bayesian inference. The trans-
formation function is specified as a displacement that transforms the coordinate space to a deformed configuration in
which the covariance between points can be represented by a stationary model. This approach is then used to model spa-
tial uncertainties in microelectromechanical actuators, where the ground plate is assumed to have a spatially varying
profile. We estimate the stochastic model corresponding to the random surface using synthetic profilometric data that
simulate multiple experimental measurements of ground plate surface roughness. We then demonstrate the effect of the
uncertainty on the displacement of the actuator as well as on other parameters, such as the pull-in voltage. We show
that the nonstationarity is essential when performing uncertainty quantification in electrostatic microactuators.
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1. INTRODUCTION

Electrostatic actuation is the primary mechanism of generating motion in a large proportion of micromechanical trans-
ducers that are developed in the industry today. It involves generating an electric field between flexible electrodes that
leads to the development of electrostatic charge on their surfaces. In the presence of electric field, this surface charge
experiences a Coulombic force, which is responsible for deformation in the electrodes [1–3]. The relative magnitude
of this electrostatic force scales favorably with decreasing length scales [4], making it an ideal mode of transduction
in mechanical systems that are built using microfabrication technology. Although it is based on a simple and well-
understood phenomenon, the design of electrostatic microactuators is a complex and challenging problem due to the
numerous sources of uncertainty that must be accounted for. A major source of uncertainty is the manufacturing pro-
cess itself, because the nature of microfabrication is such that it is not possible to enforce tight tolerances in physical
dimensions as well as material properties. These uncertainties are frequently modeled by identifying key parameters in
the device model and treating them as jointly varying random variables [5–7]. However, a more comprehensive model
could include spatial variations as well in the stochastic model in order to better describe the uncertainty. In this paper,
we develop a method of describing spatial nonuniformities in microelectromechanical systems (MEMS). We present
a general framework for estimating stochastic models for these spatially varying parameters from profilometric data
and then perform numerical simulations in order to determine the variation in output quantities of interest.
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Spatial nonuniformities are usually represented by random processes, which are mathematical models that describe
the variation of a collection of random variables indexed by a spatial coordinate. In the context of MEMS, random
processes have been used to model surface roughness that affects the measurement of electrical properties [5, 8] as well
as for modeling inhomogeneous material properties, such as elastic modulus, which causes variations in thermoelastic
damping of microresonators [9]. In most of these cases, the random process is assumed to have a known form and the
focus is restricted to examining the influence that it plays on the physics of the device under question. However, in a
realistic scenario the nature of uncertainty is usually not known and so we adopt a data-driven approach, where we
estimate the stochastic process using measured data.

A typical data-driven approach involves estimating a model for the stochastic process using experimental mea-
surements. For the case of spatially varying processes, these measurements must be made at different spatial locations
in order to get an accurate idea of the spatial variation. MEMS devices are usually batch-fabricated on semiconductor
or glass wafers, so that hundreds of devices can be manufactured simultaneously. Spatial variations in each processing
step across the wafer can cause variations from one device to the next as well as within a single device. In this paper,
we consider variations in geometrical dimensions of the device, because these are the quantities that are affected the
most by spatial nonuniformities. This can be illustrated by means of the example in Fig. 1, which shows a portion
of a MEMS device where a cantilever beam is suspended over a ground plate whose surface has some spatial varia-
tion. This kind of a structure is common in electrostatic actuators where a potential difference is applied between the
cantilever beam and the ground plate causing an attractive force between them. This attractive electrostatic force is a
function of the gap between the two electrodes and sensitive to spatial variations in these surfaces. We can model the
spatial variation in the gap by repeatedly measuring the gap over a given set of devices. Data corresponding to one
instance of this random variation are obtained by sampling the surface at a set of points using a profilometer, as shown
in Fig. 1. This data set represents one replicate of sampled data corresponding to some unknown random process. A
similar procedure can be followed for all the devices that are available, to get a set of replicates that characterize the
spatial variation in the parameter of interest.

Mathematically, random processes may be characterized to the second order by the mean and covariance func-
tions [10]. In this case, the process of estimation involves choosing the unknown parameters in the mean and co-
variance functions, also known as hyperparameters, using data measured at different points in domain of the random
process [11]. The techniques employed in the estimation of random processes fall within the field of spatial statistics
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FIG. 1: Process of sampling surface roughness in a MEMS device.
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and numerous methods have been developed for the representation of random spatially varying datasets [10, 12, 13].
While it is relatively simple to approximate the mean function by computing the average over multiple data sets, the
choice of the covariance function is a more challenging task. Besag [14] developed conditional probability models
that described the relation between a set of random variables associated with uniform as well as irregular lattice points
in the domain. Bjørnstad and Falck [15] used continuous spline correlograms to represent the covariance function in
a nonparametric manner such that it could be estimated from a given data set; whereas Zhu and Liu [16] proposed
the use of a penalized likelihood estimator to learn the covariance matrix of a discrete Gauss Markov random field
(GMRF) that approximates the actual random process. Other approaches include the parameter estimation of homo-
geneous GMRFs using a maximum likelihood approach [17] as well as the Bayesian estimation of multiscale random
field models using the Markov Chain Monte Carlo (MCMC) approach [18]. In this paper, we assume that the under-
lying random process can be represented by a Gaussian process, which means that the joint distribution of the values
at any set of points can be described by a multivariate normal distribution. Moreover, we model the covariance func-
tion using the Mat́ern family of covariance functions [10], because this family represents a broad class of covariance
functions and is a reasonable model for a variety of physical random processes. The mean function is parametrized as
a polynomial with unknown coefficients. We use the MCMC approach to learn the optimal values of the parameters
that match the uncertainty in the given data.

An important aspect of modeling random processes is the assumption of stationarity, which implies that the joint
probability distribution of a set of points in the domain of the random process remains the same even when the points
are shifted in space. Although this assumption greatly simplifies the parametrization and estimation of random pro-
cesses, it may not be valid in the general sense, especially when dealing with spatial uncertainties, such as random
topography [19]. Sampson and Guttorp [20] proposed a method of estimating nonstationary spatial covariance func-
tions through a transformation of coordinates such that the random process has a stationary covariance function in
the new coordinate system. They used thin-plate splines to parametrize the transformation function and obtain the
parameters by minimizing the error in the variogram of the estimated stochastic process. The question of postive defi-
niteness of the estimated covariance function and identifiability of the nonstationary structure was formally considered
in [21, 22]. This approach has also been incorporated into a Bayesian estimation framework [23]. In this work, we
incorporate nonstationarity by considering a physically motivated model where we employ an additive displacement
function to implement the coordinate transformation in order to model the resulting random process as stationary.
We show how the physical analogy simplifies the process of imposing conditions on the displacement function and
establishes a direct correspondence between these conditions and the ones derived in [21]. The entire model has been
implemented in a Bayesian framework for ease of formulation and estimation.

