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The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct
statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can
infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain
in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic)
features present within the field. In this paper, we present a visualization system that allows the user to examine two-
dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool
provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user
and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of
the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a
description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished
within the field of electrophysiology.

KEY WORDS: visualization, probability density function, cumulative density function, generalized poly-
nomial chaos, stochastic Galerkin methods, stochastic collocation methods

1. INTRODUCTION

In the past two decades, there has been a tremendous growth of interest within the computational science and engi-
neering (CS&E) community concerning the topics of validation and verification (V&V) and uncertainty quantification
(UQ) in the context of numerical simulation results. In 2011 alone, there have been nearly a dozen different workshops,
symposia, or conference sessions devoted to V&V and UQ. With the advent of such UQ computational techniques as
the stochastic finite-element method [1] and generalized polynomial chaos method [2], there is an increasing need to
convey UQ results in concise, informative ways. Visualization is the lens often through which scientists investigate
their data. In response to the surge of the UQ focus within the simulation community, uncertainty visualization is
considered one of the top visualization research problems by the scientific visualization community [3]. In this paper,
we provide the mathematical and algorithmic description of a visualization system that can be used for exploring
probability density functions (PDFs) and their corresponding cumulative density functions (CDFs). A special feature
of our system is that it allows the user to propose a target ansatz PDF against which to present a contour plot of
the normed differences between the ansatz and the data. The user can then interactively investigate regions of high
deviation to understand the local PDF structure.

1.1 Related Work

The display of PDFs and CDFs has a rich history in graphical data analysis. Commonly shown as simple function
plots, the display plots either probability versus data value or value versus cumulative probability. The ubiquity of

∗Correspond to Kristin Potter, E-mail: kpotter@sci.utah.edu, URL: http://www.sci.utah.edu/∼kpotter

2152–5080/12/$35.00 c© 2012 by Begell House, Inc. 397



398 Potter et al.

this presentation style makes these plots easy to read, and scientists can easily recognize canonical distribution types.
Many other solutions to plotting this type of data have been established that rely on characteristics of distributions,
including histograms, steam-and-leaf plots, and percentile and quantile plots [4, 5]. A noteworthy example is the
boxplot [6], which aggregates a distribution into its quartiles, allowing multiple distributions to be plotted side by
side.

While these types of displays are prolific, plotting distributions in this way limits the display of multiple distribu-
tions as overlays or tables of plots, both of which become quickly cluttered, hard to read, and limit analysis tasks. In
addition, for most complex types of data, such as the data we present here, there exists information, such as spatial
domain, that is missing when using such techniques.

One example to displaying the spatial information within a data set shows concentration levels of groundwater
dispersed through a three-dimensional 3D space as both a color mapped PDF where location is plotted against con-
centration, and as a cumulative probability function where location is plotted against time [7]. In each case, the data
are color mapped by probability. The user is given a slider to manually explore the data through animation of space,
time, or concentration levels. This method resembles traditional two-dimensional (2D) techniques for the presentation
of distribution data, but incorporates elements of 3D to open exploration of this additional data characteristic.

Approaching the problem from a visualization, rather than a graphical data analysis standpoint, opens up a large
range of possible presentation techniques; however, the majority of these approaches are not designed with distribution
data in mind. Rather than develop visualization approaches specific to distribution data, Luo et al. [8] systematically
extend existing visualization methods by defining a set of mathematical operators to transform distribution data into
formats appropriate for various visualization techniques. This allows for the direct application of traditional visualiza-
tion techniques on the manipulated distributions.

In a similar vein, Potter et al. [9] look at a collection of data distributions as a volume of data. This allows for the
application of volume rendering, isosurfacing, and particle tracing of the gradient volume to explore the space of the
data. The goals of this approach are less in data analysis but more in a general understanding of the data and guidance
toward areas of interest.

A more global approach to analysis calculates various statistical measures including mean, median, standard de-
viation, and kurtosis and encodes these measures through color mapping, surface deformation, and glyphs, displayed
per pixel [10]. The application provides a crosshair probe to allow the user to select pixels of interest and investigate
clusters of data with similar statistics. The work is later extended to density estimate volume visualization [11].

