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We consider in this paper the problem of building a fast-running approximation—also called surrogate model—of a
complex computer code. The co-kriging based surrogate model is a promising tool to build such an approximation when
the complex computer code can be run at different levels of accuracy. We present here an original approach to perform
a multi-fidelity co-kriging model which is based on a recursive formulation. We prove that the predictive mean and the
variance of the presented approach are identical to the ones of the original co-kriging model. However, our new approach
allows to obtain original results. First, closed-form formulas for the universal co-kriging predictive mean and variance
are given. Second, a fast cross-validation procedure for the multi-fidelity co-kriging model is introduced. Finally, the
proposed approach has a reduced computational complexity compared to the previous one. The multi-fidelity model is
successfully applied to emulate a hydrodynamic simulator.

KEY WORDS: uncertainty quantification, surrogate models, universal co-kriging, recursive model, fast
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1. INTRODUCTION

Computer codes are widely used in science and engineering to describe physical phenomena. Advances in physics
and computer science lead to increased complexity for the simulators. As a consequence, to perform a sensitivity
analysis, an uncertainty quantification, or an optimization based on a complex computer code, a fast approximation
of it—also called surrogate model—is built in order to avoid prohibitive computational cost. A very popular method

of build ing asurrogate model is the Gaussian process regression, also named kriging. It corresponds to a particular
class of surrogate models which makes the assumption that the response of the complex code is a realization of a
Gaussian process. This method was originally introduced in geostatistics in [1] and it was then proposed in the field
of computer experiments in [2]. During the last decades, this method has become widely used and investigated. The
reader is referred to the books [3-5] for more detail about it.

Sometimes low-fidelity versions of the computer code are available. They may be less accurate but they are com-
putationally cheap. A question of interest is how to build a surrogate model using data from simulations of multiple
levels of fidelity. Our objective is hence to build a multi-fidelity surrogate model which is able to use the information
obtained from the fast versions of the code. Such models have been presented in the literature [6], [7—11]. Besides, the
highest-fidelity output could also correspond to field data and the low-fidelity ones could be obtained from physical
models. In such case, the suggested methodology can be used in the context of validation (see [8, 12, 13]). Further-
more, in our framework the cheap code versions are not considered as computationally negligible. Therefore, they
cannot be run intensively and considered as known as in [10].
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The first multi-fidelity model proposed in [6] is based on a linear regression formulation. Then this model is
improved in [11] by using a Bayes linear formulation. The reader is referred to [14] for further detail about the Bayes
linear approach. The methods suggested in [6, 11] have the strength to be relatively computationally cheap but as
they are based on a linear regression formulation, they could suffer from a lack of accuracy. Another approach is to
use an extension of kriging for multiple response models which is called co-kriging. The idea is implemented in [7],
which presents a co-kriging model based on an autoregressive relation between the different code levels. This method
turns out to be very efficient and it has been applied and extended significantly. In particular, the use of co-kriging for
multi-fidelity optimization is presented in [9] and a Bayesian formulation is proposed in [10].

The strength of the co-kriging model is that it gives very good predictive models but it is often computationally
expensive, especially when the number of simulations is large. Furthermore, large data sets can generate problems such
as ill-conditioned covariance matrices. These problems are known for kriging but they become even more difficult for
co-kriging since the total number of observations is the sum of the observations at all code levels.

In this paper, we adopt a new approach for multi-fidelity surrogate modeling which uses a co-kriging model but
with an original recursive formulation. In fact, our model is able to builetlavel co-kriging model by building
independent krigings. An important property of this model is that it provides predictive mean and variance identical
to the ones presented in [7]. However, our approach significantly reduces the complexity of the model since it divides
the whole set of simulations into groups of simulations corresponding to the ones of each level. Therefore, we will
have s submatrices to invert which is less expensive and ill-conditioned than a large one and the estimation of the
parameters can be performed separately (Section 2.3).

Furthermore, a strength of our approach is that it allows to extend classical results of kriging to the considered co-
kriging model. The two original results presented in our paper are the following ones: First, closed-form expressions
for the universal co-kriging predictive mean and variance are given (Section 4). Second, the fast cross-validation
method proposed in [15] is extended to the multi-fidelity co-kriging model (Section 5). Finally, we illustrate these
results in a complex hydrodynamic simulator (Section 6).

2. MULTI-FIDELITY GAUSSIAN PROCESS REGRESSION

In Subsection 2.1, we briefly present the approach to build a multi-fidelity model suggested in [7] that uses a co-
kriging model. In Subsection 2.2, we detail our recursive approach to build such a model. The recursive formulation
of the multi-fidelity model is the first novelty of this paper. We will see in the next sections that the new formulation
allows us to find original results about the co-kriging model and to reduce its computational complexity.

2.1 The Classical Autoregressive Model

Let us suppose that we haydevels of code(z:(x)):=1.... s Sorted by increasing order of fidelity and modeled by
Gaussian processé€g;(x))i=1,. s,z € U C R?. 2 is ad-dimensional vector representing the input variables of the
computer codes antl is the input parameter space. We hence consider:tifa) is the most accurate and costly
code that we want to surrogate afxd(x));=1,.. s—1 are cheaper versions of it with () the less accurate one. We
consider the following autoregressive model witk 2, . .. | s:

Zi_1(x) L &(x), Q)

where
515(3;‘) ~ gp(ftT(x)ﬁt? O—?Tt(mv‘r/))> (2)

and
Zi(z) ~ GP(f] (z)B1, 011 (2, 2')). ©)

Here,” stands for the transpose, denotes the independence relationsip, stands for Gaussian Process, ()
is a vector ofy;_, regression functiong; () is a vector ofp, regression functions,(x, z’) is a correlation function,
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B. is ap;-dimensional vector,, , is aq;—1-dimensional vector, anef is a positive real number. Since we suppose
that the responses are realizations of Gaussian processes, the multi-fidelity model can be built by conditioning by the
known responses of the codes at the different levels.

The previous model comes from the article [7]. It is induced by the following assumptios: U; if we know
Z—1(z), nothing more can be learned abdfj{x) from Z,_; («’) for  # z’. It should be noticed that this Markov
property does not imply constant adjustment coeffici¢pts: (z));—2.... . Indeed, we have foratl=2,...,s

.....

cov (Zy(x), Zy—1(x))
var (Zy—1(x))

However, in the model presented in [7], the adjustment param@igrs)),—- ..., are constant. We show in a practical
application (Section 6) that the extension(pg(x));=2, .. s depending o is worthwhile.
Let us considez®) = (2T,...,2T)T the Gaussian vector containing the values of the random processes
(Zi(x))i=1,...,s at the points of the designs of experiments (finite subset$)ofD;);—;,... s with Dy C D,_; C
- C D;. We denote by:®) = (27,...,2T)T the vector containing the values 0f; (= ))tfl,...,s at the points in
(Dy)i=1,....s- The nested property for the designs of experiments is not necessary to build the model but it allows
for a simple estimation of the model parameters. Since the codes are sorted in increasing order of fidelity it is not

pr—1(x) =

an unreasonable constraint for practical applications. By dengtirg(B7,...,BT)T the trend parameterg,, =
(BT FAT Bp? 1)T the adjustment parameters, aotl = (07,...,02) the variance parameters, we have for any
z e U:

[Z,(@)| 2 = 200, B, Bp, 0°] ~ N (mz, (2), 5%, (2)) ,
where

mz, (@) = (@) + ts(x) (V)T — HOB), 4)
and

sy, (@) = vg, (2) — ts(2)T (V) "M (). ()

The Gaussian process regression mean(x) is the predictive model of the highest fidelity responge:) which
is built with the known responses of all code levels. The variance?, (z) represents the predictive mean squared
error of the model.

