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The use of model-based simulation to gain knowledge of unknown phenomena and processes behavior is a challenging
task in many natural sciences. In order to get a full description of an underlying process, an important issue is to
estimate unknown parameters from real but erroneous observations. Thus the whole system is affected by uncertainties
and a sensitivity analysis is necessary. Usually one applies first-order sensitivity analysis and resulting linearized
confidence regions to determine the statistical accuracy of the solution to parameter estimation problems. But especially
in significantly nonlinear cases linearized regions may not be an adequate representation. In this paper, we suggest
quadratic regions based on the second-order sensitivity analysis. The new region definition is based on a map that
transforms the input uncertainties onto the parameter space. Furthermore, the approximation accuracy of the quadratic
confidence regions is exemplary illustrated at two examples.
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1. INTRODUCTION

In simulating real-world systems by using mathematical models, it is a challenging task to adapt the model to the
process behavior by estimating unknown quantities. A common approach to identifying unknown model parameters
is the minimization of the difference between the model response and real observations at certain times in a suitable
norm. Due to inexact measuring methods, the measurements always contain defects, which lead to random influences
and uncertainties in the computed solution.

Suppose that we have a set of real observatipss (11, . . . ,nml)T at corresponding timeg, i = 1,...,mq. If
the functionh denotes the mathematical description of the measured system cueriptes the vector consisting
of thetrue parameter values ang the corresponding measurement errors, then the measurements may be written as

N, = h(ti,f) +e,t=1,...,mq.

It is a common assumption that the measurement errors follow a certain statistical distribution with zero means and
known, or unknown, variances. Due to the fact that the measurements contain defects, the computedrésimate
affected by uncertainties. Hence, a sensitivity analysis is necessary to determine the statistical acetirécypafer

to do this, the use of confidence regions is a common approach. Confidence regions are domains around the nominal
parameter value, in such a way that the true values lie in this region with a certain probability.

In the case of only moderate nonlinear observation functions, without any restrictions on the parameter space, the
procedure of quantifying uncertainties is well investigated. In order to minimize the computational costs (even in high-
dimensional situations), frequently linearization techniques are used. A good overview of uncertainty quantification
by using linear confidence regions can be found in Bard [1], Draper and Smith [2], Gallar&fBah [4], and Seber
and Wild [5].

*Correspond to Ekaterina Kostina, E-mail: kostina@uni-heidelberg.de

2152-5080/15/$35.00(© 2015 by Begell House, Inc. 209



210 Kostina & Nattermann

Nowadays, mathematical modeling and simulation of time-dependent systems get more and more attention in
many fields of application. Even in biological and chemical applications, the interest of getting knowledge about
unknown behaviors and phenomena by using mathematical simulation is permanently increasing. This leads to the
situation that mathematicians are confronted with a new kind of parameter estimation problems, which are often
characterized by a very high nonlinearity. Because of the high complexity of the emerging problems, the common
methods of quantifying errors are not longer adequate and there is a need for new investigations. To reinforce that
linearized methods are not sufficient in many situations, we would like to refer to Donaldson and Schnabel [6],
Rooney and Biegler [7], Schwaab et al. [8], Wiechert et al. [9], to name but a few.

The challenging requirements for the construction of a new confidence region are that the approximation accuracy
should be as high as possible, and furthermore that the computations should be numerically tractable with low to
moderate costs.

In literature, there are papers dealing with the construction of practical and suitable nonlinear confidence regions.
Hamilton et al. [10] defined a confidence region by using a quadratic approximation to the solution locus and geometric
concepts of sample space. Potpand van Ban [11] developed confidence regions based on linear or quadratic
approximations of curvature measures for nonlinear regression models. Dalai et al. [12] derived a method for the
construction of confidence regions based on higher order statistics and an extension of the Leave-out Sign-Dominant
Correlation Regions (LSCR) method. According to the authors, the resulting confidence regions are characterized by
a guaranteed probability for any finite number of data samples. Modelhy and Marzouk [13] follow a Baysian inference
approach and they quantify the influence of prior errors by the construction of map which transforms the randomness
from the sample space onto the parameter space.

In this paper, we present a new definition of an approximation of confidence region based on a second-order
sensitivity analysis. The new region is based on a quadratic map which transforms the random effects of the erroneous
input data onto the parameter space. The construction of the map is based on functions that are basically available if
one uses the Gauss-Newton method to solve the underlying parameter estimation problem.