Another method for understanding a collection of data distributions is clustering, which finds groups of similar
distributions. Bordoloi et al. [12] use hierarchical spatial clusters to give a multi-resolution representation of the data
distributions, giving the user the ability to interactively display a representative distribution for each cluster at multiple
levels of detail. Chlan and Rheingans [13] also use the idea of clustering, but develop a glyph to convey characteristics
of the represented distributions, such as mean, standard deviation, and extent, as well as an understanding of the type
of the distribution.

The difference between these previous approaches and the one presented here is that our goal is to provide an
understanding of the collection of distributions through a global comparison measure, rather than displaying individ-
ual distributions. Our main focus is on the global display of all data distributions through meaningful measures of
difference. We provide, as a secondary tool, an interactive visual display of the individual distributions to enhance
local understanding. This approach allows for the quick identification of interesting areas of a data set, as well as an
understanding of the characteristics of the underlying distributions across the spatial domain.

1.2 Outline

The paper is organized as follows. In Section 2, we lay out the mathematical details of the work. In Section 3, we
present the implementation details necessary to replicate this work, with a description of the features that are available
as part of our software package. In Section 4, we present our new methodology applied to several canonical examples
on simple domains (to help demonstrate efficacy in easy-to-understand scenarios) and to simulation results of electric
potential over a 2D torso slice. We summarize our results in Section 5.
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2. DESCRIPTION OF THE MATHEMATICS

In this section we lay the fundamental mathematical groundwork necessary for discussing our visualization system.
With this groundwork in place, we can then provide specific implementation details as given in Section 3.

To begin, let us consider a stochastic fieldu = u(x, t, ω), which is usually the result of computation of a stochastic
problem. Here,x is the coordinate in a physical domainD ⊂ R`; ` = 1, 2, 3, t is the temporal variable; andω ∈ Ω
in a properly defined event space. Since most of our discussions will be based on any fixed location in physical space
and time, we will suppress the notion ofx andt whenever possible.

The(cumulative) distribution functionof u is defined as

Fu(s) = Prob(u ≤ s), s ∈ R. (1)

If u is continuously distributed, which is the case we are considering here, its PDF,fu, exists and satisfies

Fu(s) =
∫ s

∞
fu(y)dy, (2)

and (iff is continuous ats)

fu(s) =
dFu(s)

ds
. (3)

2.1 Distances between Probability Distributions

To alert the viewer to regions of interest within a dataset, we seek to display not just the PDF or CDF directly at
any particular point, but rather to display the “distance” between the distributions found in the data and some ansatz
distribution posited by the viewer. For two probability distributions, there exist various ways to measure the distance
between them. Here, we list a few common ones. Letf(s) andg(s) be two PDFs, andd the distance between them:

• L1 distance:

dL(f, g) =
∫ ∞

−∞
|f(s)− g(s)|ds. (4)

• Hellinger distance:

d2
H(f, g) =

1
2

∫ ∞

−∞

(√
f(s)−

√
g(s)

)2

ds. (5)

Note this is written in its squared form.

• Kullback-Leibler (KL) divergence:

dKL(f, g) =
∫ ∞

−∞
f(s) log

f(s)
g(s)

ds. (6)

Note this distance is not symmetric. One could adopt a symmetric version by usingdKL(f, g) + dKL(g, f).

In this work, we will primarily display theL1 and Hellinger distances, although other choices for distance can
easily be implemented within the system we provide.