The matrixV(*) is the covariance matrix of the Gaussian vedé?, the vectort,, () is the vector of covariances
betweenZ,(x) andZ(*), H(*) is the mean o(*), h(*)(x)T B is the mean ofZ,(z), andv% () is the variance of
Z,(x). All these terms can be expressed in terms of the experience vector at(8yahd of the covariance between
Zy(xz) and Zy (z') (7)

T=<<ﬁm<x>) <Hm ) P >f£1<x>,ff<x>>, (6)

cov(Z(x), Zy (2')|02, B, Bp) (H pi(w >cov Zy(x), Zp(2')|0%, B, Bp), WVt >t 7
1=t/
and
t t—1
cov(Zi(z), Ze(2')|0®, B, Bo) = > _ o7 | [] pi(w)pi() | rj(x, ). (8)
j=1 i=j
Furthermore, we have
[H®) o [H®],
[H®)e1 ... [HY))s,

where[H®)]; ; is an; x p; matrix given by
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i—1
H 5= | O enD1] | © (D),
k=j

wherel,; is ap;-vector of onesp stands for the element by element matrix prodpgt,D; ) is the vector containing
the values oby(x) for 2 € D; and we use the conventic(r@};li pk(Di)lgj) -1, 17

Uz 7N

Remark. If the cheap codes at levels... ¢, t < s, are computationally negligible, they can be considered as
2.2 Recursive Multi-Fidelity Model

In this section, we present the new recursive formulation of the multi-fidelity model. Let us consider the following
model fort = 2,...,s:

Zi(x) = pr1(2) Zy 1 () + 84 (),
Zi_1(z) L 8:(x), )
pi—1(z) = g{1(2)Bp,

where Z; 1 (x) is a Gaussian process with distributif, , (z)|Z¢—1 = 2= B, 1 B,, ., 07 ], 8:(z) is a

Gaussian process with distribution (2) abd C D,_; C --- C D;. The unique difference with the previous model

is that we expresg,(x) (the Gaussian process modeling the response atteasla function of the Gaussian process
Z;_1(z) conditioned by the values®=") = (zy,...,2_) at points in the experimental design SEf% )i=1,.. 1—1-

As in the previous model, the nested property for the experimental design sets is assumed because it allows for efficient
estimations of the model parameters but it is not required to derive the predictive distribution. We hawefor. . | s

and forx € U:

(2@ 2® = 20, Be. By, 0] ~ N (nz (@), 5%, () (10)
where
nz, (2) = pr—1(x)uz,_, (@) + [ (@)Be + ri ()R (20 — pe—1(Dy) © ze1(Dy) — FiBy) (11)
and
0%, (x) = p7_1(x)0%, , (x) + of (1 —r/ (x)R; 'ri(x)) . (12)

Ry is the correlation matri?, = (r¢(z,2"))s..ep,, ri () is the correlation vector! (z) = (r¢(z,2"))wep,,
z¢(D;—1) the vector containing the known valuesXf(x) at points inD,_,, andF; is the experience matrix contain-
ing the values off;(z)” on D;.

The meanuy, (z) is the surrogate model of the response at level < ¢ < s, taking into account the known
values of the first levels of response€g;);=1.... . and the varianceQZt (x) represents the mean squared error of this
model. The mean and the variance of the Gaussian process regression abkingl expressed in function of the
ones of levek — 1, we have a recursive multi-fidelity metamodel. Furthermore, in this new formulation, it is clearly
is a classical result of kriging which states that for covariance kernels of theform’) = o%r(x,2’), the mean
of the kriging model is independent of. Another important strength of the recursive formulation is that contrary
to the formulation suggested in [7], once the multi-fidelity model is built, it provides the surrogate models of all the
response$z;(z))i=1.._s-

We have the following proposition.

Proposition 1. Let us consider nested designs of experimémg;—,, s, i.e.,Ds C Ds_q1 C --- C Dy. We have
the following equalities:

nz (x) = mz(z),

o7 (@) = sz, (o),
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wherepz, (z) andmy, (x) are defined in (11) and (4) and; (z) ands? () are defined in (12) and (5).

The proof of the proposition is given in Appendix A.1. It shows that the model presented in [7] and the recursive
model (9) have the same predictive Gaussian distribution. Our objective in the next sections is to show that the
new formulation (9) has several advantages compared to the one of [7]. First, its computational complexity is lower
(Section 2.3); second, it provides closed-form expressions for the universal co-kriging mean and variance contrarily
to [7] (Section 4); third, it makes it possible to implement a fast cross-validation procedure (Section 5).

2.3 Complexity Analysis

The computational cost is dominated by the inversion of the covariance matrices. In the original approach proposed in
[7] one has to invert the matrik, of sized_;_, n; x > ;_, n; wheren,; = |D;| denotes the number of observations
atleveli =1,...,s.

Our recursive formulation shows that buildingsdevel co-kriging is equivalent to build consecutive krigings.
This implies a reduction of the model complexity. Indeed, the inversion wiatrices(R;);=1,... s Of size (n; x
ny)=1,....s Wheren, corresponds to the size of the vectprat levelt = 1, ..., s is less expensive than the inversion
of the matrixV; of sizer’:1 n; X Zle n,. We also reduce the memory cost since storingsthmatrices R;);=1,... s
requires less memory than storing the matfjxFinally, we note that the model with the recursive formulation is more
interpretable since we can deduce the impact of each level of response into the model error(ﬂnﬁga@ht:17,__7s.

3. PARAMETER ESTIMATION

We deal in this section with the estimation of the model parameters. First, we describe the posterior distribution of
P = (B, Bp,0?) given the correlation kernelg(x, 2'))¢=1,... s in Section 3.1. Then, we describe the considered
method to estimatér;(z, z’)):=1,... s in Section 3.2.

