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The paper deals with the construction of a stochastic reduced-order model for beam-like dynamical structures having a
high-modal density in the low-frequency range for which the classical methods used to construct a reduced-order model
are not adapted. We then use a method recently proposed which consists of constructing a basis of the global displace-
ments and a basis of the local displacements by solving two unusual eigenvalue problems. The stochastic reduced-order
model is then constructed using the basis of the global displacements. The contribution of the local displacements is
taken into account in the reduced-order model using a statistical approach. The theory is presented and is applied to
a computational model of fuel assemblies for which the dynamical response must be characterized in terms of global
displacements.
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1. INTRODUCTION

This paper is devoted to the construction of a stochastic reduced-order model (ROM) for complex beam-like dynamical
structures having a high-modal density in the low-frequency (LF) range. A beam-like structure can be defined as a
slender structure for which, in the low-frequency band, the dynamical behavior is dominated by global transverse
bending elastic modes, but for which there are also, in the same frequency band, local elastic modes. For instance, the
fuel assembly of a pressurized reactor (see Section 5) is a beam-like structure, but such structures can be found in the
naval industry (tankers, large ships), in space industry (launchers, space orbital station), etc. The LF range is classically
characterized by a very low modal density, which means that the resonances are well separated. In this case, classical
methods (such as modal analysis see [1, 2]) can be used in order to construct a ROM with a small dimension which
allows the LF dynamical responses to be efficiently predicted with a good accuracy and a good robustness with respect
to both the system parameters’ uncertainties and the model uncertainties induced by modeling errors. Furthermore, in
this case, the ROM can easily be updated using experimental modal analysis techniques and experimental responses [3,
4]. In general, this low-frequency range can clearly be separated from the medium-frequency range and from the high-
frequency range for which the modal density is larger and for which adapted methods have to be introduced in order
to construct efficient ROMs [2, 5]. In this paper, we are interested in the dynamical analysis of complex beam-like
structures constituted of a master stiff structure for which its displacements are mainly global and of several flexible
substructures for which their displacements are mainly local. The eigenfrequencies of the first local elastic modes
of each free-free flexible substructure (not connected to the master structure) belong to the same LF band as the first
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global elastic modes of the master stiff structure. As a consequence, as soon as the flexible substructures are connected
to the master structure, the local elastic modes induce numerous local resonances in the LF range. Furthermore, due to
this coupling between the master structure and the flexible substructures, there are some couplings between the global
displacements and the local displacements. The deformations of global elastic modes are mainly composed of global
displacements but also of local displacements’ contributions due to local elastic modes. Consequently, when there are
numerous local elastic modes in the LF ranges, the elastic modes cannot easily be separated into global elastic modes
and local elastic modes. There are no efficient sorting methods which could be used to select the elastic modes in terms
of global elastic modes and local elastic modes. In addition, although the reduced-order model must be constructed
with respect to the global elastic modes, this ROM must have the capability to predict the amplitudes of the responses
of the structure in this LF range. For an excitation applied to the master structure, since there are local elastic modes
in this LF frequency band, a part of the mechanical energy of the responses of the master structure is transferred from
the generalized coordinates associated with the global elastic modes to the generalized coordinates associated with
the local elastic modes which store this energy and then induce an apparent damping at the resonances associated with
the global coordinates [6].

Recently, a new methodology for the construction of a ROM adapted to the LF range in the presence of numerous
local elastic modes has been introduced [7]. This method introduces two unusual eigenvalue problems for which the
solutions do not correspond to the classical elastic modes. They provide a basis of the global displacements space
and a basis of the local displacements space. It is proven that the union of these two bases yields a basis of the ad-
missible displacements space which can be written as the direct sum of the global displacements space and of the
local displacements space. The first step of this method consists in decomposing the domain of the structure into
nonoverlapping subdomains. The choice of the geometry of the subdomains allows the characterization of the global
displacements space to be controlled. A projection operator is constructed on the base of the decomposition in sub-
domains and is defined as a kinematic reduction on each subdomain. For the construction of the global displacements
space, the proposed methodology corresponds to a reduction of the kinetic energy while the elastic energy is kept
exact.