2.2 Deriving Distribution Functions from Polynomial Chaos Simulations

Here, we pay special attention to the generalized polynomial chaos (gPC) method because it is one of the most
widely used stochastic simulation techniques in practical applications. In gPC, the stochastic solution fieldu is usually
expressed in terms of multi-variate orthogonal polynomials:

u(x, t, ω) =
P∑

|i|=0

ûi(x, t)Φi[Z(ω)], (7)
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whereP is the order of the expansion. Here,Z(ω) = (Z1, . . . , ZN ) is a random vector consisting ofN independent
components. These random variables are used to parametrize the inputs of the underlying stochastic system. Their
probability distributions are prescribed prior to the simulation;i = (i1, . . . , iN ) is multi-index with|i| = i1 + · · ·+ iN
andΦi(Z) areN -variate orthogonal polynomials satisfying

∫
Φi(y)Φj(y)fZ(y)dy = δi,j, (8)

wherefZ(y) is the PDF of the random vectorZ, for y ∈ RN , and the Kronecker delta function satisfiesδi,j = 1 if i =
j, andδi,j = 0 otherwise. The orthogonality relation (8) establishes a connection between the type of the orthogonal
polynomials and the PDF ofZ. For example, Gaussian PDF in the orthogonality defines the Hermite polynomials,
uniform PDF defines the Legendre polynomials, etc. Such connections were recognized and systematically studied in
[2].

The key quantities in gPC expansion (7) are expansion coefficientsû. These are quantities of physical space and
time, and their evaluations require full-scale numerical simulations. The computations of the coefficients usually can
be accomplished by two types of approaches. One is a stochastic Galerkin method and the other is a stochastic collo-
cation method. Their implementation will depend on the underlying stochastic problem. Each has its own advantages
and disadvantages. Here, we will not devote more discussions on the details of Galerkin and collocation. Interested
readers are referred to [14].

Once gPC expansion (7) is obtained, it is straightforward to derive the statistical properties of solutionu. This is
because expression (7) is of an analytical form. The quantities we are interested in are the PDF and CDF of solution
u. While it is possible, in principle, to derive the distributions ofu analytically based on the distribution ofZ, the
procedure is usually of little practical meaning because the derived expression is not of an explicit closed form. In
practice, it is usually more straightforward to conduct the following operations to estimate the PDF.

1. Generate a large number of samples of the random vectorZ. That is, draw independent samplesZ(1), . . . , Z(M)

from the distribution offZ , whereM À 1 is the total number of samples.

2. For eachm = 1, . . . , M , evaluate the gPC expansion and obtain the solution ensemble

u(m) =
P∑

|i|=0

ûi(x, t)Φi

(
Z(m)

)
, m = 1, . . . , M. (9)

Note this step requires only evaluations of a polynomial expression repetitively. No simulation of the underlying
stochastic system is required.

3. Based on the solution ensemble{u(m)}M
m=1, estimate the PDF ofu. This can be done in various ways, with the

most popular choice being the kernel density estimation [15, 16].

Hence, whether given directly sampled simulation data obtained through Monte Carlo methods or given implicitly
sampled data from the stochastic Galerkin or collocation approaches, we can now build a discrete representation of
the PDF or CDF as a histogram with a user-specified bin size. This is, in fact, the presumed input of our visualization
system: a (discrete) histogram representing the PDF of our function of interest given as each point (for instance, each
vertex of our mesh) in physical space.

3. IMPLEMENTATION DETAILS

With our mathematical fundamentals now in place, in this section we present the implementation details and the
corresponding visualization software system, ProbVis.
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3.1 Overview

We have created a visualization tool called ProbVis for exploring differences between distributions across a spatial
domain. That is, we have a single data distribution at each point across a spatial mesh. The goal of ProbVis is to
be able to quickly understand the variations across the spatial field and further explore the data through a series of
interactions. To this end, we have defined a distance measure that incorporates two distinct comparison characteristics.
We encode this measure using a 2D color map, coloring each point of the spatial domain with this measure. We then
provide a visualization of the data distribution at a point selected by the user, as well as control over the distribution
against which all data distributions are compared. A screenshot of the ProbVis system can be seen in Fig. 1.

Figure 1 shows a screenshot of the ProbVis system displaying an exemplary data set that modulates between
uniform and Gaussian distributions defined across a rectangular grid. The data set is displayed centrally and color
mapped based on the currently selected distance function. In this image, theL1 norm is being used as the distance
function and a Gaussian distribution is used as the canonical comparison. Thus, where the data are color mapped blue
the distance measure is close to zero, indicating the data are a Gaussian at that location, and conversely, red indicates
the locations of uniform distributions. At the center of the image is a small circle that is controlled by the user and
is used to select specific locations within the data and reflect that location into the sub-display on the bottom, right.
Here, a traditional plot of the distribution function is shown, with mean, minimum, and maximum notated. As the user
moves the circle picker, the data are updated in this singular display.