,,,,,

3.1 Bayesian Estimation of Parameters

We present in this section a Bayesian estimation of the paranpeter(B, 3,,, 0?) focusing on conjugate and non-
informative distributions for the priors. This allows us to obtain closed-form expressions for the estimates of the
parameters. Furthermore, from the non-informative case, we can obtain the estimates given by a maximum likeli-
hood method. The presented formulas can hence be used in a frequentist approach. We note that the recursive for-
mulation and the nested property of the experimental designs allow to separate the estimations of the parameters
(Bﬁﬁpt—mo—%)t:Q ~~~~~ s and(ﬁlvo—%)'

We address two cases in this section:

e Case (i): All the priors are informative
e Case (ii): All the priors are non-informative

It is of course possible to address the case of a mixture of informative and non-informative priors. For the non-
informative case (ii), we use the “Jeffreys priors” [16]:

1 _ _ 1
p(Bilod) o 1, p(0}) o 5, plBp,, Bel2 D, 0F) o1, pl(0F0Y) o —, (13)
1 t

wheret = 2, ..., s. For the informative case (i), we consider the following conjugate prior distributions:

[B1lo7] ~ Ny, (b1, 0TW7),

_ by W, 0
H‘)’Pt—u Bt|z(t 1)76152] NN(Ir—l‘H)t (bt = ( Zfl ) 76?‘/2 = Gf < 6 ! WtB )) ’

[G%] Nzg(“l?’yl)7 [Gglz(til)] Nzg(ochyt)a
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with b; a vector of sizep;, bY_, a vector of sizey;_1, bf a vector of sizep;, W7 ap; x p; a correlation matrix,

WP ag-1 x g1 correlation matrix,WtB ap; x p; correlation matrixxi,v1, oz, y: > 0, andZG stands for the

inverse Gamma distribution. The choice of conjugate Gaussian-inverse-Gamma priors is classic in the literature to
perform Bayesian inference of multivariate Gaussian distribution (see [4]). These informative priors allow the user to
prescribe the prior means and variances of all parameters. Furthermore, the choice of conjugate priors allows us to
have closed-form expressions for the posterior distributions of the parameters (the reader is referred to [4] for more
detail about the calculations). Indeed, we have:

“31|Zla U?] NNIh (El’vlvzl)’ “301,717 Bt|z(t)76t2,] NNQt71+pt(Et’vt72t)’ (14)
where, fort > 2:
R wo R7Y owit ,
e T ol W )
t t t 1

Xy = L 1 y Vi = pl ) (15)

R, T .s

744 . gTt
[Ht o Ht} (ii) t o2 Zt (ii)

with H, = Fy andfort > 1, H; = [G;—1 © (Zt—1(Dt)1§H) F;] whereG,_, is the experience matrix containing the

values ofg; 1 (z)T in Dy andl,, , is ag,—i-vector of ones. Furthermore, we have for 2:

219 ~ 76 (ar. %) (16)
where . . .
Qi = { 2ve + (b = A)T(We o [HI R H ™) 70 = M) + Qe ()
Q1 (if)

with Qt = (Zt - Hti\t)TR;l(Zt - Htf\t) ,5\t = (Hg“R;lHt)ingthith, and

n

5t (i)

“TN — Dt — qt—1 ’
0 (i)

with the conventiony, = 0. One can note that the expression(f for the casgi) can be obtained thanks to the
Woodbury matrix formula [17].

We highlight that the maximum likelihood estimators for the paramegrand (3,, ,,[3:) are given by the
means of the posterior distributions in the non-informative case. Furthermore, the restricted maximum likelihood
estimate of the variance parametércan also be deduced from the posterior distribution of the Bayesian estimation
in the non-informative case and is given 8§\, = Q:/2a,. The restricted maximum likelihood estimation is a
method which allows to reduce the bias of the maximum likelihood estimation [18].

3.2 Estimation of the Hyper-Parameters

In the previous sections, we have considered the correlation kémétsz’)),=1,... s as known. In practical appli-
cations, we choose these kernels in a parameterized family. Therefore, we consider kernels su¢h, tHat=

re(x,2’;0;). Fort = 1,...,s the hyperparamete, can be estimated by maximizing the concentrated restricted
log-likelihood [4] with respect t®;:
log (det (Ry)) + (ny — pr — qi—1) log ((ﬁREML) , a7

with the conventionyy = 0 andG; ppy,y, is the restricted likelihood estimate of the variange(see Section 3.1). This
minimization problem has to be solved numerically.
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It is a common choice to estimate the hyperparameters by maximum likelihood [4]. It is also possible to esti-
mate the hyperparametdi;),—1 ... s by minimizing a loss function of a Leave-One-Out Cross-Validation procedure.

Usually, the complexity of this procedure 3 ((ijl ni)4). Nonetheless, thanks to Proposition 3, it is reduced

to O (Zf:l nf’) since it is essentially determined by the inversions of dhmatrices(R;);=1,... s. Therefore, the
complexity for the estimation of9;);—1,... s is substantially reduced. Furthermore, the recursive formulation of the
problem allows us to estimate the parame{€3,—1,... ; one at a time.

4. UNIVERSAL CO-KRIGING PREDICTIVE MEAN AND VARIANCE

We can see in Eq. (10) that the predictive distributiorZgfz) is conditioned by the observation$®) and the pa-
rameters, 3,, ando?. The objective of a Bayesian prediction is to integrate the uncertainty due to the parameter
estimations into the predictive distribution. Indeed, in the previous subsection, we have expressed the posterior distri-
butions of the variance parametéos);—; ., conditionally to the observations and the posterior distributions of the
trend parametet$; and(B,, ,, B+):=2,....s conditionally to the observations and the variance parameters. Thus, using
the Bayes formula, we can easily obtain a predictive distribution only conditioned by the observations by integrating
into it the posterior distributions of the parameters.

As a result of this integration, the predictive distribution is not Gaussian. In particular, we cannot have a closed-
form expression for the predictive distribution. However, it is possible to obtain closed-form expressions for the
posterior meai[Z, (z)|Z2(*) = 2(*)] and varianc&/ar(Z,(z)| 2(*) = 2(*)).

The following proposition giving the closed-form expressions of the posterior mean and variance of the predictive
distribution only conditioned by the observations is a novelty. The proof of this proposition is based on the recursive
formulation which emphasizes the strength of this new approach. Indeed, the derivation of the posterior mean and
variance from the model suggested in [7] involves complex algebra based on the evaluation of higher crossed moments
of regression parameters and adjustment parameters and it has not been carried out anywhere as far as we know.

Proposition 2. Let us consides Gaussian processég;(x))=1,....s and2() = (Z2¢)i=1,... s the Gaussian vector
containing the values diZ;(x)),=1,... s at points in(D;)=1,... s With Dy C Ds_1 C --- C Ds. If we consider the
conditional predictive distribution in Eq. (10) and the posterior distributions of the parameters given in Egs. (14) and
(16), then we have far=1, ..., s:

E[Z,(z)|Z2® = 2] = bl (2)S vy + 7L (@) Ry (2 — HiZpvy) (18)
with h{ = f and fort > 1, hf (z) = (g:-1(2)TE[Zi—1(x)|Zi—1 = 2z-1] f{ (x)). Furthermore, we have
Var(Z,(2)| 20 = &) = 65, () Var(Za ()| 2070 = 2070) + Q(QU (1= (2R ()
-
+ (b =T @) R ) S (0] — o (o) R ) (19)

with 62 (z) = p7_1 (%) + ge—1(2)" Bt pge—1(2), pr—1(2) = ge—1(x)T [S¢ves,....q,_,» @NAE, ¢ is the submatrix of
elementq1,...,q-1) x (1,...,q:—1) of &;.