Global displacements are generally robust with respect to uncertainties (except uncertainties induced by modeling
errors of the boundary conditions) while local displacements are very sensitive to both the system parameter uncertain-
ties and model uncertainties induced by modeling errors. The introduction of the generalized coordinates associated
with the basis of the global (or the local) displacements space, briefly called the global (or the local) generalized coor-
dinates, proposed in [7], provides a practical frame which allows us to construct a stochastic ROM for the dynamical
system under consideration. It consists of implementing a probabilistic model of uncertainties only related to the local
generalized coordinates.

Concerning the previous studies relative to the construction of a ROM for complex beam-like structures having a
high-modal density in the LF range, most of them are based on the introduction of an equivalent beam model [8, 9]
or on the use of homogenization methods [10]. The development of such simplified models requires an expertise con-
cerning the dynamical behavior for this type of complex beam-like structure and provides a quite good approximation
of the dynamical responses in the LF range in terms of the global displacements. However, these approximations do
not allow the local contributions to be taken into account. Furthermore, the construction of an accurate simplified
model cannot automatically be carried out and a procedure of validation of the simplified model is always needed. In
[11], the authors propose to construct a basis of the global displacements space using a rough finite element model.
Nevertheless, such a rough finite element model does not allow a good approximation of the elastic energy to be ob-
tained for heterogeneous structures with complex geometries. The proper orthogonal decomposition (POD) method
(see [12–14]) allows in some cases to extract an accurate small size basis in order to construct a ROM, but this basis
has to be constructeda posteriori, which means that a sufficiently rich dynamical response must be constructed. More-
over, the usual POD basis is only optimal for a given external load (or imposed displacement) while the POD method
proposed for the linear dynamical systems in [4] is optimal for any external loads (or any imposed displacements).

The objective of this paper is twofold. The first one consists of constructing a ROM in the LF range for com-
plex beam-like dynamical structures having a high-modal density in the LF range. The second one is to take into
account the effects of the local elastic modes on the ROM in this LF range. The first objective is achieved using the
method introduced above for which a subdomains’ decomposition of the domain is proposed. The second objective is
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achieved introducing a probabilistic model of uncertainties for the local generalized coordinates; as explained above
the stochastic modeling which is proposed differs from the one introduced in [7]. Note that the objective is not to con-
struct a reduced-order model which would be of smaller size than a reduced-order model constructed with a classical
modal analysis, but is to separate the global contributions from the local contributions, and to model each of these
contributions in different ways with respect to uncertainties.

Section 2 is devoted to the introduction of the computational dynamical model and its usual ROM constructed
with the elastic modes. In Section 3, the details of the methodology are summarized and an adapted subdomains
decomposition of the domain is presented. Section 4 is devoted to the construction of the probabilistic model of
uncertainties which allows us to statistically take into account the effects of the local elastic modes on the LF responses
of the constructed ROM. In Section 5, the methodology is applied on a computational model of half fuel assembly of
a pressurized water reactor.

2. COMPUTATIONAL DYNAMICAL MODEL AND ITS USUAL REDUCED-ORDER MODEL

The computational dynamical model is constructed using the finite element (FE) method and its usual reduction using
the elastic modes is introduced.

We are interested in predicting the frequency response functions of a three-dimensional linear damped beam-like
structure, occupying a bounded domainΩ, in the frequency band of analysisB = [ωmin,ωmax] with 0 < ωmin. The
complex vectorU(ω) of them degrees-of-freedom (DOF) of the computational model is the solution of the following
complex matrix equation,

(−ω2[M] + iω[D] + [K])U(ω) = F(ω), (1)

in whichω is the frequency in rad/s andi =
√−1, where[M], [D], and[K] are the(m×m) positive-definite symmetric

real mass, damping, and stiffness matrices, and whereF(ω) corresponds to the discretization of the external forces.
The eigenfrequencies and the elastic modes of the associated conservative dynamical system are determined in finding
λ andϕ in Rm such that

[K] ϕ = λ [M]ϕ . (2)

Using the modal analysis method, the approximationU(n)(ω) at ordern of U(ω) is written as

U(n)(ω) =
n∑

α=1

qα(ω)ϕα = [Φ] q(ω) , (3)

in which q(ω) = [q1(ω), . . . , qn(ω)] is the complex vector of then generalized coordinates and where[Φ] =
[ϕ1 . . . ϕn] is the(m×n) real matrix of the elastic modes associated with then first eigenvalues. The modal analysis
method allows the dynamical response of the structure to be predicted in the LF range with good accuracy if the modal
density is low; that is not the case for the dynamical structure we are interested in. However, the elastic modes and
the reduced-order model obtained using the modal analysis will be used for the methodology proposed in order to
construct the LF ROM for a beam-like structure, using a double projection method (see Section 3.2).