3.2 Comparing Distributions

As previously described, in order to compare distributions, we have decided to employ both the PDF and the CDF.
A PDF describes the probability of a random variable taking a particular value within an interval. A CDF describes
the probability that the random variable will be less than or equal to a particular value. We incorporate both ways of

FIG. 1: An overview of the ProbVis system using synthetic data that alternates between a Gaussian and uniform
distribution across thex-axis. The spatial domain of the data is shown centrally. A color map encodes the difference
measure and the precise value of the measure is shown as crosshairs in the color bar (upper right). A pointer allows
for the investigation of individual data points, which are displayed at the bottom right as a PDF or CDF, and the
comparator distribution is shown at the bottom left.
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looking at a data distribution because, while interrelated, some scientific fields prefer to look at data in one way rather
than the other.

3.2.1 Formulation of the PDF

We use a histogram to estimate the PDF of the incoming data. To facilitate flexibility, we allow the user to select the
number of bins to use for the histogram, which controls the size and number of features exposed in the distribution
estimation. The calculation of the histogram iterates through each sample point (obtained directly from Monte Carlo-
type sampling or implicitly through evaluation of the stochastic Galerkin or collocation expansions, as discussed in
Section 2.2) and determines in which bin the sample point lies by transforming the point from the interval in which
the data lie into the histogram space that is controlled by the number of bins. Then, the number of points in each bin
is counted and divided by the number of bins. This value is used as a density estimate of the data distribution.

3.2.2 Formulation of the CDF

To estimate the CDF, we begin from the histogram estimation of the PDF, as described above. For each position in the
interval in which the original data exists, we sum the probabilities of the PDF and divide by the number of bins. We
use the same number of bins as the histogram and again allow user control over this parameter.

3.2.3 Comparator Distributions

To evaluate the similarity of a collection of distributions defined across a spatial field, we compare each distribution to
a canonical distribution, and use a measure of difference between the canonical and data distributions as the measure of
similarity between each of the data distributions. By default, we allow the user to choose between a uniform, normal,
or beta comparator distribution; however, the system can be extended to use any distribution. To form an appropriate
comparison distribution, parameters are chosen by finding related statistics from the original data distributions.

Uniform : The uniform distribution is a distribution in which all intervals of the same length, within the distribu-
tion’s support, are equally likely. Because there are no assumptions or restrictions enforced on the data, in order to
form an appropriate comparator distribution, we normalize the uniform distributions by using an interval of support
from the data distributions. Thus, at each point in the spatial domain, a uniform distribution is generated using an
interval taken from the data distribution at that point. The uniform distribution is estimated by calculating the PDF:

fu(s) =

{ 1
b− a

for a ≤ s ≤ b

0 for a > s or b < s

wherea andb denote the left and right extents of the interval, respectively. Alternatively, one could specify mean and
variance or midpoint and half-length of the interval. All three of these specifications uniquely determine the uniform
distribution.

Normal: A normal, or Gaussian, distribution describes a first approximation to a real-valued random variable that
clusters around a single mean value. To form a normal distribution against which to compare, we take the mean, given
by µ, and standard deviation, given byσ, of the original data distribution and use those values in the calculation of the
PDF as follows:

fu(s) =
1√

2πσ2
e(s−µ)2/2σ2

Using the mean and standard deviation from the original data ensures that the mean of the generated Gaussian is the
same as the mean of the data and that the standard deviation is contained within the same interval on which the data
are defined.