The proof of Proposition 2 is given in Appendix A.2. We note that, in the mean of the predictive distribution,
the parameters have been replaced by their posterior means. Furthermore, in the variance of the predictive dis-

tribution, the variance parameter has been replaced by its posterior mean and thgXerm? (z)R; ' H,) &,
(th — rtT(x)Rt_lHt)T has been added. It represents the uncertainty due to the estimation of the regression param-

eters (including the adjustment coefficient). We call these formulas the universal co-kriging equations due to their
similarities with the well-known universal kriging equations (they are identicas fer1).
5. FAST CROSS-VALIDATION FOR CO-KRIGING SURROGATE MODELS

The basic principle of validation is to split the experimental design set into two disjoint sets; one is used for training
and the other for monitoring the performance of the surrogate model. Cross-validation extends it by considering
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several different couples of test and training subsets. The idea is that the performances on the test sets can be used as
a proxy for the generalization error. A particular case of this method is the Leave-One-Out Cross-Validation (noted
LOO-CV) where as many test and training sets as observations are obtained by removing one observation at a time.
Another, widely used procedure is thecross validation where the experimental design set is partitioned ietpial
size subsets. Then, one of the subsets is used as a test set and the others are used for training. The procedure is repeated
k times such that each subset is used once as a test set. These procedures can be time-consuming for a kriging model
but it is shown in [5, 15, 19] that there are computational shortcuts. Our recursive formulation allows to extend these
ideas to co-kriging models. Furthermore, the cross-validation equations proposed in this section extend the previous
ones even fos = 1 (i.e., the classical kriging model) since they do not suppose that the regression and the variance
coefficients are known and they concern every kind of cross-validation procedures (i.e., in particular the LOO-CV
and thek-fold CV). Therefore, those parameters are re-estimated for each training set. We note that the re-estimation
of the variance coefficient is a novelty which is important since fixing this parameter can lead to huge errors for the
estimation of the cross-validation predictive variance when the number of observations is small or when the number
of points in the test set is important.

If we denote by¢,, the set of indices ofi.s; points in D, constituting the test sdb.s, and&;, 1 < ¢t < s, the
corresponding set af.s indices inD;—indeed, we havé), C D, C --- C Dy, thereforeDyosy C D;. The
nested experimental design assumption implies that, in the cross-validation procedure, if we remove a set of points
from D, we can also remove it from;, 1 <t < s.

The following proposition gives the vectors of the cross-validation predictive errors and variances at points in the
test setD;.s; When we remove them from the leveldo s whereu < s. In the proposition, we consider that we are in
the non-informative case for the parameter estimation (see Section 3.1) but it can be easily extended to the informative
case presented in Section 3.1.

Notations: If & is a set of indices, ther; ¢ is the submatrix of elements x & of A, af is the subvector of
elements;, of a, B|_¢) represents the matrik in which we remove the rows of index C|_; _; is the submatrix of
C in which we remove the rows and columns of indgxandC|_; ¢ is the submatrix of” in which we remove the
rows of indexé and keep only the columns of indéx

.....

made up with the points of indicds, of D, and¢, the corresponding indices of the pointsiin with 1 < ¢ < s.
Furthermore, we denote by _;,,t = 1, ..., s, the posterior mean of the regression and the adjustment parameters

( EH BT processed without the observations indexed hyThen, if we note: 7, ¢, the errors (i.e., real values

minus predicted values) of the cross-validation procedure atteuek ¢ < s, when we remove the points @
from levelsu to ¢, we have

(ezier = Pr-1(Deest) @€z, ye0) [Re e, o = (B (2= Hdme)] ey (20)
with ez, ¢, = 0 wheni < u,
M—g, ([H N e KelHe)—e,) = [H{ |- e, Ke26(Dt \ Diest),
Pt—1(Drest) = 97— 1(Drest)[Ae,—&,]1,....q,, @nd
-1
K= (R ooy = B e (B ) een) (BT (1)

Furthermore, if we noteQZt ¢, the variances of the corresponding cross-validation procedure, we have

-1
0%t = o, 16, (Diest) ©0%, ¢, + 0} diag (([Rtl][at,at]) ) Vs, (22)
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with S, e, = [((HT ) Kol i) ']

L
yeesQt—1,1,.0,qe 1]

6-?)t_1,—£t(Dtcst) = gz?ll(Dtcst) (Ept_l,—éf, + P\t.,—cit]l,..»,qtq [At,—éf,]{...,qt_l) gt—l(Dtcst)a

and

T
0.?_5' _ (Zt(Dt \ Dtest) - [Ht][_at])\ta_‘{—vt) Ky (Zt(Dt \Dte“) — [Ht][—at]xt,—a,,) ’ (23)
oo Ny — Pt — qt—1 — Thest

Wherecfhai = 0 wheni < u, niest IS the length of the index vectdy,, H; = [Gi—1 © (zt_l(Dt)quH) Fi] and
-1
Vi=U" ([H )—e K[ Hil—e,))  Us, (24)

with 24; = (([Rt_lhat,at]f1 [Rt_lHt][at])'

We note that these equations are also valid when 1, i.e., for the kriging model. We hence have closed-form
expressions for the equations of-dold cross-validation with a re-estimation of the regression and variance parame-
ters. These expressions can be deduced from the universal co-kriging equations. The complexity of this procedure is

essentially determined by the inversion of the matrié@@;l} (£ k. ]) of Siz€niest X Niost. FUrthermore, if

u=t,...,s
we suppose the parameters of variance and/or trend as known, we do not have to axfgn@ymdlor?\t7, z, (they
are fixed to their estimated value, i.ef,,_at = Q:/[2(ar — 1)] andA; _g, = X;vy; see Section 3.1) which reduces
substantially the complexity of the method. Finally, the t&¢pis the additive term due to the parameter estimations
in the universal co-kriging. Therefore, if the trend parameters are supposed to be known, this term is equal to 0. The
proof of Proposition 3 is given in Appendix A.3.

Remarks: We must recognize that our closed-form cross-validation formulas do not allow for the re-estimation of
the hyperparameters of the correlation functions. However, as discussed in Subsection 3.2, Proposition 3 is useful
even in that case to reduce the computational complexity of the cross-validation procedure. Furthermore, from the
cross-validation predictive errors and variances, one can compute some overall measures of error in order to assess
the relevance of the model [20].

6. ILLUSTRATION: HYDRODYNAMIC SIMULATOR

In this section we apply our co-kriging method to the hydrodynamic code “MELTEM” (see [21]). The aim of the study

is to build a prediction as accurately as possible using only a few runs of the complex code and to assess the uncertainty
of this prediction. In particular, we show the efficiency of the co-kriging model compared to the kriging one. We also
illustrate the difference between simple and universal co-kriging and the results of the LOO-CV procedure. These
illustrations are made possible and fast by the closed-form formulas for the predictive mean and variance for universal
co-kriging and by the fast cross-validation procedure described in Section 5 and 4, respectively. Finally, we show that
considering an adjustment coefficignt(z) depending or: can be worthwhile.