The primary contribution in this paper is the application of data-driven stochastic models to micromechanical sys-
tems. We use the existing Gaussian process and Bayesian estimation framework to develop a procedure for estimating
these models from profilometric measurements. Because nonstationarity is an inherent feature of random topography,
we include this in our modeling approach to ensure that our framework can handle real data sets. We demonstrate
the accuracy of our modeling approach by examining the effect of spatial uncertainties in electrostatic microactua-
tors. Although we use synthetic data in all our examples, our goal is to put in place a generic framework that can be
extended to handle actual experimentally measured data. The outline of the paper is as follows: Section 2 introduces
the Bayesian estimation framework and discusses some of the relevant notation using the example of a stationary
random process. The key concepts regarding the formulation of a nonstationary covariance function are developed in
Section 3. This procedure is then used to estimate spatial uncertainties in a MEMS actuator and to perform UQ in the
same device. Section 4 looks at the propagation of uncertainty through a multi-physics numerical model and shows
the importance of including nonstationarity when simulating electromechanical devices. The concluding remarks are
presented in Section 5.

2. MODELING SPATIALLY VARYING RANDOM FIELDS

As discussed in Section 1, we model spatially varying random fields using Gaussian processes. A Gaussian process,
f , may be represented by a mean function,M(X), which represents the expected value of the process at any point in
a given domain, and a covariance function,C(X,X ′), which describes the covariance between the values at any two
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points,X andX ′, in the same domain [12]. If we consider a set of points in the domain,X = {Xj ; j = 1, 2, . . . , n},
then the set of associated random variables,d, corresponding to the values of the Gaussian process at these points,
follows a multivariate Gaussian distribution as follows:

d ∼ 1

(2π)n/2 |Σ|1/2
exp

[
−1

2
(X − µ)T Σ−1(X − µ)

]
, (1)

whereµ is the vector of mean values such thatµj = M(Xj), while Σ is the covariance matrix evaluated at the points
in X and is computed asΣij = C(Xi, Xj), for i, j = 1, 2, . . . , n [10]. This is illustrated in Fig. 1, where we see
one set of data points sampled at the points inX. These values correspond to one realization of the vector of random
variables,d.

We first consider a simple 1D random process with a stationary covariance function to introduce some notation and
to develop some concepts related to the estimation of random processes. To perform estimation, we first parametrize
the random field as a Gaussian process with a polynomial mean function and a covariance function that belongs to the
Matérn family of covariances as follows:

f |M,C ∼ GP (M, C) ,

M : X, a, b, c 7→ aX2 + bX + c,

C : X, X ′, ν, φ, θ 7→ Matérn(X, X ′, ν,φ, θ) ,

d|M,C ∼ N (M(X), C(X, X)) , (2)

whereN (µ,Σ) represents the multivariate Gaussian distribution described in Eq. (1). The Matérn covariance function
is given by [10]:

Matérn(X, X ′, ν, φ, θ) = φ2 1
Γ(ν)2ν−1

(√
2ν
‖X −X ′‖

θ

)ν

Kν

(√
2ν
‖X −X ′‖

θ

)
, (3)

whereΓ is the Gamma function, whileKν is the modified Bessel function of the second kind. The covariance function
is parametrized byν,φ, andθ, whereν represents the differentiability of the resulting random process, whileφ2 is
the amplitude of the covariance function and is proportional to the pointwise variance of the random process. The
term,θ, is a scaling parameter that varies with the scale of the domain. We choose the Matérn covariance function
because it represents a diverse class of covariances that belong to the exponential family, which is commonly used as
a model to describe physical stochastic processes. Whenν becomes 0, the covariance function reduces to the standard
exponential covariance function, whereas the covariance function approaches a Gaussian form asν goes to infinity.
Thus, the entire random process is parametrized in terms of the unknown polynomial coefficients,a, b, andc, as well
as the parameters of the Matérn covariance function,ν, φ, andθ. It is important to note that this parametrization is
used in this paper only for illustration and a more general form may be used in a practical situation. For instance, the
mean function could be represented in terms of a sinusoidal basis, while a different kernel function could be used as
the covariance function. The choice of this parametrization is left to the user depending on the properties of the data
that is available.

The process of estimating the random process involves choosing an appropriate set of values for the unknown
parameters in Eq. (2) for a given set of values ford, so that the resulting random process closely matches the actual,
unknown process from which the data set is derived. Instead of obtaining point estimates for these parameters, we
use Bayesian inference where the goal is to estimate the associated probability density function (PDF) for each of
them. We assign a prior PDF for each parameter based on any known information that we may have and then use
Bayes theorem to derive the posterior PDF based on the prior PDF and the likelihood of observing the given data set.
Finally, we draw samples from the posterior PDF using the Metropolis-Hastings algorithm to obtain realizations of
the stochastic process that are consistent with the given data [24]. This process is known as the Markov Chain Monte
Carlo method, and in this paper, we implement this algorithm using the popular Python software library, PyMC [25].
We illustrate the steps involved by means of an example that is described below.
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In this paper, we do not use actual experimental data for estimating the stochastic processes. Instead we demon-
strate a proof of concept by generating data that vary according to a known distribution. This allows us to check the
veracity of estimated models by comparing to the actual one. Consider a 1D random process that is described by
a mean function and a covariance function. We generate realizations of this random process and sample these real-
izations at uniformly spaced points. After sampling the data, we set aside the actual random process and proceed to
estimate the stochastic process using only the data and some prior assumptions that we make regarding the form of the
random process. In other words, the sampled data are used as the input for estimation, where we try to reconstruct the
parameters of the actual stochastic process from which the data originated. To generate the data, we use a stochastic
process that is defined in the[0, 1] domain with a linear mean function given byM(X) = 0.1X and a stationary,
isotropic Mat́ern covariance function given by Eq. (3) with the parameters:φ = 0.02, ν = 2, andθ = 0.2. Figure 2
shows some realizations that have been sampled from this stochastic process and a contour plot of the corresponding
covariance function.

We sample the realizations generated from the actual stochastic process at a set of 41 uniformly spaced pointsX to
create a set of values ford, which simulates profilometric data that are aggregated over many different realizations. We
ensure that the number of samples is large enough so that the statistical properties of the data match the actual mean and
covariance function quite closely, i.e.,E[dj ] ∼ M(Xj) andV ar[di, dj ] ∼ C(Xi, Xj)∀i, j = 1, 2, . . . , n. Because
the standard Matérn covariance function is a symmetric stationary covariance function, the covariance between the
values of the random process at any two points depends only on the distance between the points and is independent of
the locations of the points themselves. This is seen from Eq. (3), where the covariance between the values atX and
X ′ depends only on‖X −X ′‖. This can also be independently verified by computing the correlation between every
pair of values ind. Figure 3 plots the normalized covariance between every pair of values as a function of the distance
between their physical locations. We see that the points coincide quite well with the solid line, which corresponds to
the actual covariance function, showing that the process is indeed stationary.