In general, the definition of the new confidence region is not dependent on a certain error distribution. In this
paper we concentrate on the situation with independent and normally distributed errors. Provided that the errors are
independent and normally distributed, we get a maximum likelihood estimate of the parameters by minimizing the
l>-norm of the difference between model and data. We analyze the new region and present some bounds of the new
confidence region. An important result is that there is a strong analogy between the quadratic approximation and the
local convergence rate of the Gauss-Newton method.

Moreover, a quadratic approximation of the covariance matrix is presented, which leads to another tool for a higher
order sensitivity analysis.

This paper is organized as follows. In Section 2 we give a brief introduction into parameter estimation problems.
After discussing some basic formulations and conditions, we choose a generalized Gauss-Newton method to solve
the problems. Section 3 presents a second-order representation of the estimated parameters depending on the prior
errors. This representation serves as the basis of definition of the new confidence region. In Section 4 we discuss the
confidence regions that are commonly used to perform a sensitivity analysis. The novel quadratic approximation of
confidence regions is the topic of Section 5. After the definition we present and discuss bounds and other properties of
the new region. In Section 6 we compute a quadratic approximation of the covariance matrix. Finally, in Section 7 we
consider some numerical examples to demonstrate features of the quadratic approximation of the confidence region.

2. PARAMETER ESTIMATION PROBLEMS

We consider equality-constrained parameter estimation problems in general form

1 2
min F
selrs 2 IE2 (@)l (1)

StFQ((E) =0,

where the objective function consists of the weighted differences between erroneous measurgments,,,, and
a corresponding measuring functibn R x R"= x R — R, at certain times, i.e.,
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ni — h(tl, Z, Cl)
Fi(z):=x71 e R™. 2
Nm, — h(tml , Ty le)

The independent variables € R denote the measuring times, and the veatoe R"™= consists of unknown
constants—the so-called parameters—which we want to estimate. By the wgctorR™=: we denote the control
variables of the system. By variations of the system controls, the experimenter is able to produce measurements under
different conditions, which are more or less qualified for estimating parameters. Moreover, we assume that the mea-
surement errors;, i = 1,...,my, are normally distributed with zero mean and the corresponding variaicdse
matrix 3 denotes the regular diagonal matkix= diag(o4, ..., 0,,, ). Note that due to the assumptions of the error
distribution, the solution of problerfi) delivers a maximum likelihood estimate.

In the constrained functiol; : R"= — R™2, the whole system behavior and given restrictions can be mod-
eled. FrequentlyF;, consists of the discretized model equations, describing the process behavior and some potential
conditions like boundary conditions, initial value conditions and the like.

Both functionsF; : D c R"» — R™i are assumed to be at least twice continuously differentiable, and
the Jacobians are given by the matrickér) := OF;/0x € R™*"= § = 1,2. Furthermore, we assume that
me < ng andm; + mo > n,. To ensure the solvability of problem (1), the Jacobians have to satisfy two reg-
ularity conditions on the domai®. The first condition is theConstrained QualificatiofCQ), where we assume
that rank Jy(x) = meo. The second condition is the so-calledsitive DefiniteneséPD), whererank J(z) =
ng, with JT(z) := (J{ (z), J{ ()). If both assumptions are fulfilled, we make sure that we have on the one hand
enough information to estimate all unknown parameters (assumption PD), and on the other hand that it is guaranteed
that there are no contradictions and no redundancies in the constraints (assumption CQ).

Basically, any suitable optimization method can be applied to solve problem (1). The method of our choice is the
generalized Gauss-Newton method, as it was introduced by Bock [14] and Nocedal and Wright [15]. The advantages
of this method are its good performance properties and the necessity of the first-order derivatives only. The algorithm
starts with an initial guess®, and the solution is computed iteratively. A new iterate is updated by the rule

b =k P ARk Kk =0,1,2,.. ., 3)

where the step siz& € (0, 1] is determined by a suitable line search (see e.g., Nocedal and Wright [15]), and the
incrementAz* € R"= is the solution of the linearized problem

1
min = || Fy (%) + J; (2F)AzF |2
min 5 [|[F1(z") + J1(2") Azl @
s.t. B (2F) + Jo(zF)AxF = 0.