The code MELTEM simulates a second-order turbulence model for gaseous mixtures induced by Richtmyer-
Meshkov instability [21]. Two input parametets andzs are considered. They are phenomenological coefficients
used in the equations of the energy of dissipation of the turbulent flow. These two coefficients vary in the region
[0.5,1.5] x [1.5,2.3]. The considered code outputs, caltlgd and L., are, respectively, the dissipation factor and the
mixture characteristic length. The simulator is a finite-elements code which can besren2akevels of accuracy by
altering the finite-elements mesh. The cheap cadg, using a coarse mesh, takes 15 s to produce an output whereas
the expensive cods(.), using a fine mesh, takes 8 min. We note that no prior information is available: We are hence
in the noninformative case.
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6.1 Nested Space-Filling Design

As presented in Section 2 we consider nested experimental desigiisets2,...,s, D, C D, ;. Therefore, we
have to adopt particular design strategies to uniformly spread the inputs foy.all

We consider here another strategy for space-filling design, described in the following algorithm, which is very
simple and not time-consuming. The number of point$or each desigrD; is prescribed by the user, as well as the
experimental design method applied to determine the coarsesbgnged for the most expensive cogle(see [22]
for a review of different methods).

Algorithm 1.
build D, = {xlg.s)}jzl,__.7ns with the experimental design method prescribed by the user.
for t =sto2do:

build designD,_; with the experimental design method prescribed by the user.
for ¢ =1 ton; do:
find 555’571) € D,_, the closest point from'"” € D, wherej € [1,n,_,].
removei;gt_l) from D,_.
end for
Dy =Dy UD;.

end for

This strategy allows us to use any space-filling design method and it does not change the experimental,d&sign
the most accurate code. This is not the case for a strategy based on selection of subsets of an experimental design
for the less accurate code as presented in [7] and [9]. We hence can ensupg bzt excellent space-filling prop-
erties. Moreover, the experimental desifpn_; being equal taD,_; U Dy, this method ensures the nested property.
Nevertheless, it alters the properties of the cheap code designs. Although this alteration is slight in our application,
it could be much more severe in higher dimension. Indeed, in high dimension, the closest point to be removed may
be far from the point in the upper level design. In that case, it could be relevant to not remove the point of the lower
level design. Furthermore, to have good design properties for all levels, one can use the nested orthogonal array-based
Latin hypercubes presented in [23]. However, this method has constraints on the number of observations per level.

In the presented application, we consider= 5 points for the expensive codg(x) andn; = 25 points for
the cheap one, (z). We apply the previous algorithm to build, and D, such thatD, C D;. For the experimental
design setD,, we use a Latin-Hypercube-Sampling [24] optimized with respect to the S-optimality criterion which
maximizes the mean distance from each design point to all the other points [25]. Furthermore[xhissetilt using
a maximum entropy design [26] optimized with the Fedorov-Mitchell exchange algorithm [27]. These algorithms are
implemented in the R library lhs. The obtained nested designs are shown in Fig. 1.

6.2 Multi-Fidelity Surrogate Model for the Dissipation Factor eps

We build here co-kriging models for the dissipation factps. First, this example is used to illustrate the efficiency
of the co-kriging method compared to the kriging in Section 6.2.1. Second, it will allow us to highlight the difference
between the simple and the universal co-kriging in Section 6.2.2.

To build the different correlation matrices, we consider a tensorized m@aterkernel (see [5]):

re(z,a") = r(z,2';04) = rig(@1, 27; 04,1)r1a(z2, ©5; 642), (25)
with z = (lEl,fﬂQ) € [05, 15] X [15, 23], Gtvl, Gt,Q € (0, +OO) and
!

i 5 i 2 [ ;
ra(Ti, 253 0) = [ 1+ \/5|$ zil + = (z QIZ) exp (\/5Z I’|) . (26)
O, 3 67, Ot
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FIG. 1: Nested experimental design sets for the hydrodynamic application. The crosses represent ttiepoints
of the experimental design s&X, of the cheap code and the circles representithe- 5 points of the experimental
design seD, of the expensive code.

Then, we consideg; (x) = 1, fo(z) = 1, f1(x) = 1 (see Sections 2.1 and 2.2) and the hyperparam@ers.) are
estimated with a concentrated maximum likelihood method.

Furthermore, we build a test set Bf5 points uniformly spread off).5, 1.5] x [1.5, 2.3] to test the accuracy of the
models.

6.2.1 Comparison between Kriging and Multi-Fidelity Co-Kriging

First of all, we propose in this section a comparison between the kriging and co-kriging models when the number of
runsns for the expensive code varies such that= 5, 10, 15, 20, 25. For the co-kriging model, we consider = 25
runs for the cheap code.

To perform the comparison, we generate randomly 500 experimental desidiDsgtd; ;)i—1
Dy; C Dy;,i=1,...,500, Dy ; hasn, points, andD, ; hasn, points.

The accuracies of the two models are evaluated on the test set composed of 175 observations. From them, the Root

1/2
Mean Squared Error (RMSE) is comput&NISE = {(1/175) ST (g, (atest) — zg(x;?e‘*t))?} .

500 Such that

.....

=1 7
Figure 2 gives the mean and the quantiles of probability 5% and 95% of the RMSE computed from the 500 sets
(Da,i, D1 ,i)i=1,... 500 When the number of runs for the expensive cadearies. In Fig. 2, we can see that the errors
converge to the same value whep tends ton,. Indeed, due to the Markov property given in Section 2.1, when
D, = D1, only the observations, are taken into account. Furthermore, we can see that for small valugs ibfs
worth considering the co-kriging model since its accuracy is significantly better than the one of the kriging model.

6.2.2 Comparison between Simple and Universal Multi-Fidelity Co-Kriging

In this section, two comparisons are performed. The first one is between kriging and co-kriging models and the
second is between simple and universal co-kriging. We remind the reader that for the simple co-kriging the trend
and adjustment parameters are considered as known, whereas for the universal one their posterior distributions are
integrated into the predictive distribution (see Section 4).
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FIG. 2: Comparison between kriging and co-kriging with = 25 runs for the cheap code (500 nested design sets
have been randomly generated for eagh The solid line represents the averaged RMSE of the co-kriging, the dashed
line represents the averaged RMSE of the kriging, the dashed barplots represent the quantiles of probability 5% and
95% for the kriging RMSE and the solid barplots represent the quantiles of probability 5% and 95% of the co-kriging
RMSE. Co-kriging predictions are better than the ordinary kriging ones for smalhd they converge to the same
accuracy whem, tends ton; = 25.

In this subsection, we ugeruns for the expensive code(xz) and25 runs for the cheap codg (z). This represents
8 min on a hexa-core processor, which is our constraint for an operational use. This is actually a toy example but in
industrial applications it is common to have a limited CPU budget on a multicore processor. Furthermore, the nested
design sets are those built in Section 6.1 and illustrated in Fig. 1 and to validate and compare our models, the 175
simulations of the expensive code are used.