3. BASES OF THE GLOBAL AND LOCAL DISPLACEMENTS SPACES

In this section, the method presented in [7] for continuous and discrete cases is summarized for the discrete case (using
the FE method).

3.1 Decomposition of the Mass Matrix

The first step consists in partitioning the domainΩ into nJ nonoverlapping subdomainsΩj such that

Ω =
nJ⋃

j=1

Ωj , Ωj ∩ Ωk = ∅ for j 6= k. (4)
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More details concerning the subdomains composition of the domain for beam-like structures are given in Section 3.4.
Let u 7→ hr(u) be the linear operator defined by

{hr(u)}(x) =
nJ∑

j=1

1lΩj (x)
1

mj

∫

Ωj

ρ(x′)u(x′) dx′ , (5)

in whichx 7→ 1lΩj
(x) = 1 if x is in Ωj and= 0 otherwise. For allj in {1, . . . , nJ}, the local massmj is defined by

mj =
∫
Ωj

ρ(x) dx, wherex 7→ ρ(x) is the mass density. This operator carries out an average of the displacements

with respect to the mass density in each subdomainΩj (kinematic reduction). Letu 7→ hc(u) be the linear operator
defined by

hc(u) = u− hr(u) . (6)

This operator is the complement of operatorhr and sets the average of the displacements with respect to the mass
density to zero. Let[Hr] be the(m×m) matrix relative to the finite element discretization of the projection operator
hr defined by Eq. (5) and let[Hc] be the(m×m) matrix relative to the finite element discretization of the projection
operatorhc defined by Eq. (6). We then have[Hc] = [Im] − [Hr], where[Im] is the(m ×m) identity matrix. The
(m×m) projected mass matrix[Mr] is such that

[Mr] = [Hr]T [M][Hr] . (7)

and satisfies the following property,
[Mr] = [M][Hr] = [Hr]T [M] . (8)

The(m×m) complementary mass matrix[Mc] is such that

[Mc] = [Hc]T [M][Hc] , (9)

and can be written as
[Mc] = [M]− [Mr] . (10)

The projected mass matrix[Mr] and the complementary mass matrix[Mc] are useful for the construction of the global
eigenvalue problem and the local eigenvalue problem defined hereinafter.

3.2 Construction of the Bases for the Global and the Local Displacements Spaces

The basis of the global displacements space is constituted of the eigenvectorsφg in Rm of the following eigenvalue
problem, called theglobal eigenvalue problem,

[K]φg = λg[Mr]φg , (11)

in which the stiffness matrix is kept exact while the mass matrix is projected. This generalized eigenvalue problem
admits an increasing sequence of3nJ positive eigenvalues0 < λ

g
1 ≤ . . . ≤ λ

g
3nJ

, associated with the algebraically
independent eigenvectors{φg

1, . . . , φ
g
3nJ

}, called theglobal eigenvectors, which are used as the basis of the global
displacements space and which do not correspond to elastic modes. The basis of the local displacements space is
made up of the eigenvectorsφ` in Rm of the following generalized eigenvalue problem, called thelocal eigenvalue
problem,

[K]φ` = λ`[Mc]φ`, (12)

in which the stiffness matrix is kept exact while the mass matrix is projected. This generalized eigenvalue problem
admits an increasing sequence of positive eigenvalues0 < λ`

1 ≤ . . . ≤ λ`
m−3nJ

, associated with the algebraically
independent eigenvectors{φ`

1, . . . , φ
`
m−3nJ

}, called thelocal eigenvectors, which are used as the basis of the local
displacements space and which do not correspond to elastic modes. In practice, the basis of the global displacements
space and the basis of the local displacements space are calculated using a double projection method which is less
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intrusive with respect to the commercial software and less time-consuming than the direct method. Forn sufficiently
large, the solutions of the generalized eigenvalue problems defined by Eqs. (11) and (12) are then rewritten as