Using the data sampled over 250 realizations, we perform Bayesian estimation to obtain estimates for the un-
known parameters in Eq. (2). The first step involves choosing the prior PDFs for these parameters. In the absence
of any definite prior information, we choose vague priors with arbitrary values for most of the parameters. Because
some of the quantities likeν, φ, andθ must be positive for the Matérn covariance function to be well-defined, we
choose appropriate prior PDFs that are nonzero only for positive values. We note that the parameterν determines the
differentiability of the sample paths of the stochastic process and must have a value of>1 in order for the paths to
be differentiable. In the following sections, we shall examine in greater detail the requirement that the realizations

(a) Realizations of the actual stochastic process (b) Covariance function

FIG. 2: Actual stochastic process described in Section 2 illustrated by (a) sampled realizations and (b) contour plot
of the covariance between points in the domain.

Volume 5, Number 2, 2015



104 Alwan & Aluru

FIG. 3: Normalized covariance between sampling points as a function of the distance between them. The solid line
represents the actual Matérn covariance function.

be differentiable. For the moment, we shall assume this condition and incorporate it into the prior PDFs as well. If
some definite information is available regarding the distribution corresponding to the unknown parameters, it can be
incorporated into the prior PDFs in a suitable form (e.g., we have chosen an exponential distribution forφ andθ since
we know that these parameters must always be positive). Similarly, we have chosen a suitable range forν so that the
resulting random process is differentiable. Apart from these restrictions, we choose the prior PDFs to be quite general,
so that the estimation process is not skewed as a result of a choice of priors. In our numerical tests, we have repeatedly
performed the estimation using different randomly chosen values for the prior PDF parameters and have not observed
any significant variation in the results. The final set of prior PDFs are as follows:

a, b, c ∼ Uniform[−1, 1],

ν ∼ Uniform[1, 3],

φ ∼ Exponential(10),

θ ∼ Exponential(1). (4)

Finally, we use the MCMC method to derive posterior PDFs for all the unknown parameters and sample from their
joint density to obtain estimates for each of them. This involves using the Metropolis-Hastings algorithm to generate
a sequence of samples that are drawn from the posterior PDF. We applied a process of “burn-in,” where we discarded
the first 30,000 iterations and thinned the remaining by a factor of 10 to finally obtain a set of 1000 samples for each
parameter. Burn-in is used to minimize the dependence of the samples on the initial values, while thinning ensures that
the samples are not correlated with one another so that the resulting set may be assumed to be independently drawn.

We plot histograms of the unknown parameters and compare their statistical measures to the corresponding ex-
pected values. Figure 4(a) contains histogram plots ofa, b, andc in the mean function, whereas Fig. 4(b) shows similar
statistics for the parameters,ν, φ andθ in the covariance function. We also compare the mean values for the estimated
parameters with the actual values used in the original stochastic process in Table 1 and see that the estimated values
are accurate. Table 1 also shows the sampling error in the estimates, which is computed as the standard deviation over
the averages computed for 100 random subsets of the values. In most of the cases, the magnitude of sampling error is
quite small compared to the mean, which shows that the estimates are trustworthy.
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(a) Histograms ofa, b, andc, respectively

(b) Histograms ofν, φ, andθ, respectively

FIG. 4: Histograms of the estimated parameters in the (a) mean function and (b) covariance function for the example
described in Section 2.

TABLE 1: Estimated parameter means compared with
actual values for test case in Section 2

Parameter Actual value Estimated mean value
a 0 0.0006± 0.0005
b 0.1 0.1009± 0.0005
c 0 (5.3± 0.9)×10−4

ν 2 2.05± 0.002
φ 0.02 0.02010± 0.00002
θ 0.2 0.1971± 0.0006
B n.a. 1.994

Although comparing the mean values of the estimated parameters under their respective posterior distributions
is a reasonable way of verifying that the estimation procedure is correct, it is not a comprehensive test because it
only compares the average values. A more rigorous method of verifying the estimated model involves computing the
Bayes factor. It has been extensively used in model selection problems where the goal is to choose an appropriate
model between two or more possible options [26]. The Bayes factor,B, is defined as the ratio of the likelihood of the
data conditioned on the estimated model to the likelihood conditioned on the actual model as follows:

B =
Pr (d|Pestimated)
Pr (d|Pactual)

=
Pr (Pestimated|d)
Pr (Pactual|d)︸ ︷︷ ︸

Posterior odds

/
Pr (Pestimated)
Pr (Pactual)︸ ︷︷ ︸

Prior odds

, (5)

Volume 5, Number 2, 2015



106 Alwan & Aluru

wherePactual andPestimatedrepresent the actual and estimated models, respectively. Unlike point estimates of model
parameters, the Bayes factor uses the likelihoods marginalized over the set of model parameters. Equation (5) also
shows that the Bayes factor may be expressed as a ratio of the posterior odds between the two models to the prior odds
between them. This form removes the need to integrate over all the model parameters in order to calculate the marginal
likelihoods and can be easily computed during the MCMC process. The Bayes factor for the estimated model is given
in Table 1. On the basis of the scale given by Jeffreys [27], if the Bayes factor is<3, then the difference between the
estimated and the actual models is barely worth mentioning.

The advantage of using a Gaussian process-based framework is that although the given data is a discrete sample
that is obtained over a finite set of locations, by estimating the mean and covariance functions, we get a continuous
representation for the estimated random process. Figure 5 shows some realizations of the estimated stochastic process
for this example. This allows us to draw realizations of the estimated process, which can then be used to perform
UQ.