Using the concentrated maximum likelihood (see Section 3.2), we have the following estimations for the corre-
lation hyperparameter§;; = (0.69,1.20) and 6, = (0.27,1.37). According to the values of the hyperparameter
estimates, the co-kriging model is smooth since the correlation lengths are of the same order as the size of the input
parameter space. Furthermore, the estimated Pearson correlation between the twolQo@lE® isvhich shows that
the amount of information contained in the cheap code is substantial.

Table 1 presents the results of the parameter estimations (see Section 3.1). We see in Table 1 that the correlation
betweenf3,, and . is important which highlights the importance of taking into account the correlation between
these two coefficients for the parameter estimation. We also see that the adjustment pggnmetdose to 1, which
means that the two codes are highly correlated [we noteitia) = 1, i.e.,p1 = B,, ]

Figure 3 illustrates the contour plot of the kriging and co-kriging means; we can see significant differences between
the two surrogate models.

Table 2 compares the prediction accuracy of the co-kriging and the kriging models. The different coefficients are
estimated with the 175 responses of the expensive code on the test set:

e MaxAE: Maximal absolute value of the observed error.
¢ RMSE: Root mean squared value of the observed error.
o Q2 =1—|lnz,(Diest) — 22(Drest)|*/ |1z, (Diest) — 22|I*, with 25 = (3272 z2(2(*)) /ma.

e RIMSE: Root of the average value of the kriging or co-kriging variance.
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TABLE 1: Application: hydrodynamic simulator. Parameter es-

timation results for the responsgs [see Egs. (14) and (16)]
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Trend coefficient SV /07
B4 8.84 0.48
Bo, 0.92 1.98 —18.13
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FIG. 3: Contour plot of the kriging mean (a), the co-kriging mean (b), and the true function (c). The triangles represent
theny, = 5 points of the experimental design set of the expensive code.
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TABLE 2: Application: hydrodynamic simulator. Com-
parison between kriging and co-kriging. The co-kriging
model provides predictions significantly better than the
ones of the kriging model
Q- RMSE MaxAE RIMSE
kriging 75.83% 0.133 0.49 0.110
co-kriging 98.01% 0.038 0.14 0.04¢6

We can see that the difference of accuracy between the two models is large. Indeed, that one of the co-kriging model is
significantly better. Furthermore, RIMSE appears as an accurate estimation of RMSE (see Table 2). We note that the
predictive variance for the co-kriging is obtained with a simple co-kriging model. Therefore, it will be slightly larger

in the universal co-kriging case. Indeed, by computing the universal co-kriging equations, WRéNiisd = 0.058.

We can compare the RMSE obtained with the test set with the RMSE obtained with a Leave-One-Out cross-
validation procedure (see Section 5). For this procedure, we test our modgl on5 validation sets obtained by
removing one observation at a time. As presented in Section 5, we can either choose to remove the observations from
zo or from 2z, and z;. The root mean squared error of the Leave-One-Out cross-validation procedure obtained by
removing observations from, is RMSE,, 100 = 4.80.10~3, whereas the one obtained by removing observations
from z3 andz; is RMSE,, ., Loo = 0.10. Comparing RMSE, | o0 and RMSE, ., | oo to the RMSE obtained with
the external test set, we see that the procedure which consists in removing points faoihz; provides a better
proxy for the generalization error. Indeed, RMSEqo is a relevant proxy for the generalization error only at points
wherez, is available. Therefore, it underestimates the error at locations whéseinknown.

Figure 4 represents the mean and confidence intervals at plus or minus 1.96 times the standard deviation of the
simple and universal co-krigings for points along the vertical line= 0.99 and the horizontal linec, = 1.91
[« = (0.99, 1.91) corresponds to the coordinates of the poinDafin the center of the domaii0.5, 1.5] x [1.5,2.3]
in Fig. 1]. Note that the term “ordinary” co-kriging could also be appropriate in this example giic¢ = 1,
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> | S o
~ [N )Y
= =
| =
o))
« |
[}
© |
[}
T T T T T T T T T
1.6 1.8 2.0 2.2 0.6 0.8 1.0 1.2 1.4
X2 X1

FIG. 4: Mean and confidence intervals for the simple and the universal co-kriging. The figure on the left hand side
represents the predictions along the vertical line= 0.99 and the figure on the right hand side represents the
predictions along the horizontal ling = 1.91. The solid black lines represent the mean of the two co-kriging models,

the dashed lines represent the confidence interval at plus or minus 1.96 times the standard deviation of the simple co-
kriging, the dotted lines represent the same confidence intervals for the universal co-kriging, the thin dashed-dotted
lines represent the empirical quantiles of order 2.5% and 97.5% estimated by a Monte-Carlo procedure with 10,000
samples.
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TABLE 3: Application: hydrodynamic
simulator. Estimations of; and o? for
the responsé.. [see Egs. (14) and (16)]

Trend coefficient | X1vy | X;/0?
B1 1.26 | 0.97
Variance coefficient @Q; 2001
o? 15.62 24

fa(z) = 1,andf;(x) = 1 do not depend om and it is the usual term for kriging when the trend function is a constant.

In Fig. 4 on the right-hand side, we see a narrowing of the confidence bamg &mound 1.5, which corresponds to
thez-coordinate of the upper right point &f, (Fig. 4), since, in the direction af,, the correlation hyper-parameters

length forZ; (z) andbds(z) are large §; » = 1.20 and62 » = 1.37). Moreover, as the predictive distribution for the
universal co-kriging is not Gaussian, no exact quantiles can be associated to the confidence intervals at plus or minus
1.96 times the standard deviation. In Fig. 4, we compare them with the empirical quantiles of orders 2.5% and 97.5%
estimated by a Monte Carlo procedure with 10,000 samples. These quantiles correspond to the confidence intervals
at plus or minus 1.96 times the standard deviation for a normal distribution. We see in Fig. 4 that the two confidence
intervals are very close (though it is a bit larger for the empirical ones). Therefore, the Gaussian assumption slightly
underestimates the confidence intervals.

6.3 Multi-Fidelity Surrogate Model for the Mixture Characteristic Length L,

In this section, we build a co-kriging model for the mixture characteristic lefgthThe aim of this example is to
highlight that it can be worth having an adjustment coefficggntlepending on:. We use the same training and test
sets as in the previous section and we consider a tensorized mggekarnel (25). Let us consider the two following
cases:

e Casely(z) =1, fo(z) =1andfi(z) =1,
e Case 2y{ (z) = (1 21), fo(x) = 1, andf; (x) = 1.
We have the following hyperparameter maximum likelihood estimates for the two cases:
e Case 19, = (0.52,1.09) andf, = (0.03,0.02),
e Case 28; = (0.52,1.09) andf, = (0.14,1.37).

The estimation oél is identical in the two cases since it does not depeng;oand it is estimated with the same
observations. Furthermore, we can see an important difference between the estirdatésdafed, they are larger in
Case 2 than in Case 1 which indicates that the model is smoother in Case 2. Table 3 presents the estirations of
ando? for the two cases (see Section 3.1).

Then, Table 4 presents the estimation$ef3,,,, ando? for Case 1, i.e., whep; is constant (see Section 3.1).