The algorithm stops if an appropriate termination condition is fulfilled, é.43%|| < tol, wheretol is a given
tolerance. The main cost of one Gauss-Newton iteration is basically determined by solving the linearized system (4).
According to the optimality conditions of the linearized problem in stethe solutionAz*, as well as the increment

AMNF of the Lagrange multipliek”, may be written as

AxP\ B JE(@®) Iy (2%) I (%) -t JE (%) 0\ [(Fi(2b)

A?\k - Jz(l’k) 0 0 I Fg(xk) ’
Note that the regularity of the Karush-Kuhn-Tucker (KKT) matrix on the domfaican be easily shown by the
conditions (CQ) and (PD), see [14]. By introducing the notations

s o (T (0 o= (B) @

the increment of a Gauss-Newton iteration can be written by the matrix-vector pradiict= —J* (2%) F(2*).
The operator/ ™ is a generalized inverse, but in general it is not a Moore-Penrose pseudo-inverse, since the axiom
(JJH)T = JJT is not necessarily fulfilled. However, at least the relationz).J(z) = L,,, holds.

The local convergence properties of the Gauss-Newton method will be discussed in the following theorem.

Volume 5, Number 3, 2015



212 Kostina & Nattermann

Theorem 1. (Local Contraction Theorem) (Bock [14])

Let F* .= (F{,F{) e C'(D,R™*™2), with the corresponding Jacobian” = (J,J;) = 0FT/0x.
Furthermore, we assume thdf and J; satisfy the regularity assumptions (CQ) and (PD)Brand J* denotes the
generalized inverse according to (5). For all vecters D withy := z+J 7 (z)F(x), which implies tha\z = y —z
andt € (0, 1] we assume that:

o there exists am < oo such that
17 () (I (& + tAz) = J(2)) Al < wt] Aa]%
e there exists &(z) < k < 1 such that
177 ()R ()] < k(z)]| Az (6)
with the residualR(z) = (]I — J(:c)J*(a:))F(ac).
Further, we assume that the given initial valug € D satisfies the relations

w
dp =K+ 5 ||A;L()H <1,

S = K+ % |Az|l, whereAzy, := —J* (zx) F ()
and

A
Dy := ZER”H‘Z—J?QHSM CD.
1—-230

Then the following hold:

1. the full-step Gauss-Newton iterations are well-defined and remaip ithere exists a* € D with ¥ — z*
for k — oo such that/* (z*) F (z*) = 0;

2. the convergence rate is linear with
w
Jaak | < (k+ Sl ) 1Azt

3. an a priori estimate is given by

k+j

T — ¥ < —2 Axgll .
|Zk+; | - [ Azo|

The proof of Theorem 1 follows lines of the Banach fixed point theorem and is explored thoroughly in [14].
According to Theorem 1 we have asymptotic linear convergence withkrafbe Lipschitz constanb is basically
determined byj|J || - ||dJ| in some norm, wherd.J := d.J /dx denotes the second derivative, and it can be seen
as a measure for the curvature of the nonlinear funcio he significant meaning of is that only ifk < 1, a
compatibility between the model and the measurements can be guaranteed, see Bock [14] and Bock et al. [16]. One
main result of this paper is that these Lipschitz constants are also useful to determine the statistical accuracy of the
estimater*. We will see that the bounds on the quadratic approximation of confidence regions are characterized by
the constantsy andk and a first-order approximation of the covariance matrix.

3. PARAMETER REPRESENTATION

In this section we present a first- and a second-order representation of the unknown parameter vector as a function of
an error weightr € [0, 1]. To this end, we consider a modified problem as
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o1
min o || F1(z,7)|3

zeRne 2 (7)
Taking (2) into account, the modified objective functibnis explicitly given by
(h,(tl,f, Cl) +T£1) — h(tl,:c,cl)
Fi(z,7) =571 : :
(h(tmy, Ty emy) + T€my) = Aty T, Cmy)

where® denotes again the vector of the true parameter values. Note that=if0, the solution of problem (7)
corresponds t@, and ift = 1, the original problem (1) and the modified problem (7) have the same solution. The
optimality conditions of the modified problem together with the constraints are given by

Fla A1) = <J{($,T)F1]g:§£;; + JQT(JL'))\) —0,

where we introduce the functiof : R"= x R™2 x [0, 1] — R"=""2_ Let the Jacobian of the functioh be given by
J(z, N\, T) = OF/O(x,N). For a more readable representation, we denote

Flt] = F(a(t),A(T),7), Fi[t] := Fi(z(71),7), Fa[t]:= Fa(z(T)),
T = TJ(x(7),M7),7), Ji[t] := Ji(z(7),7T), Jo[t]:= Ja(z(7)).