φg = [Φ] φ̃
g
, φ` = [Φ] φ̃

`
, (13)

in which [Φ] is the modal matrix defined by Eq. (3). The eigenvectorsφ̃
g

are the solutions of the generalized eigen-
value problem

[K̃] φ̃
g

= λg [M̃r] φ̃
g
, (14)

in which [M̃r] = [Φr]T [M] [Φr] and [K̃] = [Φ]T [K] [Φ], and where the(m × n) real matrix [Φr] is such that

[Φr] = [Hr] [Φ]. The eigenvectors̃φ
`

are the solutions of the generalized eigenvalue problem

[K̃] φ̃
`
= λ`[M̃ c] φ̃

`
, (15)

in which [M̃ c] = [Φc]T [M] [Φc] and where the(m× n) real matrix[Φc] is such that[Φc] = [Hc] [Φ] = [Φ]− [Φr].

3.3 Mean Reduced-Order Model (ROM)

In [7], it is proven that the family{φg
1, . . . , φ

g
3nJ

, φ`
1, . . . , φ

`
m−3nJ

} is a basis ofRm. The mean reduced-order
model of dimension(ng, n`) is defined as the projectionUng,n`

(ω) of U(ω) on the subspace ofCm spanned by
the family {φg

1, . . . , φ
g
ng

, φ`
1, . . . , φ

`
n`
} of real vectors associated with theng first global eigenvectors such that

ng ≤ 3nJ ≤ m and with then` first local eigenvectors such thatn` ≤ m− 3nJ . Then, the approximationUng,n`
(ω)

of U(ω) at order(ng, n`) is written as

Ung,n`
(ω) =

ng∑
α=1

qg
α(ω)φg

α +
n∑̀

β=1

q`
β(ω) φ`

β. (16)

Let bent = ng + n`. Let q(ω) = [qg(ω) , q`(ω)] be the vector inCnt of all the generalized coordinates such
thatqg(ω) = [qg

1(ω), . . . , qg
ng

(ω)] andq`(ω) = [q`
1(ω), . . . , q`

n`
(ω)]. Consequently, vectorq(ω) is solution of the

following mean reduced matrix equation,

(−ω2[M ] + iω[D] + [K]) q(ω) = F(ω), (17)

where[M ], [D], and[K] are the(nt × nt) mean generalized mass, damping, and stiffness matrices defined by blocks
as

[M ] =
[

Mgg Mg`

(Mg`)T M ``

]
, [D] =

[
Dgg Dg`

(Dg`)T D``

]
, [K] =

[
Kgg Kg`

(Kg`)T K``

]
. (18)

Let A (orA) be denotingM , D, or K (orM, D, orK). Therefore, the block matrices are defined by

[Agg]αβ = (φg
α)T [A]φg

β , [Ag`]αβ = (φg
α)T [A]φ`

β , [A``]αβ = (φ`
α)T [A]φ`

β, (19)

which can be rewritten, using Eq. (13),

[Agg]αβ = (φ̃
g

α)T [Ã]φ̃
g

β , [Ag`]αβ = (φ̃
g

α)T [Ã]φ̃
`

β , [A``]αβ = (φ̃
`

α)T [Ã]φ̃
`

β, (20)

in which the[Ã] is the(n× n) matrix defined by

[Ã] = [Φ]T [A][Φ]. (21)

The matrices[Kgg] and [K``] are diagonal. The generalized force is a vector inCnt which is written asF(ω) =
[Fg(ω) , F `(ω)] in which Fg

α(ω) = (φg
α)T F(ω) andF `

α(ω) = (φ`
α)T F(ω). Then, for allω fixed in B, the

generalized coordinates are calculated by solving Eq. (17) and the responseUng,n`
(ω) is calculated using Eq. (16).
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3.4 Subdomains decomposition of the beam-like structure domain

The method summarized in Sections 3.1–3.3 is completely parameterized by the subdomains decomposition of the
domain. The shape of the global eigenvectors depends on the choice of the subdomains. In [7], it is recommended
to choose subdomains with a homogeneous size. This size is related to the smallest spatial wavelength which will be
filtered. For a complex beam-like structure, one wants to extract the beam-like eigenvectors to construct the ROM,
that is to say, we want to filter transversal local displacements. Therefore, the slender initial domain is decomposed
into slices of equal thicknessε of the beam-like structure (see Fig. 1).