3. NONSTATIONARY COVARIANCE FUNCTIONS

In order to generalize the above formulation to handle nonstationary covariance functions, we establish a mapping
between the actual covariance function and an equivalent stationary covariance function that is obtained by means
of a coordinate transformation [20]. For a point located atX, we apply a displacement,u(X), to move it to a new
position,x, which we denote as the displaced position. The displacement function,u(X), is initially unknown, and
we want to choose it such thatC(x, x′) is a stationary covariance function. We shall continue to use the Matérn family
to model this covariance function. This gives us the following nonstationary formulation for the random process:

f |M, C ∼ GP (M, C) ,

M : X, a, b, c 7→ aX2 + bX + c,

C : x, x′,ν, φ, θ 7→ Matérn(x, x′,ν, φ,θ) , (6)

x : X,u 7→ X + u(X)

u : X, au, bu, cu, du 7→ auX3 + buX2 + cuX + du,

d|M, C ∼ N (M(X), C(x(X), x(X))) ,

FIG. 5: Realizations of the estimated stochastic process described in Section 2.
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where we have parametrizedu(X) as a cubic polynomial. Equation (6) is identical to the formulation presented in
Section 2 except for the addition of four extra parameters that describe the variation of the displacement field. The
choice of parametrization used foru(x) is left to the discretion of the user. In this paper, we have chosen a polynomial
basis as the simplest representation of the displacement function. This representation works well as long as the actual
displacement function can be represented by a finite polynomial series. This can be empirically shown to be true, by
choosing the order of the polynomial to be sufficiently high. We observe that the mean value of the posterior PDF for
each of the coefficients of higher order terms tends to zero, showing that the displacement function does not depend
on those terms. In practice, if this condition is not met, then it may be appropriate to use a different basis for the
representation. Alternatively, one could use a different representation using thin-plate splines or some other basis with
local support as shown in [20]. To estimate the parameters from data sets, we make use of the same Bayesian inference
procedure developed in Section 2.

As in Section 2, we choose an illustrative example to demonstrate the method. We generate data from a known
random process that is defined in the domain[−1, 1] with a quadratic mean function,M(X) = 10X2 + 5, and a
Matérn covariance function with the parametersφ = 2, ν = 2, andθ = 0.4. Nonstationarity is introduced using
the displacement function, and we choose two cases to demonstrate two different forms of nonstationarity. We denote
u(X) = 0.5X(1−X2) as Case I. This corresponds to a displacement that is directed outward from the origin. Case II
is the opposite withu(X) = −0.5X(1−X2), which corresponds to a displacement that is directed toward the origin.
In both cases, the form of the displacement function has been chosen such that it is zero atX = 0 as well as at both
the left and right boundaries of the domain.

Figure 6 shows sample realizations and a contour plot of the covariance function for Case I. We see a distinct
difference in the smoothness of the sample paths between the center and the edges. It is easy to visualize that because
the displacement function is positive at points lying on either side of 0 and the region in the center is under tension
whereas the edges are in compression. As a result, the distance between points is increased in the center region,
causing the covariance function to drop down to zero more quickly. This decreases the amount of correlation between
the values at neighboring points and is reflected in the sample paths as an increased roughness in the center. In
comparison, compression in the boundary regions causes points to come closer and hence increase the correlation
between them, leading to smoother curves. We see the exact reverse of this situation in Case II (shown in Fig. 7),
where the center is relatively smooth while the edges are rougher.

The nonstationarity of the covariance function can also be illustrated by plotting the normalized covariance be-
tween points in the data set. Figure 8 shows the plots for both Cases I and II. Comparing them to Fig. 3, we see that

(a) Realizations of the actual stochastic process (b) Covariance function

FIG. 6: Actual nonstationary stochastic process corresponding to Case I illustrated by (a) sampled realizations and
(b) contour plot of the covariance between points in the domain.
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(a) Realizations of the actual stochastic process (b) Covariance function

FIG. 7: Actual nonstationary stochastic process corresponding to Case II illustrated by (a) sampled realizations and
(b) contour plot of the covariance between points in the domain.

(a) Case I (b) Case II

FIG. 8: Normalized covariance between sampling points as a function of the distance between them. The solid line
represents the stationary Matérn covariance function.

the points deviate significantly from the solid line that represents the stationary covariance function, showing that the
data are derived from a process that is indeed nonstationary.

3.1 Uniqueness and Identifiability of the Displacement Function

Before we look at the estimation of the random process, we first consider the issues related to uniqueness and identifi-
ability of the displacement function. Althoughu(X) may be represented using any functional form, it is important to
ensure that even after the coordinate transformation,C(x, x′) continues to be a valid covariance function. Moreover,
we want to choose a parametrization foru(X) such that it can be uniquely determined from the given data. In this
section, we place additional constraints onu(X) so that these conditions are satisfied.
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The question of validity of the nonstationary covariance function is easy to tackle. We must ensure that even after
the coordinate transformation, the covariance function retains its properties of being symmetric and positive-definite.
Because our formulation based on the Matérn covariance function ensures thatC(x, x′) = C(|x − x′|), we can
readily see that it is symmetric. The positive-definiteness property of this form also remains unaffected as a result of
this transformation, and this can be easily proved by applying Bochner’s theorem [12].

In addition to the validity, we are also interested in the identifiability of the displacement function and in turn, the
covariance function. In order to ensure that the parameters of the displacement function can be uniquely determined
from the given data, we want to enforce a bijective mapping between the parameters and the resulting covariance
function. Unfortunately due to the presence of norm operator in the covariance function, particular cases of the dis-
placement function can cause the mapping to cease being unique. More precisely, this situation arises whenever the
left-to-right ordering of two points in the domain gets reversed in the deformed coordinate system as a result of any
relative displacement that causes them to cross each other. We can see that the limiting case that corresponds to the
onset of this problem occurs when the displacement causes two distinct points inX to get mapped on to the same
point inx.

In order to ensure a bijective mapping, we want to restrict the possible values of the displacement function so
that no two points cross each other in the deformed space. Physically, this condition implies that the strain field that
corresponds to the displacement does not cause gaps or overlaps in the body. This compatiblity condition can be
reduced to the assertion that the determinant of the Jacobian of transformation is always positive. In one dimension,
this determinant is nothing but1+du/dX, and thus we derive the condition that in order for the displacement function
to be uniquely determined, we must ensure that

du(X)
dX

> −1. (7)

We can also prove the validity of this condition mathematically. Perrin and Meiring [21] derive a uniqueness
condition for a general transformation function and express this condition in terms of the inverse of the Jacobian
of transformation. We can immediately see that in order for this condition to be well defined, the Jacobian must
be nonsingular and hence, its determinant must be nonzero. Thus we get the same condition as that expressed in
Eq. (7). This condition can be easily incorporated into our estimation framework given by Eq. (6), by constraining the
parameters that govern the displacement function. We impose the additional condition, that

3auX2 + 2buX + cu > −1 ∀X ∈ D, (8)

whereD is the domain in which the stochastic process is defined. This condition is applied when drawing samples
for the posterior PDF to ensure that the resulting displacement function satisfies the uniqueness condition. We see
the benefit of choosing the parametric formulation given in Eq. (6) involving an additive displacement function, in
that it allows for the incorporation of the uniqueness condition while retaining a physical intuition for the estimation
framework.