Beta: The beta distribution is a class of distributions defined on the (0,1) interval and controlled by two positive
shape parameters. The PDF of the beta distribution is given by

fu(s) =
sα−1(1− s)β−1

B(α, β)
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whereα andβ are shape parameters greater than zero andB is the beta function defined as

B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt

The shape parameters describe the look of the distribution and are derived from our data distributions. To estimate
the shape parameters, we use method-of-moments estimates [17]:

α = µ

(
µ(1− µ)

v
− 1

)

β = (1− µ)
(

µ(1− µ)
v

− 1
)

whereµ is the sample mean andv is the sample variance, orσ2.
Data-driven parameters: A choice made in this work is to not allow the user to change the parameters of the

canonical distributions. While our first intuition was to give the user control over these parameters, two problems
to this approach arose. The first problem is that when the data at each spatial point are defined across drastically
different domains, it is not clear how to specify appropriate parameters for the comparison distributions that will not
result in large variations in the difference measure. For example, when using the uniform distribution, the choice of
support should be similar to the data values, otherwise, for samples of the uniform distribution outside its support, the
comparison will only be the distance of the data value to zero. Similarly for the Gaussian, centering the mean near
the mean of the data will ensure that the difference will measure how close to the shape of a Gaussian the data is,
rather than emphasize the difference between the means. While this can be viewed as “normalizing” in that we are
now comparing against similarly appropriate distributions with identical means, variances, and supports, going back
to allowing the user to modify the underlying parameters again is not straightforward. In this case, we could easily
bring up a dialog box to allow parameter tweaks, but the question then arises: Are these tweaks reflected globally to
all comparison distributions, or is this applied only locally to the current distribution under the pointer? If global, how
should the changes to the local distribution be reflected to the rest of the canonical distributions? If only local, how does
changing a single comparison distribution change the difference measure across the entire spatial domain? Because
the goal of this work is to view the differences between distributions across a spatial domain, we reject the idea of
manipulating the parameters of a single, solitary distribution. Likewise, reflecting parameter manipulations across an
entire collection of distributions seems inappropriate because it is not clear as to how to reflect those changes. Thus,
we have decided that simply deriving an appropriate comparator distribution is the most appropriate choice, and rely
on the local views of the comparison and data distributions to provide insights into the local nature of the data.

3.2.4 Shape Measure

The first method we use to compare distributions is a shape measure. Here, we want to determine what the difference is
in the shape of the distribution. For this, we use discretizations of theL1 and Hellinger distances defined in Section 2.1.
The discretizedL1 distance is defined as

d̃L(f, g) =
n∑

i=0

|fi − gj |
n

wheref andg are the distributions (defined as a PDF or CDF) andn is the number of samples.
Similarly, the discretized Hellinger distance is defined as

d̃H(f, g) =

√√√√
(

n∑

i=0

(fi − gj)2

2n

)

To calculate these distances, we compare each bin of the histograms of the data distribution and the canonical
distribution. We sum the difference and divide by the number of bins to get a single distance value for each distribution
across the spatial domain.
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3.2.5 Interval Size

Another measure of comparison is the size of the interval over which the data distribution is defined. A distribution
with a larger interval will have a larger range within which the variable value lies and, thus, the probability of a
particular point is diminished. To evaluate the size of the distributions, we find the minimum and maximum values of
each distribution and define the measure as

ri = max
i
−min

i
.

We use both the shape and interval measures to quantify the difference between distributions.

3.3 Visualization

The goal of the visualization is to quickly compare the data distributions across the spatial domain. Our approach
leverages a color map to convey the difference measure such that areas of similarity all retain the same color, while
regions of difference quickly stand out. This piece of the visualization provides a way to display of all distributions
simultaneously, which is suitable for 2D presentations such as publications. In the stand-alone application, we also
provide interactive features. These include a pointer that can be moved to each grid point in the spatial domain, and
the corresponding data distribution is displayed as a traditional PDF or CDF plot. We also provide the user with the
ability to change the comparison distribution or the number of bins used to calculate the histogram.

3.3.1 Color Mapping

To express the difference measure discussed above, we generate a surface based on the spatial domain of the data,
and color map each point according to its associated differences. Our difference measure is composed of two values,
a shape measure, and an interval measure. We use a 2D color map to simultaneously display these values across the
domain, as shown on the left side of Fig. 2. The color map encodes the shape measure across color and the interval
length is displayed as a change in value of the shape measure color. This leads to darker (more black) colors that have
a longer interval length and lighter (less black) colors with a short interval. This approach corresponds to the idea that
the longer the interval the less strong is the probability of any particular point within that interval and, thus, the darker,
or less emphasized, the color of that point.