4. UNCERTAINTY QUANTIFICATION

In the LF range, the global elastic modes are not really sensitive to uncertainties introduced in the computational
model (except uncertainties on the boundary conditions). Nevertheless, the structure under consideration had also
local elastic modes in the same LF band. It is well known that the modal density of such local modes increases rapidly
with the frequency and that, in addition, the local elastic modes are very sensitive to both the system-parameters
uncertainties and the model uncertainties induced by the model errors. In order to improve the predictability of the
reduced-order computational model in the LF range, the nonparametric probabilistic approach (see [15]) is used to
take into account uncertainties in the local displacement space, that is to say, for the local generalized coordinates.
The probabilistic model of uncertainties we propose is an improvement of the one introduced in [7], in which the
positive-definiteness of the generalized random matrices were not guaranteed almost surely.

4.1 Stochastic Reduced-Order Model

The nonparametric probabilistic approach consists of replacing the matrices[M ], [D], and[K] of the reduced mean
matrix model defined by Eq. (17), by random matrices[M ], [D], and[K].

Let [A] be[M], [D], or [K]. LetA beM , D, orK. Let Ã beM̃ , D̃, or K̃. Finally, letÃ beM̃ , D̃ or K̃. LetE{.}
be the mathematical expectation. We introduce the random matrix[Ã] associated with the matrix[Ã] = [Φ]T [A][Φ]
[see Eq. (21)]. The random matrix[Ã] is with values in the set of all the positive-definite symmetric(n × n) real
matrices. Its probability density function is constructed using the maximum entropy principle under the constraints
defined by the following available information: (1) the random matrix is positive definite almost surely, (2) its mean
value is such thatE{[Ã]} = [Ã], and (3) this random matrix verifies the following inequality,E{log(det[Ã])} = cA,
with |cA| < +∞. The probability distribution (see [15]) of the random matrix[Ã] depends on the mean value[Ã] and
on the dispersion parameterδA which allow the level of uncertainties to be controlled and which is defined by

δ2
A =

E{‖[Ã]− [Ã]‖2F }
‖[Ã]‖2F

, (22)

FIG. 1: Decomposition of domainΩ of the beam-like structure.
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in which ‖.‖F is the Frobenius norm. We introduce the Cholesky factorization[Ã] = [LA]T [LA] and [Ã] =
[LA]T [LA]. Then, using the double projection method, we write

[A]=
[

Agg Ag`

(Ag`)T A``

]
, (23)

in which the block matrices are defined by

[Agg]αβ = (φ̃
g

α)T [Ã]φ̃
g

β , [Ag`]αβ = (φ̃
g

α)T [LA]T [LA]φ̃
`

β , [A``]αβ = (φ̃
`

α)T [Ã]φ̃
`

β . (24)

It can be seen that[Agg] which is relative to the global generalized coordinates is deterministic, that[A``] which is
relative to the local generalized coordinates is full random, and that the coupling block[Ag`] is left deterministic and
right random. Then, the global contributions which are not really sensitive to uncertainties are kept deterministic. The

random matrix[A] can be written as[A] = [LAφ̃
g
LAφ̃

`
]T [LAφ̃

g
LAφ̃

`
]. It can then be deduced that random

matrix [A] is positive definite almost surely.