There is one final observation that we can make regarding the displacement function. We can show that the addition
of any linear term to the displacement function does not affect the value of the covariance function as long asθ is
scaled by an appropriate constant. In other words, the displacement function is uniquely determinable only to a linear
function andθ to within a constant factor. We can show this for our specific parametrization by considering the
following transformation to the argument of the covariance function

‖x(X)−x′(X ′)‖
θ

=
‖X+ u(X)−X ′−u(X ′)‖

θ
=
‖(X−X ′) + au(X3 −X ′3) + bu(X2 −X ′2) + cu(X−X ′)‖

θ

=
‖(X −X ′) + au(X3 −X ′3) + bu(X2 −X ′2)− (au + bu)(X −X ′) + (au + bu + cu)(X −X ′)‖

θ

=
‖(1 + au + bu + cu)(X −X ′) + au(X3 −X ′3) + bu(X2 −X ′2)− (au + bu)(X −X ′)‖

θ

=
‖(X −X ′) + a∗u(X3 −X ′3) + b∗u(X2 −X ′2)− (a∗u + b∗u)(X −X ′)‖

θ∗
, (9)
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wherek∗ = k/(1+au+bu+cu) for each of the terms,a∗u, b∗u, andθ∗. We see that the value of the covariance function
does not change when the parametrization ofu(X) is modified by the addition or subtraction of a linear term. This
property is borne out in [21] where the authors qualify the uniqueness criterion by stating that the transformation is
unique only up to a scaling factor forθ and a homothetic Euclidean motion for the transformation function. We can
therefore use a corrected form ofu(x) given by

u : X, a∗u, b∗u 7→ a∗uX3 + b∗uX2 − (a∗u + b∗u)X. (10)

In the discussion below, we talk about this corrected form ofu(X) in addition to the original form since this form
has the property that the displacement is zero at the two boundaries of the domain. This makes it easy to compare the
corrected form with the actual displacement function, since this is a property shared by the actual function as well. It
must be noted that the estimated covariance function remains the same in either case and hence, the properties of the
estimated random process do not change.

3.2 Estimation of Nonstationary Random Processes

Using the data sets generated for Cases I and II presented earlier, we estimate the corresponding stochastic processes.
We employ the formulation given in Eq. (6) and assign the following prior PDFs for the unknown parameters:

a, b, c ∼ Uniform [−20, 20],

ν ∼ Uniform [1, 3],

φ ∼ Exponential(1)

θ, θ∗ ∼ Exponential(1)

au, bu, cu, du, a∗u, b∗u ∼ Uniform [−1, 1]. (11)

As in the case of stationary covariance functions presented in Section 2, the prior PDFs can be specifically chosen
to incorporate any knowledge we may have on the values of the unknown parameters or can be left sufficiently vague in
the absence of such information. We note that in addition to the usual parameters that control the mean and covariance
functions, we now have an additional set of parameters that describe the displacement function used to incorporate
nonstationarity. Using data sampled over 250 randomly generated realizations at 41 equally spaced points, we generate
the joint posterior distribution of the parameters and pick 1000 samples from it by using the MCMC method with a
burn-in of 30,000 and a thinning factor of 10.

The estimated mean value of each of the unknown parameters is compared with their actual values for both Cases I
and II in Table 2. For both cases, we see a very good match between the actual and estimated values for all parameters
that directly affect the mean and covariance function. There is some error in the estimated values ofa andb for Case II,
which is possibly due to statistical error in the data samples. However, for the polynomial coefficients that govern the
displacement function,au, bu, andcu, we see that there is a large mismatch between the estimated and actual values.
This discrepancy is to be expected because the displacement function and, by extension its polynomial coefficients,
can be determined uniquely only up to a linear term. To confirm that the covariance function has indeed been estimated
properly, we examine the parameters corresponding to the corrected form of the displacement function, namely,a∗u,
b∗u, andθ∗. We compute these parameters using the expressions derived in Eq. (9). By construction, the corrected form
of the displacement function has been specifically chosen to match the actual function at the boundaries of the domain
and, therefore, we see a very good match between the estimated values of these parameters and the actual ones. This
is further attested to by the comparison of the estimated displacement function to the actual one in Fig. 9, where we
see an almost perfect match between the corrected form and the actual function. Because we have shown that the two
forms of the displacement function ultimately yield the same value of covariance, we are free to use either form when
generating realizations that conform to the estimated random process.

Using the parameters estimated from the sampled data, we can now construct realizations of the random process.
A few sample realizations are shown for Cases I and II in Fig. 10. Comparing to samples shown in Figs. 6(a) and
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TABLE 2: Estimated parameter means compared to actual values for test cases in Section 3.2
Case I Case II

Parameter Actual value Estimated mean valueActual value Estimated mean value
a 10 10.0036± 0.0001 10 9.933± 0.007
b 0 –0.0135± 0.0002 0 0.063± 0.002
c 5 4.951± 0.002 5 5.208± 0.005
ν 2 2.0047± 0.0009 2 2.029± 0.001
φ 2 1.979± 0.002 2 1.959± 0.002
θ 0.4 0.3808± 0.0005 0.4 0.572± 0.008
au –0.5 –0.4788± 0.0003 0.5 0.737± 0.01
bu 0 –(2.77± 0.08)× 10−4 0 0.006± 0.0002
cu 0.5 –0.437± 0.001 –0.5 –0.258± 0.01
du 0 –0.02± 0.02 0 –0.009± 0.02
a∗u –0.5 –0.4998 0.5 0.496
b∗u 0 –0.0001 0 0.004
θ∗ 0.4 0.3975 0.4 0.385
B n.a. 1.343 n.a. 1.736

(a) Case I (b) Case II

FIG. 9: Estimated displacement functions for (a) Case I and (b) Case II. Solid lines show the actual displacement func-
tion, dash-dotted lines represent the estimated displacement using the original formulation and dashed lines represent
the estimated function using the corrected formulation.

7(a), we see a qualitative match between the two. The estimated realizations clearly capture the nonstationarity in the
random process, proving that this method is suitable for estimating spatially varying uncertainties with nonstationary
covariance functions.

4. APPLICATION TO MICROACTUATORS

We now use the random process estimation framework described above to generate stochastic models for spatial un-
certainties in a micromechanical actuator. We first discuss the physical modeling of the actuator, followed by examples
that demonstrate the effect of spatial variations on the actuator behavior.
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(a) Case I (b) Case II

FIG. 10: Realizations sampled from estimated stochastic process for (a) Case I and (b) Case II.

4.1 Physical Level Modeling

We are primarily interested in performing UQ for microelectromechanical actuators, which employ electrostatic force
as the primary actuation mechanism. These actuators are typically modeled as a pair of electrodes, of which one is
deformable while the other is held fixed at a small distance away. The region between the electrodes is considered to
be a uniform dielectric material, usually air. A potential difference that is applied across the two electrodes sets up an
electric field in the region between them. This results in an attractive electrostatic force on the compliant electrode,
causing it to deform. Because the electric field, and hence the electrostatic force, is a function of the separation
between the electrodes, we solve for the electrostatic potential in the dielectric and the actuator displacement in a
coupled manner to ensure a consistent solution. We can thus obtain the steady-state displacement of the actuator as a
function of the applied voltage.