Finally, Table 5 presents the estimation$ef 3 ,, , ando? for Case 2, i.e., whep; depends on (see Section 3.1).

We see in Table 4 that the adjustment coefficient is around 1.5 which indicates that the magnitude of the expensive
code is slightly larger than that of the cheap code. Furthermore, we see in Table 5 that if we consider an adjustment
coefficient which linearly depends an [i.e., with g7 (z) = (1 )], the constant part gf; is more important (it is
around 1.66) and there is a negative slope in the direatjofit is around—0.48). Sincez € [0.5, 1.5], the averaged
value ofp; is 1.18 and goes from 1.42 af = 0.5t0 0.94 atr; = 1.5. We see also that the variance estimate in Case
1 (see Table 4) is much more important than the one in Case 2 (see Table 5). This is coherent with results of Table 5
(see below).

Figure 5 illustrates the contour plot of the two co-kriging models, i.e., wheis constant and whem, depends
onx.
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TABLE 4: Application: hydrodynamic simulator. Estimations
of B2, By, ando? for Case 1, i.e., whep; is constant, for the
responsd... [see Eqs. (14) and (16)]

Trend coefficient YoV ¥o/03
Bo, 1.49 0.83 —0.79
( Bo ) ( —0.26 ) ( —0.79  0.95 )
Variance coefficient Q2 209
o3 0.01 3

TABLE 5: Application: hydrodynamic simulator. Estimations®f, (3,
ando? for Case 2, i.e., whep; depends om, for the responsé.. [see

Egs. (14) and (16)]

Trend coefficient Yo Vo ¥o/03
B 1.66 234 —-3.50 0.44
( ﬁpl ) —0.48 -3.50 9.18 —-3.67
2 —0.04 0.44 —3.67 2.60
Variance coefficient Q- 209
02 3.24.10% 2
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FIG. 5: Contour plot of the co-kriging mean when is constant (on the left hand side) and wipgrdepends on: (of
the right hand side). The triangles representithe= 5 points of the experimental design set of the expensive code.
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Furthermore, Table 6 compares the prediction accuracy of the co-kriging in the two cases. The precision is com-
puted on the test set of 175 observations.

We see that the co-kriging model in Case 2 is clearly better than the one in Case 1. Therefore, we illustrate in this
application that it can be worth considering an adjustment coefficient which is not constant contrarily to the model
presented in [7] and [9].

7. CONCLUSION

We have presented in this paper a recursive formulation for a multi-fidelity co-kriging model. This model allows us to
build surrogate models using data from simulations of different levels of fidelity.
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TABLE 6: Application: hydrodynamic simulator. Comparison
between co-kriging whepy is constant (Case 1) and co-kriging
whenp; depends orx (Case 2). The Case 2 provides predic-
tions better than the Case 1, it is hence worthwhile to consider
an adjustment coefficient that is not constant

RMSE MaxAE
Case 1 7.26.103 0.23
Case 2 1.53.1073 0.16

The strength of the suggested approach is that it considerably reduces the complexity of the co-kriging model while
preserving its predictive efficiency. Furthermore, one of the most important consequences of the recursive formulation
is that the construction of the surrogate model is equivalent to Buildnsecutive krigings. Consequently, we can
naturally adapt results of kriging to the co-kriging model.

First, we present a Bayesian estimation of the model parameters which provides closed-form expressions for the
parameters of the posterior distributions. We note that, from these posterior distributions, we can deduce the maximum
likelihood estimates of the parameters. Second, thanks to the joint distributions of the parameters and the recursive
formulation, we can deduce closed-form formulas for the mean and covariance of the posterior predictive distribution.
Due to their similarities with the universal kriging equations, we call these formulas the universal co-kriging equations.
Third, we present closed-form expressions for the cross-validation equations of the co-kriging surrogate model. These
expressions reduce considerably the complexity of the cross-validation procedure and are derived from the one of the
kriging model that we have extended.

The suggested model has been successfully applied to a hydrodynamic code. We also present in this application a
practical way to design the experiments of the multi-fidelity model.

From this work, three points can be investigated. The first one is the case when the experimental design sets
are not nested. In such a situation, the predictive mean and variance of the recursive multi-fidelity co-kriging model
can easily be derived. Furthermore, the parameters can be estimated recursively from the level 1 to 4tveitlevel
maximum likelihood procedures. However, there are no more closed-form expressions for the estimates and they
must be estimated jointly for each level. Moreover, the complexity of the optimization problem is controlled by the
inversion of a matrix of size,; x n; wheren, is the number of observations at leveAs far as we know, there are
no works dealing with the issue of the parameter estimation in this framework.

The second point is about the use of sequential design strategies to improve the model accuracy. Co-kriging models
are well-suited to perform sequential designs since it provides an estimate of the model mean squared error through
the predictive variance. However, in a multi-fidelity context, finding the locations to perform new simulations is not
the only point of interest. Indeed, we have also to determine at which code levels these new simulations have to be
run. Generalization of the classical kriging-based sequential design strategies can of course be envisioned. This would
require to define a strategy which allocates the new simulations on the most appropriate code level as possible. It
certainly should take into account the contribution of each code level on the model error and the time-rations between
the code levels.

The third point is the issue of computer code validation. Indeed, it is worth noticing that the highest level of
response could be field data and the lower levels could be outputs from physical models with different level of fidelity.
The presented model can be used to predict a real phenomenon from both field data and computer codes. Furthermore,
in such a case, a nugget effect can be required to model measurement errors for the field data and the presented multi-
fidelity co-kriging model can naturally integrate it. This nugget effect can also be used to deal with ill-conditioned
covariance matrices or to take into account the variability of the output of a code relying on a Monte Carlo numerical
integration.
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APPENDIX A. PROOFS
APPENDIX A.1 Proof of Proposition 1

Let us consider the co-kriging mean of the model (1) presented in [7]fdeeel co-kriging witht = 2, ... s:

mz, (x) = W (2)TB + ()T (V) 71 () — HOBW),
wherep® = (BT, ..., BT, 20 = (2T,..., 2T, andh® ()7 is defined in Eq. (6). We have

t—2 t—2
Pi—1(2) <<H pi(fff)) i (2), (H Mx)) f3 (), '7ftTl(m)> BV + [ (2)Be,
i=1 i=2

= p1(@)h(@)TRUY + £ (2) B

Then, from Egs. (7) and (8), we have the following equality:

R (x)T[g(t)

0 0
V=D 4 (0 (pe—1(Dy)pe—1(Dy)") ®Rt_1) -W

v® — 2

O—t . ’
-wT Rt2
0%
where® stands for the element by element matrix product and
0
W= (pe—1(D)IL)o R | .
o}
Therefore, we can deduce that
to(a)" (V)T = oy (@)t ()T (V)T — (0L (Dy) © (rf () Ry 21 (Dy))

+ i ()R,
and with Eq. (6):
ti(@)T (V) TTHOBW = o,y (2)t,_y ()" (V)T HETD RO T (2) R
We hence obtain the recursive relation:
mz, () = pe—1(x)mz,_, (x) + fL(@)Be +r{ (@) Ry " [20 — pr—1(Dr) © 2e-1(Dy) — Fie] .