4.2 Random Frequency Responses

The random responseUng,nl
(ω) is then written as

Ung,n`
(ω) =

ng∑
α=1

Qg
α(ω)φg

α +
n∑̀

β=1

Q`
β(ω)φ`

β, (25)

in which the random vectorQ(ω) = [Qg(ω) , Q`(ω)] with values inCnt of all the random generalized coordinates

is such thatQg(ω) = [Qg
1(ω), . . . , Qg

ng
(ω)] andQ`(ω) = [Q`

1(ω), . . . , Q`
n`

(ω)]. Consequently, the random vector
Q(ω) is a solution of the following stochastic reduced matrix equation,

(−ω2[M ] + iω[D] + [K]) Q(ω) = F(ω) . (26)

This equation is solved using the Monte Carlo simulation method [16].
It should be noted that the probabilistic model of uncertainties is implemented in the ROM. The computation of

the global eigenvectors and the local eigenvectors of the dynamical model is carried out outside the Monte Carlo
loop. Consequently, as soon as the mean ROM [see Eq. (17)] is constructed, then the stochastic ROM is deduced [see
Eq. (26)] and each Monte Carlo loop is relatively fast. Furthermore, the Monte Carlo simulation can efficiently be
implemented as a parallel Monte Carlo solver. The stochastic ROM is not of small size if the modal density is very
high, and particularly there is no size gain with respect to a classical modal analysis. For instance, a real fuel assembly
of a pressurized water reactor has more than 10,000 elastic modes in the LF band due to the numerous local modes
of each fuel rod. The interest of the approach lies in the separation between the global contributions and the local
contributions which allows the global displacements and the local displacements to be modeled in different ways with
respect to uncertainties.

5. APPLICATION TO FUEL ASSEMBLIES

In this section, we apply and validate the methodology to a computational model of a half fuel assembly.

5.1 Mean Computational Model

The dynamical system is made up of 49 tubes each linked to the others by four grids. There are two types of tubes:
(1) the guide-tubes (black tubes Fig. 2) which are clamped at their ends and welded to the grids, and (2) the fuel-
tubes (gray tubes Fig. 2) which are free at their ends and linked to the grids by linear springs. The guide tubes are
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FIG. 2: Geometry of the dynamical system; left figure: 3D-mesh; right figure: grid-view showing guide-five tubes
(black disks) and 44 fuel tubes (gray disks).

circular, homogeneous, isotropic beam with constant outer radius6.0 × 10−3 m, thickness4.0 × 10−4 m, length
2.25 m, mass density6 526 kg/m3, Poisson ratio0.3, Young modulus9.84 × 1010 N/m2. The fuel-tubes are circular,
homogeneous, isotropic beam with constant outer radius4.75×10−3 m, thickness5.7×10−4 m, length1.91 m, mass
density3.79 × 104 kg/m3 (equivalent mass density), Poisson ratio0.3, Young modulus9.84 × 1010 N/m2. The four
grids are assemblages of rectangular, homogeneous, isotropic beams with constant height2.7 × 10−2 m, thickness
4.8×10−4 m, mass density1.2×104 kg/m3, Poisson ratio0.3, Young modulus9.84×1010 N/m2. The guide-tube/grid
springs have a stiffness equal to5.0 × 109 N/m for the three translations and5.0 × 106 N/m for the three rotations.
The fuel-tube/grid springs have stiffness equal to1.8 × 105 N/m for the three translations and92 N/m for the three
rotations. The frequency band of analysis isB = 2π×]0 , 120] rad/s. The mean computational model is made up of
Timoshenko beam elements and linear spring elements. The structure hasm = 12, 750 DOF.

5.2 Modal Analysis, Global and Local Eigenvectors

In a first step, the elastic modes are calculated with the mean computational model defined by Eq. (2). There are447
eigenfrequencies in the frequency band of analysisB andn = 500 eigenfrequencies in the band2π×]0 , 147.3] rad/s.
The fourth elastic modeϕ4 and the10th elastic modeϕ10 are displayed in Fig. 3. We can see thatϕ4 is a global
elastic mode whileϕ10 is a local elastic mode. In a second step, the global eigenvectors and the local eigenvectors
are computed. In order to construct the matrix[Hr], the domain is split into49 subdomains which correspond to

FIG. 3: Fourth elastic mode (left) and tenth elastic mode (right).
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49 longitudinal slices of the structure domain. In the band]0 , 147.3] Hz, there areng = 23 global eigenvectors and
n` = 477 local eigenvectors. Figure 4 displays the distribution of the number of eigenvalues for the global eigenvectors
and for the local eigenvectors. The eigenvaluesλg andλ` are expressed in terms of frequency as

√
λg/(2π) and√

λ`/(2π). It can be seen that there are numerous local eigenvectors intertwined with the global eigenvectors.