We model the actuator domain as shown in Fig. 11. The two electrodes are assumed to be perfect conductors
and are represented in their initial undeformed configuration asΩ1 andΩ2, respectively, whileΩ refers to the di-
electric region surrounding the electrodes. The top electrode is deformable and anchored at the left end. We seek the

FIG. 11: Electrostatic microactuator (not drawn to scale) consisting of a cantilever beam that deforms under the
influence of electrostatic force that is produced due to the applied potential difference.
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equilibrium solution of the coupled equations for the electrostatic potential and the mechanical displacement in the
deformed configuration that is attained when a constant potential difference is applied. This is done by expressing the
equations using a Lagrangian formulation, where the equations are mapped back to the undeformed configuration by
means of the deformation gradient,F . Using a 2D geometrically nonlinear formulation [28], the displacement of the
deformable electrode is given by

∇ · (FS) = 0 in Ω1, (12)

u = 0 onΓd1, Γd2, (13)

PN = H onΓh1, (14)

whereu is the vector field denoting the displacement,F = I +∇u, I being the identity tensor,Γd1 andΓd2 are the
anchored portions of the electrode boundaries where a Dirichlet boundary condition is applied,P is the first Piola-
Kirchhoff stress tensor,N is the outward normal vector at every part of the boundary in the reference configuration,
andH is the boundary traction vector that corresponds to the electrostatic traction acting on the free surfaces of the
movable electrode,Γh1. S in Eq. (12) is the second Piola-Kirchhoff stress tensor that can be expressed in terms of a
constitutive relationship involving the material tensor,C, and Green-Lagrangian strain tensor,Es, as [29],

S = CEs. (15)

We see that the driving force for the mechanical displacement is the electrostatic traction, which can be obtained
by solving for the electrostatic potential. Because the electrodes are assumed to be metallic, the electric field within
them is zero and thus, it is sufficient to solve for the potential field in the dielectric region surrounding the electrodes.
This can be written in terms of the Laplace equation, with a Dirichlet boundary condition on the boundaries of the
electrodes, as follows:

∇ · (JF−1F−T∇φ
)

= 0 in Ω, (16)

φ = φ0 onΓd1, Γd2, Γh1 (17)

whereJ = detF is the Jacobian of the deformation gradient andφ0 is the prescribed potential applied on the
boundaries of the electrodes. The electrostatic potential that is obtained by solving Eq. (16) is coupled back to the
mechanical displacement by way of the electrostatic traction term,H, which is given by

H = J
∣∣F−T N

∣∣ fes, (18)

wherefes is the electrostatic traction acting on the movable electrode in the deformed configuration. This traction
depends on the normal electric field at the interface between the electrode and the dielectric,En, and the surface
charge density,σs = εEn, whereEn is the normal component of the electric field,E = −∇φ, along the unit
normal vector,n, in the deformed configuration. The complete expression for the electrostatic traction is given by
fes = [σs

2/(2ε)]n, whereε is the dielectric permittivity of the surrounding medium.
In practice, we do not solve Eq. (16) directly, because it is defined overΩ, which is infinitely large. Instead we

transform this equation using boundary integral formulation [30, 31] into a set of integral equations defined on the
boundaries of the electrodes. The boundary integral formulation is an efficient way of solving the Laplace equation
for exterior-domain problems such as this one. Additional details about this procedure are given in [3, 32].

The electrostatic microactuator chosen in this example consists of a cantilever beam that is 100µm long, 1µm
thick and made of silicon with a Young’s modulus of 169 GPa. It is held at a distance of 2µm from the ground plate,
which is assumed to extend an additional 10µm on either side of the movable beam. This is to account for the fringing
effects of the electrostatic field that is generated in the medium between the two electrodes. We solve the boundary
integral equations along with the equations describing the mechanical displacement in a coupled manner to obtain the
final deformed configuration of the actuator under a static applied voltage. Suitable postprocessing can be applied to
the mechanical displacement and electrostatic potential fields to obtain the output quantities of interest for which we
are interested in performing uncertainty analysis. From Eq. (12)–(18), we can readily see that the coupled nature of
the above multiphysics model would cause uncertainties in geometrical dimensions as well as material properties to
be propagated through the model and ultimately result in variations in the displacement of the actuator. In Section 4.2,
we show how the deterministic solver described above can be used in the UQ framework to predict the uncertainty in
the actuator behavior.
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4.2 Identification of Stochastic Model

We examine the effect of spatial uncertainties on the electrostatic microactuator described above. In this work, we
restrict our focus to uncertainties in geometrical dimensions rather than in material properties. We examine a test case
where the top surface of the ground plate has a rough profile and can be considered as a spatially varying uncertainty
that modulates the interelectrode gap. Because the focus of this paper is the modeling of spatial uncertainties, we do
not worry about the physical origin of these fluctuations. Instead we assume that we are given profilometric data of
the interelectrode gap at discrete points along the length of the device and that the data are aggregated across different
devices. Possible sources of uncertainty in the microfabrication process are spatial variations in deposition/etching of
materials, nonuniformities in the thickness of photoresist films that are used as sacrificial layers in a surface micro-
machining workflow, etc. For the purpose of this work, we assume that the spatial variations are not significant in the
direction perpendicular to the plane of movement of the actuator (shown in Fig. 11). This is a reasonable assumption
if the thickness of the device in that direction is small compared to the length of the device.

Our first task is to generate data sets from a known random process and then estimate the stochastic variation from
the data. The estimated process can then be propagated through the physical model along with the actual process in
order to demonstrate the effectiveness of estimating spatial uncertainties in this manner. Following the same proce-
dure described in previous sections, we generate data from a known random process that is defined in the domain
[−10, 110] µm. We pick a linear mean function,M(X) = (0.05 + 0.005X) µm, and a Mat́ern covariance func-
tion with the parametersφ = 0.1 µm, ν = 2, andθ = 20 µm. To simplify notation, we introduce a normalized
spatial coordinateXn = (X + 10)/120, such thatXn ∈ [0, 1], and redefine the mean function in terms ofXn as
M(Xn) = 0.6Xn. It is easily seen that the spatial roughness profile that we have chosen causes the top surface of
the ground plate to tilt upward, reducing the gap at the right end of the cantilever to∼70% of its original value of
2 µm on average. The choice of the mean function profile is arbitrary, but the parameters that contribute to the spatial
roughness profile are based on physically measured roughness profiles of photoresist films [33].