The co-kriging predictive mean of the model (9) satisfies the same recursive relation, and wehéve= 1z, (z).
This proves the first equality of Proposition 1:

bz, (z) = mz,(x).
We follow the same guideline for the co-kriging covariance:
sy, (x,2') = v3, (z,2") — t] (&) (V) "ty ('),

wherev, (x,2') is the covariance betweef} (x) and Z, (') ands?, (x, 2’) is the covariance function of the condi-
tioned Gaussian procegs;(z)|2® = ) B, B, 02| for the model (1). From Eq. (8), we can deduce the following
equality:

vy, (@,2") = pr1(2)pe—1 ()03, _, (2, 2") + v (x,2"),
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wherev? (z,2') is the covariance function of the conditioned Gaussian prdégss)|Z() = =), B, B,,_,, 07] of
the recursive model (9). Then, from Egs. (7) and (8), we have

tf (@) (V) " Hu(@") = pomi (@) pe—r ()8 (@) (V) T (@) + oprf (@) Ry o).
Finally we can deduce the following equality:
%, (@,0)) = pra(@)pra (@) (v3,_, (0,0)) — @V @) + 0F (1= @R (@)
which is equivalent to
sy, (,2') = pro1(@)pr—r (2)sy,  (z,2") + 0f (1 —r{ (2) R 'ri(2)) -

This is the same recursive relation as the one satisfied by the co-kriging covar@tmmem’) of the model (9) [see
Eq. (12)]. Sinces (x,2') = 0% (x,2’), we have

oy (z,2') = s5 (z,2').
This equality withz = z’ proves the second equality of Proposition 1. a

APPENDIX A.2 Proof of Proposition 2

Noting that the mean of the predictive distribution in equation (11) does not depesfi@md thanks to the law of
total expectation, we have the following equality:

E [Zt(a:)|Z(t) - z(t)} —E [IE [Zt(x)|Z(t) =0 62 B, BPH} |20 = z(ﬂ .
From Egs. (11) and (14), we directly deduce Eq. (18). Then, we have the following equality:

var (z,(2) |2, 62 ) = (b (@) = ru(@)” Ry HO)So(h] (@) = ro(e)” Ry Ho)” (A1)
Furthermore, from (12) and (14), we can deduce

E {Var(Zt(m)\z(t), BirBo,1r07)

z<f>,c§] = &2 (2)var(Ze_i(z)| 2¢D

T VPt

= o (1 @A @), (A2)

whereé?  (z) =g/ | (x) (Ew + [owvil1,. g [oeve] T th) gi—1(x). The law of total variance states that

var(Z,(z)|z®,02) = E [var(Zt(x)|z(t), BitsBp, s 07) ‘z(t), crf]
+ var (E [Zt(:c)|z(t), BisBorss O'?:| ’z(t), 0'?) :
Thus, from Egs. (A.1) and (A.2), we obtain
var(Zy(z)| 20 = 20, 07) = 62 (z)var(Zi_1(2)|207D = 27V 67) + o7 (1 — 1] (2)R; 1] (2))

+ (WT = +T(x) Ry Hy) B (BT — oT(2) Ry Hy) (A.3)

Again using the law of total variance and the independence betlidef(z)|Z2(*) = 2, B, B,, .| ando?, we
have
var(Z,(z))2®) = E [var(zt(x))p(t), o,?} . (A.4)

We obtain Eg. (19) from Eq. (16) by noting that the mean of an inverse Gamma distrifigt{and) isb/(a — 1). O
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APPENDIX A.3 Proof of Proposition 3

For notational convenience, let us consider thats the index of then.; last points ofD,. We denote byD
these points. First we consider the variance and the trend parameters as fixe@y,_iag.,: Q+/[2(a; — 1)] and
At,—g, = Xyve, andV, = 0; i.e., we are in the simple co-kriging case. Thanks to the blockwise inversion formula, we

have the following equality:
_ A B
Rs t= (BT Q1> ) (AS)
1 -1 -1
with A = ([RS][fas,—as]) T ([RS][—as,—as]) [Rolime,e Q7 [Rolje, e ([Rs][—as,—as]) '
-1
BT = —Q7'[RJ <[Rs][—a5,—as]) , and

-1
Q= [RS}[EMES] - [RS][ag,—as] ([Rs}[_gs,_gso [RS][_as,gs] . (A.6)

-1
We note thai@s/2(as — 1)]Q = [Qs/2(as — 1)] ([R;l} (.6 ]) represents the covariance matrix of the points
in Dyest With respect to the covariance kernel of a Gaussian process of k&nel(as — 1)]rs(z, z’) [which is the
one ofd,(x)] conditioned by the point®, \ D;.s. Therefore, from the previous remark and Eg. (12), we can deduce
Eq. (22).
Furthermore, from (A.5) we have the following equality:
[Rzl (25 - HS?‘Sv_E-s)] [&s] = BTZS(DS \Dtest) + Qilzs(Dtest)

+ BT[HST][*&}ES‘VS + Q_lhz(Dtest)Es'Vs-

From which we can deduce the following one:
-1
([Rzl] [55753]) [R:1 (Zs - Hs)\s,—i,s)] [E's] = Zs(Dtest) - hz(Dtest)Es'Vs

—1
— [Rale, —e.) ([Rsh—as,—aso
X (ZS(DS \ Dtest) - [H;T][,;_S]ZSVS) . (A7)

From this equation and Eq. (11), we can directly deduce Eq. (20)awith . = 2z5(Dsest) — Hz. (Dtest)-

Then, we suppose the trend and the variance parameters as unknown and we have to re-estimate them when
we remove the observations. Thanks to the parameter estimations presented in Section 3.1, we can deduce that the
estimates otrfﬁat andA; _;, when we remove observations of indgxare given by the following equations:

As—g, ([HSTLESKS[HSL‘ES) = [HsT]f«EsKsZS(DS \Dtest)a (A.8)

and
Ui,—as _ (2s(Ds \ Diest) — [HS]fES}‘s,fis)T K (25(Ds \ Dyest) — [Hs}fﬁs)‘sﬁ&s)7 (A.9)

Ng —Ps — qs—1 — Ttest

—1
with K, = <[Rs][—£3,—a§]>

From the equality (A.5), we can deduce thi§y = A — BQBT from which we obtain Eq. (21). Finally, to
obtain the cross-validation equations for the universal co-kriging, we just have to estimate the following quantity [see
Eq. (19)]

T
(hZ(DtESt)T — (R, _e. K [Hs]—as) 5, (hf(Dtest)T — R, e Ko [HS}_gs) . (A10)
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with ©, = ([HI]_¢ K, [HS]_gs)il. From Eq. (A.5), we can deduce the following equality:

S

[R;le} = BT[HS]—ES + Qith(Dtest)Ta

[&s]

from which we can deduce the following equality:

(MT (Deet)” = [Rilfe,, ey KolHo] -2, ) = (1B e )™ [RVEL ) (A.11)

which allows us to obtain Eq. (24) and completes the proof. a
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