The following lemma gives a representation of the first derivative of the parameter vector as a functioisiofy the
derivative we get a first-order Taylor approximationwof

®)

Lemma 1. (First-order representation)
Letx(0) = 7 be the vector of the true parameters and assume that the Jacolbjassd J, satisfy the regularity
assumptions (CQ) and (PD) in a neighborhoodrofhen, fort € U,,—, the derivatives:(t) andA(t) are uniquely

defined by the system
#0)) __ (IS )
7l (5m) =~ (")

and a first-order representation of the parameter vector is given by

z(1) = 2(0) + 12(0) + O(T?)
— T (@) <201‘°') +O(),

Proof. The proof is given following Bock et al. [17] and is based on an application of the implicit function theorem.
Let z(t) be a solution of the modified problem, witt) — z(0) = Z if T — 0. In the case oft = 0, the true
parameter vectar(0) = T is the solution of (7) and (z,0) = 0. Due to the assumption that we have the true model
functions, the vectoF is a feasible point, and thus the constraitz) = 0 is fulfilled. Furthermore, it holds that
A(0) = 0 because of the regularity assumption (CQ). The Jacaffign A, t) := 0F/0(x, A) of the vector-valued
function F(z, A, T) is explicitly given by

ﬂm{ﬁwm+%Wﬁ$WF§WMMJ%W

where
Fi[1] 0 A 0
(1@ Ft]) = € R(mima)ms and(I @ M) := € Rmzna)xna,
0 Fi[7] 0 A
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Evaluated at = 0, the Jacobian reduces to

_ (J0)Ai[0] 5 [o]
- (T340 4

and according to the regularity conditions (CQ) and (PD) it is non-singular. Thus, at 0, the assumptions of
the implicit function theorem are fulfilled, and therefore there exist-@eighborhood/., and unique functions
2(T) : Ur, — R™ andA(7) : U, — R™2 that satisfy the optimality condition (8) and the the initial conditions
x(0) =z andA(0) = 0. Moreover, there exists a neighborhoodrgf= 0 such that for alk in this neighborhood the
derivativesi(t) := dz(t1) /8t andA(T) := dA(T)/dT are the unique solution of the linear system

i(t)\ _ OF[1] OF[t JETE e
Il ()\(T)) T ot Where? T ( 0 ) :

In particular, fort = 0 the derivative of the parameter vector is given by

a:g(To) — ) (2015) _

The first-order representation follows directly by a Taylor expansion. O

Before we define the second-order representation of the parameter vector, in the following lemma we consider the
derivative of the generalized inverde .

Lemma 2. Letx € R"= be a feasible vector and assume that the Jacohiarend J, satisfy the regularity assump-
tions (CQ) and (PD) inc. Then the derivative of the generalized inverse is given by

xT T €T T
Pt -5 (5 o) ~v@ @) ) =1 @5 ),

where
I 0
— Tt mi1 +T
C(x) :=J" () ( 0 0m2> J ().
Proof. By definition it holds that

s = 07 (M5 9).

0
Considering
aJf (x)
9J*(x) 10T (x) __ JE(z) 0 _ L0
S o1 0) 7 ) ( 1 (%) H) CORAT]
the lemma follows after a computation @f7 (z) /0« and an appropriate simplification. O

Lemma 3. Letz(0) = T be the vector of the true parameters and assume that the Jacabjeansd J, satisfy the
regularity assumptions (CQ) and (PD) in a neighborhood oThen, fort € U-,—, the following expansion holds

xm:ﬂm+m@+§i@+0ﬁ)

The derivatives are given by
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w0 = 0o (M ) (%) =@ (%),
i 0) = -2 (a74@) (1 5@ @) + g @@@)-r@) (7).
where

dJT(z) = z": 8?;@) %;(0) anddJ (Z) = zn: 9J(z) %;(0).
i=0 ¢

ox;
i=0 v

Proof. In the proof of Lemma 1, we obtained that according to the implicit function theorem, the derivétijeand
A(t) are defined on a domaiti,, and that they are continuously differentiable. Hence, we are able to compute the
second derivative of with respect ter. Fort € U, we obtain

a’;:i(;) _ _% <(11 0) 7] (Jle S)Ela)))
0J{ [1]

= 07w (1 [T1<2‘18>>_<H,o>j—1[T]( - (215))

ot 0

With Lemma 2 and by simplification it follows that

. _ _ _ 1 . _ _ Y le
i (0) = =2((@r* @)1 - S@ @) + 5 @@ @) (T ).
The second-order representation follows directly by a Taylor series and Lemma 1. O

Thus, a second-order representation of the parameter vector depends on the JActitgageneralized inverse
JT, the second derivativéJ and the weighted measurement errors. Note diais according to Lemma 2 the only
second derivative we need. Especially in the context of optimum experimental design, where we also need the second
derivatived.J, all matrix functions of the second-order representation in Lemma 3 are known.