Nonstationarity is introduced using a virtual displacement function, and we choose two cases to demonstrate two
different forms of nonstationarity. We denoteu(Xn) = Xn(1−Xn)(2−Xn) as Case I. This corresponds to a virtual
displacement that is directed toward the right side or the free end of the actuator, because it is positive in the given
domain. Case II is the opposite withu(Xn) = −Xn(1 −X2

n), which corresponds to a displacement that is directed
toward the left side or the anchored end. In both cases, the form of the displacement function has been chosen such
that it is zero atXn = 0, 1, which are the left and right boundaries of the domain. Figures 12 and 13 show a contour

(a) Realizations of the actual stochastic process (b) Covariance function

FIG. 12: Actual nonstationary stochastic process corresponding to Case I illustrated by (a) sampled realizations and
(b) contour plot of the covariance between points in the domain.
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(a) Realizations of the actual stochastic process (b) Covariance function

FIG. 13: Actual nonstationary stochastic process corresponding to Case I illustrated by (a) sampled realizations and
(b) contour plot of the covariance between points in the domain.

plot of the covariance function and a few realizations sampled from the stochastic processes corresponding to Cases I
and II, respectively. The trends followed by the random functions obey the behavior seen in Section 3, where regions
of compressive virtual strain are comparatively smoother than regions in tension.

Using the data sets generated for Cases I and II, we estimate the corresponding stochastic processes. We use a
nonstationary formulation that is very similar to Eq. (6), except that we use the corrected form of the displacement
function, having shown that it is equivalent to the regular polynomial form in Section 4.1. The final formulation is
given by

f |M,C ∼ GP (M, C) ,

M : Xn, a, b, c 7→ aX2
n + bXn + c,

Xn : X 7→ (X + 10)/120

C : x, x′, ν, φ, θ 7→ Matérn(x, x′, ν, φ, θ) ,

x : Xn, u 7→ −10 + 120(Xn + u(Xn))

u : Xn, au, bu 7→ auX3
n + buX2

n − (au + bu)Xn,

d|M,C ∼ N (M(X), C(x(X), x(X))) , (19)

Expressing the formulation in terms of the normalized spatial coordinate helps to define the problem in terms of
unknown parameters that are scale independent. This makes the formulation very flexible for modeling uncertainties
defined over spatial domains of any scale. We can now assign the following prior PDFs for the unknown parameters,
which are very similar to the ones that we have been using thus far,

a, b, c ∼ Uniform [−1, 1],

ν ∼ Exponential(10),

φ ∼ Exponential(20)

θ ∼ Exponential(0.1)

au, bu ∼ Uniform [−5, 5]. (20)
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We generate 250 random realizations from the original stochastic process and sample each one at 41 uniformly
spaced points in the domain to generate the simulated profilometric data for the random ground plate. Bayesian
estimation is performed using the MCMC method with a burn-in of 30,000 samples and a thinning factor of 10. The
resulting posterior distribution of the parameters can be used to obtain the estimated stochastic process that incor-
porates a nonstationary covariance model. We also estimate a different stochastic process that has exactly the same
formulation as that mentioned in Eq. (19), but the virtual displacement function,u(Xn), set to zero. This corresponds
to a stationary covariance model, and we compare the resulting stochastic process to the one that uses a nonstationary
model. Realizations drawn from both these processes are shown in Figs. 14 and 15 for Cases I and II, respectively.
Comparing to Figs. 12 and 13, we see that the nonstationary model shows a good qualitative match with the actual
random process. With the stationary model, although the mean trend is similar, the spatial variation of roughness is
not captured at all, because this is a property of the nonstationarity in the covariance function.

(a) Nonstationary model (b) Stationary model

FIG. 14: Realizations sampled from estimated stochastic process using (a) nonstationary and (b) stationary covariance
function for data corresponding to Case I.

(a) Nonstationary model (b) Stationary model

FIG. 15: Realizations sampled from estimated stochastic process using (a) nonstationary and (b) stationary covariance
function for data corresponding to Case II.
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4.3 Electrostatic Analysis

We first perform a pure electrostatic analysis on the actuator in the presence of the spatial uncertainties. In this
simulation, we do not consider the effect of electrostatic force and therefore assume that the top electrode does not
move at all. We propagate the actual stochastic model as well as the estimated fields obtained using the nonstationary
and stationary formulations. For each case, we modulate the top surface of the ground plate by a realization sampled
from the stochastic process and then regenerate the mesh for the ground plate in order to perform finite element
analysis. We solve Eq. (16) along with its boundary condition given by Eq. (18) and obtain the electrostatic potential
along a plane lying mid-way between the two electrodes at a distance of 1µm from the top electrode. These potential
values are normalized by the maximum applied potential difference and plotted in Fig. 16 for both Cases I and II.

For the given actuator geometry, because we know that electrostatic potential varies fairly linearly within the gap
between the electrodes, we expect that the spatial trend in the electrostatic potential will closely follow the roughness
profile of the ground plate. This is confirmed by the trends seen in Fig. 16. This shows that the spatial uncertainty has
been propagated into the electrostatic domain and the resulting transformation is quite linear. We see that in both cases,
the nonstationary model reproduces the results corresponding to the actual stochastic process very well. The stationary
model, on the other hand, is not able to capture any aspect of the spatial variation except for average behaviour.

4.4 Mechanical Displacement

We now include the effect of electrostatic force by performing a complete electromechanical analysis on the actuator
to compute the mechanical displacement field. We solve for the downward displacement of the top electrode due
to the electrostatic force and compute the variation of electrode tip displacement due to the effect of the spatial
uncertainties. Here the spatial variation in the electrostatic potential will translate into the traction term and will result
in a nonuniform electrostatic pressure being applied on the top electrode. Moreover, because the electrostatic force is
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FIG. 16: Normalized electrostatic potential along the mid-plane for several realizations of the random field. The left
column corresponds to Case I while the right column corresponds to Case II. The rows correspond to the results
obtained using the actual stochastic process (top) and the estimated results using the nonstationary model (middle)
and the stationary model (bottom).
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inversely dependent on the local gap between two points on the top and bottom electrodes, as the actuator deforms, the
electrostatic traction changes accordingly and exerts an additional nonlinear influence on the resulting displacement
field.