While the simultaneous display of both values of the difference measure is concise, it can be problematic to
precisely identify variations in color versus variations in value. This can be seen in Fig. 2, left, where the increasing
darkness of the blue lines is somewhat subtle. While this data set is regularized in that variance is increasing from
left to right, other data sets may not have such structure and detecting subtle differences between brightness may
be difficult. To alleviate this problem, we have provided a toggle to switch from an overlaid display to a side-by-
side display where the shape and interval measures are shown separately, as seen in Fig. 2, right. Similarly, to the

FIG. 2: (Left) Two-dimensional color map displaying the two values of the difference measure. (Right) Separating
the difference measure values into two displays, each using a different one-dimensional color map.

International Journal for Uncertainty Quantification



Visualization of Probability and Cumulative Density Functions 405

simultaneous display, shape is encoded though color, and interval length as a grayscale ramp that corresponds to
changes in value.

One of the problems with using color maps is the inadequacy of the color map as a tool to effectively interpret
quantitative data values [18]. Color maps convey a general idea of the data value; a viewer sees a color in the data
space and subsequently matches that color in a color bar. From the legend of the color bar, the user must roughly
guess the precise quantitative value. To facilitate a precise quantitative understanding, we have given the user a
pointer that can be moved around the spatial domain. The position of the pointer is then reflected as crosshairs in
the color map, as shown in Fig. 3. From this exploration, the user can access the precise values of the difference
measure.

3.3.2 Display of PDF and CDF

The color maps described above display the difference measure between data distributions and a canonical distribution
in a global way; every distribution is represented as the two values of the difference measure, and these values are
concurrently displayed. This type of view shows general trends, clusters, and discontinuities across the data space,
which leads to the need to more fully investigate features of the data. Thus, the user needs a way to start exploring
the individual data distributions. Unfortunately, displaying all of the data distributions at once leads to massive visual
clutter and an unreadable display, a leading reason for our visualization approach to aggregate the distributions through
a distance measure.

Because of the complexity of showing detailed information about each data distribution, we have chosen to provide
the user with a pointer to select individual data locations. As stated above, the location of this pointer is reflected in
the color bar giving precise values of the difference measure. In addition, we display the PDF (or CDF) of that single
data distribution, as well as the PDF (or CDF) of the comparison distribution. This can be seen in the lower-left and
right-hand corners of Fig. 1.

Traditional displays of PDFs and CDFs plot probability (or accumulated probability) versus location as a graph.
We use this approach as well, showing an individual data distribution as either a PDF or CDF plot. The user can toggle
between the two, and this choice is reflected in both the display of the data distribution as well as the comparative
distribution. The difference between a PDF and a CDF of the same data set can be seen in Figure 4. In this image, the
PDF of the data set is shown on the left. The user can see the density of the distribution is highest just left of the mean
value. On the right, the CDF of the same data is shown. Here, the user can see the accumulation of density across the
data values.

3.4 Interaction

We have designed ProbVis to be a general tool for the exploration of a collection of data distributions. To this end, we
provide users with a variety of interaction devices to allow them to investigate their data in a manner in which they
are comfortable.

FIG. 3: The color bar, right, displays the range of the two-dimensional color map as well as a set of crosshairs to
explicitly display the distance measure at the user-selected point, as shown on the left.
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FIG. 4: The individual data distributions can be plotted as either a PDF (left) or a CDF (right).

3.4.1 Histogram Estimation

The PDF and CDF are continuous functions describing the behavior of a distribution. In order to represent these
functions computationally, we must approximate them through some sort of kernel density estimator. In this prototype,
we use the histogram as our approximation. The formulation of the histogram sorts the data into buckets where a data
point falls into a bucket if its value lies within the interval range of that bucket; the interval of a bucket being an
equally sized partition of the data domain. The value of the histogram at each bucket is then taken to be the number
of data samples within the bucket over the total number of samples. This formulation is highly reliant on the number
of buckets. As shown in Fig. 5, as the number of bins estimating a distribution decreases, the smoother the histogram
approximation. Because of this sensitivity, we have given the user the ability to change the number of bins used for
the histogram estimation. This is particularly important because the size of features within data sets change and an
arbitrary number of bins may miss key characteristics of the data.