5.3 Frequency Responses Calculated with the Reduced-Order Model

For all ω in B, the structure is subjected to two external point loads equal to1 N applied to a node which belongs
to the lowest grid (stiff part) and a node belonging to the fuel tube 3-3 (see Fig. 2) (flexible part) located between the
two lowest grids. The mean damping matrix is constructed using a modal damping corresponding to a damping rate
ξ = 0.01. The response is calculated at two observation points, the pointPobs1 located in the highest grid (stiff part)
and the pointPobs2 belonging to the fuel tube 3-3 (flexible part) located between the two highest grids. The response
is calculated for different projections associated with the different bases: the elastic modes with Eq. (3) (n = 500), the
global eigenvectors with Eq. (16) (ng = 23 andn` = 0), the local eigenvectors with Eq. (16) (ng = 0 andn` = 477),
and finally, both the global and the local eigenvectors with Eq. (16) (ng = 23 andn` = 477). The modulus of the
responses are displayed in Fig. 5. It can be seen that the responses calculated using both the global and the local
eigenvectors are exactly the same as the response calculated using the elastic modes. For pointPobs1 in the stiff part,
the contribution of the global eigenvectors is preponderant. For pointPobs2 in the flexible part, the contribution of the
local eigenvectors is important except for the two first resonances corresponding to the first global eigenvectors.

5.4 Random Frequency Responses Calculated with the Stochastic Reduced-Order Model

The random frequency responses are calculated as explained in Section 4.2. The dispersion parameters are chosen
asδM = 0.1, δD = 0.0, andδK = 0.1. The Monte Carlo simulation method is carried out with400 simulations.
The confidence regions corresponding to a probability levelPc = 0.98 are presented in Fig. 6. It can be seen that
for observation pointsPobs1 andPobs2 the sensitivity of the resonances relative to the global eigenvectors with respect
to uncertainties is low. This variability increases at the frequencies for which the local contributions are not negligi-
ble. For this application, we have constructed the stochastic ROM in order to carry out a sensitivity analysis of the
structure with respect to uncertainties. It should be noted that if experimental responses were available, the dispersion
parameters could be identified experimentally by solving an inverse stochastic problem (see [17]) .
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FIG. 4: Distribution of the number of eigenvalues for the global eigenvectors (black histogram) and for the local
eigenvectors (gray histogram) as a function of the frequency.
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FIG. 5: Frequency response functions in log scale forPobs1 (left) andPobs2 (right); comparisons between different
projection bases: the elastic modes (thick solid line), the global eigenvectors only (dashed line), the local eigenvectors
only (mixed line), and both the global and the local eigenvectors (thin solid line superimposed to the thick solid line).
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FIG. 6: Random frequency response functions for pointsPobs1 (left) andPobs2 (right). Confidence region (lower and
upper lines), mean response (dashed line).

6. CONCLUSIONS

A general method has been developed and validated to construct a stochastic reduced-order model for complex beam-
like dynamical structure having a high-modal density in the LF range. The projection basis is made up of two families
of vectors: the global eigenvectors and the local eigenvectors which are separately computed. This separation allows
a probabilistic model of uncertainties to be implemented only in the subspace of admissible displacements spanned
by the local eigenvectors. Then the stochastic reduced-order model can be used to carry out a sensitivity analysis of
the dynamical response with respect to uncertainties. If experimental responses were available, then the dispersion
parameters could be identified as a statistical inverse problem.
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13. Loève, M.,Probability Theory, 3rd ed., Van Nostrand, New York, 1963.

14. Holmes, P., Lumley, J., and Berkooz, G.,Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge
University Press, Cambridge, 1997.

15. Soize, C., Random matrix theory for modeling random uncertainties in computational mechanics,Comput. Methods Appl.
Mech. Eng., 194(1216):1333–1366, 2005.

16. Rubinstein, R.,Simulation and the Monte Carlo Method, John Wiley and Sons, New York, 1980.

17. Batou, A. and Soize, C., Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain
model and fretting-wear estimation,Mech. Syst. Signal Proc., 27(7):2141–2153, 2009.

Volume 3, Number 6, 2013