We observe the effect of this nonlinear dependence in Fig. 17, where the device is actuated using a potential
difference of 8 V and the PDF of tip displacement is plotted for the actual, nonstationary and stationary models
for Cases I and II. If the tip displacement is linearly dependent on the input uncertainty, we would expect to see a
symmetric variation about some nominal value. Instead we see that the tails of the distributions have been stretched
more to the left, toward the region of greater displacement (more negative values). Comparing the PDFs for Cases I
and II using the actual process (solid and dashed lines with circles), we see that the spread in tip displacement for
Case I is almost three times the amount seen for Case II. To explain this difference, we look at the realizations and
note that in Case I the realizations are relatively smoother on the right side of the domain, close to the tip of the
actuator, whereas in Case II, the smoother regions are closer to the anchored end of the cantilever. In general, if the
inter electrode gap fluctuates sharply about a mean value, then the positive and negative contributions tend to cancel
out and the resulting electrostatic force is no different from the mean trend. However, if the spatial profile changes
slowly, there is a greater degree of correlation between the values of electrostatic force at neighboring points and this
results in a net increase or decrease in the local electrostatic force. When this increase or decrease occurs near the
tip of the cantilever (as in Case I), its effect on the tip displacement is more pronounced than when it happens close
to the anchored end of the cantilever (Case II). This is clearly seen in Fig. 17, where we note that the range of tip
displacement increases almost three fold going from Cases II to I.

Between the three models, we again see a close match between the nonstationary model (solid and dashed lines
with squares) and the actual one, whereas there is a significant discrepancy in the results predicted by the stationary
model (solid and dashed lines with triangles). In fact, the stationary model is unable to even differentiate between
Cases I and II, and ends up predicting a trend that is close to the average of the two. This shows the importance of
using a nonstationary model to represent spatial uncertainties, because we clearly see that capturing the mean trend
using a stationary covariance model is not sufficient to accurately reproduce the variation in tip displacement. Instead
we need an inhomogeneous model that can correctly include spatial variations. This is crucial especially when the
physical system has a nonlinear dependence on the input uncertainty, which causes the effect of nonstationarity to
become amplified.

FIG. 17: Variation in tip displacement of the actuator under the effect of various stochastic models.
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4.5 Pull-in Voltage

Electrostatic MEMS actuators are known to be subject to an instability phenomenon called pull-in. When the actuation
voltage rises high enough, the mechanical restoring force in the deformable electrode is unable to resist the electro-
static force and the top electrode crashes onto the ground plate. The voltage at which this happens is known as the
pull-in voltage and is a characteristic quantity for a given electrostatic actuator. It is also a quantity of interest in the
design of electrostatic switches, where the pull-in phenomenon is used to make the device behave like a mechanical
switch.

We perform a complete electromechanical analysis on the actuator by considering the effect of the electrostatic
force. We use the bisection method to solve for the pull-in voltage for the case of the actual stochastic model as well
as the estimated fields obtained using the nonstationary and stationary formulations. The results are shown in Fig. 18.
For Case I, the pull-in voltage varies between 8.5 V and 16 V, while this range drops down by half when Case II is
considered. With regard to the estimated models, we see a similar trend as that seen in the previous section. Again, the
nonstationary model gives the best results, whereas the stationary model is unable to differentiate between Cases I and
II. This shows the importance of using the correct stochastic model when including the effect of spatial uncertainties
in electrostatic microactuators.

5. CONCLUSIONS

This paper presents a data-driven method of estimating stochastic models that describe spatial uncertainties in elec-
trostatic microactuators. In order to quantify the effect of these uncertainties in MEMS, we develop a nonstationary
formulation to handle heterogeneous random processes. The transformation function used to introduce nonstationarity
is specified as an additive displacement that transforms the coordinate space to a deformed configuration in which the
covariance between points can be represented by a stationary model. A Bayesian estimation involving the Markov
Chain Monte Carlo (MCMC) method is used to estimate the parameters of the stochastic model from sets of data that
are assumed to be independent and identically distributed. This approach is then used to model spatial uncertainties
in microelectromechanical actuators, where the ground plate is assumed to have a spatially varying profile. The idea
is to leverage existing spatial statistics modeling techniques to bring spatial uncertainties into the realm of uncertainty
quantification, especially for micromechanical systems. This allows us to demonstrate the effect of these uncertainties
on the displacement of the actuator as well as on other parameters, such as the pull-in voltage. By estimating the
stochastic model using synthetic profilometric data, we demonstrate how experimental measurements of the ground
plate surface roughness can be used to predict the variation in performance of these devices.

FIG. 18: Variation in pull-in voltage of the actuator under the effect of various stochastic models.
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We show that nonstationarity is essential for accurate modeling of spatial uncertainties in electrostatic microac-
tuators by presenting results that show the effect of nonstationary random processes on the electrical and mechanical
behavior of microactuators. Although a stationary model can approximate the average trend to a reasonable extent,
the nonlinearities in the physical model get amplified in the presence of nonstationary uncertainties. This difference
is seen in the shape of the resulting PDF of any output quantity and most notably manifests itself by modifying the
expected range of variation. We see that accurate modeling of the nonstationarity in the data is important when trying
to predict the variation in the performance of these devices and hence emphasize the necessity for the inclusion of
nonstationarity during stochastic modeling.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under Grant No. 1420882. The authors gratefully ac-
knowledge the use of the parallel computing resource provided by the Computational Science and Engineering (CSE)
Program at the University of Illinois. The CSE computing resource, provided as part of the Taub cluster, is devoted to
high-performance computing in engineering and science.

REFERENCES

1. Senturia, S., Aluru, N., and White, J., Simulating the behavior of MEMS devices: Computational methods and needs,Comput.
Sci. Eng., 4(1):30–43, 1997.

2. Aluru, N. and White, J., An efficient numerical technique for electromechanical simulation of complicated microelectrome-
chanical structures,Sens. Actuators A, 58(1):1–11, 1997.

3. Li, G. and Aluru, N., Efficient mixed-domain analysis of electrostatic MEMS,Comput.-Aided Des. Integr. Circ. Syst.,
22(9):1228–1242, 2003.

4. Price, R. H., Wood, J. E., and Jacobsen, S. C., Modelling considerations for electrostatic forces in electrostatic microactuators,
Sens. Actuators, 20(1-2):107–114, 1989.

5. Agarwal, N. and Aluru, N., A stochastic Lagrangian approach for geometrical uncertainties in electrostatics,J. Comput. Phys.,
226(1):156–179, 2007.

6. Agarwal, N. and Aluru, N. R., Stochastic analysis of electrostatic MEMS subjected to parameter variations,J. Microelec-
tromech. Syst., 18(6):1454–1468, 2009.

7. Alwan, A. and Aluru, N. R., Uncertainty quantification of MEMS using a data-dependent adaptive stochastic collocation
method,Compu. Methods Appl. Mech. Eng., 200(45):3169–3182, 2011.

8. Patrikar, R. M., Modeling and simulation of surface roughness,Appl. Surf. Sci., 228(1):213–220, 2004.

9. Lepage, S., Stochastic finite element method for the modeling of thermoelastic damping in micro-resonators, PhD thesis,
University of Liège, 2006.
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