3.4.2 Comparative Distributions

To allow for the investigation of general data distributions, we provide the user with the ability to choose the form of
the comparative distribution. Three canonical distribution types are provided; these are displayed in Fig. 6. A uniform,
Gaussian, or beta distribution can be chosen and the user is relied upon to decide which is the most appropriate. The
choice to include these particular distributions in ProbVis is semi-arbitrary; these types of distributions are commonly
used to describe simulation results. However, they are by no means the only distributions users are interested in. In
fact, the ProbVis system supports the use of other canonical distributions through small extensions to the source code.

3.4.3 Shape Measures

We have implemented two difference measures for shape: theL1 and Hellinger distances as defined in Section 2.1. The
user can switch between the two measures—the results of which can be seen in Fig. 7. We have chosen these measures
because they are standard measures of difference and the user may be more familiar or comfortable with one versus

FIG. 5: When the number of bins is changed, an update button appears allowing the user to re-calculate the underlying
histogram, which is used as an approximation to the PDF.
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FIG. 6: The user is given options to choose the canonical distribution against which the data are compared.

FIG. 7: The difference between theL1 and Hellinger distances.

the other. While our choice of Hellinger andL1 distance was motivated by wanting to compare PDFs, other distance
measures may be more desirable for other applications or data sets. For example, a user may be more interested in
measures focusing on divergence rather than distance and, thus, use a measure from the family of contrast measures
rather than the distance metrics we have implemented thus far. Again, the software system can be easily extended to
support these other measures of shape to enable domain-specific exploration.

3.5 Implementation

The ProbVis system presented in this paper is implemented using the processing programming language [19], which
encapsulates a Java-based environment for fast prototyping. All of the graphics are implementing using OpenGL
libraries. The software and data are freely available at http://www.sci.utah.edu/research/visualization/422-uncertainty-
vis.html.

4. RESULTS

In this section we present a demonstration of the features of our density function system. We first present a collection
of canonical examples on regular domains to help demonstrate particular features of our visual mapping and how
they are to be interpreted by the user. We then present images generated by our software system when applied to an
application in electrophysiology. This example involves the solution of the elliptic bioelectric forward problem on an
unstructured triangular finite element mesh in which traditional linear finite-elements are used for the discretization
in space and gPC stochastic collocation is used to represent the stochastic variation. Note the underlying stochastic
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problem and solution technique are not very important in our demonstration. The visualization requires only the
solution fields expressed by finite-element approximation and the gPC approximation (with corresponding PDFs).

4.1 Canonical Examples

To help the reader understand the mapping of stochastic information to visual cues as discussed in Section 3, we have
constructed a 2D rectangular mesh over which we have specified a function with a known PDF. We have constructed
two such examples, one to demonstrate variation in the shape and one in the interval measure.

Spatial Domain: We have constructed a 2D rectangular mesh over which we define a collection of distributions.
To create the mesh, we first define a set of points regularly latticed across the spatial domain. We then triangulate the
set of points by choosing four neighboring points and creating two triangles.

Shape: To demonstrate the shape measure (either theL1 norm or the Hellinger distance) we have created a data
set that is a linear blend from a Gaussian to a uniform distribution. This is demonstrated in Fig. 8. The left image in
Fig. 8 shows the overlay view with the pointer toward the left side of the spatial domain. The dark blue color under
the pointer shows a large value in the variance direction, but a small value (0.0) inL1. As seen in the PDF display, the
data look very much like a Gaussian. On the right, the pointer is on the right side of the spatial domain. This indicates
that the data distribution is less of a Gaussian than the previous pointer location. In addition, and as seen in the PDF
display, the distribution is close to uniform; thus, the variance of the data is very low.

Interval : The interval measure evaluates the strength of the probabilities based on the variation in the data samples.
To demonstrate this, we show a uniform distribution at each location in the spatial domain (Fig. 9). However, we
increase the size of the interval width withx-axis. Thus, the shape measure returns a value of 0.0, indicating a uniform
distribution (left side of image). However, the interval measure (shown on the right) clearly displays the increase in

FIG. 8: Demonstrative data showing variation in shape across the spatial domain. The data are a linear blend from
Gaussian on the left (left image) to uniform on the right (right image).

FIG. 9: Variation in interval width. A uniform distribution is shown across the spatial domain, with variations in
interval width increasing along thex-axis.
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interval width as the increase of black in the grayscale color map. This is also demonstrated in the data from Figs. 1
and 2. The data in these images alternate between a Gaussian or uniform distribution and increase the interval length
along thex-axis. Thus, for both data sets, as the interval width increases along thex-axis the value of the color
decreases, indicating more uncertainty in the difference measure.

4.2 PDF Visualization of an Electrophysiology Simulation

This example is based upon the data set used in [20] in which we were interested in solving the bioelectric forward
problem. The data set consists of a triangular finite-element method obtained through the segmentation of MRI data.
There are618 vertices and1071 triangles in the computational mesh. To replicate the results in [20] (which employed
the gPC Galerkin approach) the gPC collocation approach was used with nine quadrature points in the stochastic
direction. Only perturbations with respect to a single uniformly distributed random variable are considered.

Figures 10–12 show the results of our visualization of these data using the three canonical distributions. By chang-
ing the type of the canonical comparator distribution it is easy to identify regions with particular distribution types.
For example, Fig. 10 highlights, in blue, the area around the hole in the middle representing the heart. In this area, the
data samples all have the same value (as shown in the PDF display) and, thus, the data distribution is best represented
by a uniform distribution. As we move away from the heart, the data change distribution type. Figure 11 shows an area
where the distributions closely resemble a normal distribution. This type of interaction inspired the inclusion of the
beta distribution. As we moved the pointer around to each of the data distributions we noticed that the PDFs reminded
us of the beta distribution. Thus, we added this comparator distribution to satiate our own curiosity; the results of
which are shown in Fig. 12. We expect the exploration of other data sets to generate the need for more comparison
distributions and, thus, we have made this possible through a simple extension of our source code.

Through the use of this tool, we are able to explore the large bioelectric data set. Previous visualizations of these
data have used separate color maps of mean and standard deviation; however, such visualizations assume a Gaussian
distribution across the entire spatial domain. Our tool exposes this assumption as false and shows where the data are
Gaussian and where they diverge from Gaussian. In addition, our tool elucidates on where the distributions are similar

FIG. 10: Visualization of electrophysiology simulation data using the Hellinger distance and a uniform comparison
distribution.
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FIG. 11: Visualization of electrophysiology simulation data using the Hellinger distance and a normal comparison
distribution.

FIG. 12: Visualization of electrophysiology simulation data using theL1 distance and a beta comparison distribution.

in shape (as well as interval) and, thus, have similar responses to the simulation. By using this tool we are able to
display a much larger amount of information on the data than before and, thus, tease out relationships between areas
of the data that had previously been undiscovered.
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5. SUMMARY

In this paper we have presented the mathematical formulation and implementation details of a software system de-
signed for displaying PDFs over 2D (spatial) domains. Although the concept of the PDF, and its normal visualization
as a histogram, is very familiar, it is very challenging to construct visualization methodologies that allow the user to
interpret “correlations” (in the sense of interdependency) between the PDFs of a function at different spatial locations.
The purpose of this software effort was to provide an exploratory tool that (1) provided through contouring of normed
differences of the PDFs of the function against a specified or optimally computed ansatz and (2) allowed the user to
then interactively explore the field and the particular PDFs available at any particular data point.

The mathematical extension of this work to 3D fields is straightforward; however, the many visualization issues
such as glyph occlusion will need to be addressed in future work. This work provides an example of effective inter-
action between the UQ and visualization communities in attempting to solve a specific mathematical abstraction and
the visualization needed.
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