There exists a remarkable relation between the introduced second-order parameter representation and the Lipschitz
constantx andw, which are introduced in Theorem 1. In order to verify this, the following lemma gives an adequate
estimate of the Lipschitz constart

Lemma 4. Let us assume thatis a feasible point and that the Jacobiaisand.J; satisfy the regularity assumptions
(CQ) and (PD). Furthermore, we introduce the following notations

A&) = — (0 1) (JlT(x)(Jl(af) JE(x))‘l (Jfowc) g) Fla),

)= 14w (5 ) 77 (@)

E(z) := 8J$;x) (I®v(z)) + &];7;36) (I®Ax)),
where (@) 0
0J7 (=) (0@ @) [ _—
o (I®wv(z)) = < or T B, > . . o eER
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and

0JF (x) -
0y (I A(x)) := (

c R™=2 XMNg

Furthermore, we define

1. Then it holds that

17 () R(x)|| = ||dT* (2) R(2)|| + O(l| Ax]|?)
< k| Az] +O(|Ax]?),

whereAz :=y — z = —J " (z)F(z), withz,y € D C R"= and the total derivative

dJ*(z) := i 3J+(-x) AV R

2. Interms ofk as defined in Theorem 1 it holds that

K<l=«k<l.

3. If =* is an arbitrary point satisfying the KKT conditions of the equality-constrained parameter estimation
problem,E(x*) reduces to

OJE (z%)

E(z*) = o

(I Fi(z")).

Proof.

1. Afirst-order Taylor series of ™ (y) aroundz yields

oJ+
Jty) = J (= +Z ) As .+ O(|Az|]?),

and because of " (z) R(z) = 0 we get

7T (W) R(x)|| = ||dT (2)R(2)|| + O(|Az|*),

where

dJ* (z Z ax

Recognizing Lemma 2, where the derivative of the generallzed inverse is given, we obtain the following equation
i) = (e ar@ ((§ o) - V@I ) - THe@E) @ ) /e
~ewar@) ((§ o) - U@ @) - s@r @) (150)
—clo) 477 (@) (1= ()7 )") (B
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where we used
((5 ) - va@r @) @-srw) (7)) = - v (7).

Furthermore, with

anddJ? = (dJ¥,dJT) it holds that

4" (2) (1 (J(2).]* (2)") (Flé >—dJ1 (p ({; g) T (@) (JlT <f>OF1<x>>)
+dJf ( ( g) T (x) (JlT (=) Fi(2)
= dJT (@) (Fu(x) — J(2)C@) I (@) Fy(2)) + dJ2 @)\ ()
= dJI (z)v(x) +dJ2( ) (2)
(x) 07f (2)

teuw)+ 220 e rw)) s

(&71

[dT* (@) R(2)|| = [IC(2) E(x)Ax|| < [[C(2) E()]| [|Az]| = &]|Az].

Therefore, we get

2. If we reduceD in such a way that(||y — z||*) < (1 — §)||ly — z||/2 for all z, y, it holds that

—K 1+K

ly — 2| = ly — 2| =: K[| Az],

|7 (v)R(@) || = Rl Az] + O(|ly — z|*) < &]| Az]| + :

wherek < 1.

3. This follows since it holds that] (z*) Fy (z*) = 0, if x* satisfies the KKT conditions of the equality-constrained
parameter estimation problem. O

Considering the second-order representation in any arbitrary norm, the triangular inequality yields

318 0] < |err@a-s@rr @) (%, ) [+ g|lr@aee-r@ (57) | @
The first expression of the right-hand side can be interpreted using Lemma 4. According to this lemma, it holds that
Jar@a-s@rr@) (%,) | = lar@r@) < w@iasl,
where
R(@) = (I J(@)J" (@) <2;£> .

Note that—'e = F(Z). The second expression of (9) can be estimated by
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IN

sl @@ (B | < 5| @@ ad
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@ ()] A,
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Obviously, we do not know the true parameter veatadn practice. We assume that the computed solution of
the parameter estimation probler is indeed a parameter estimate, i.e. it is a continuous deformation of the true
parameter values, as a function of measurement errors, in a compact region. In this region we can further reasonably
assume that the constamtsand w are bounded. Indeed, is a weighted Lipschitz constant on the Jacobianstand
is a Lipschitz constant on the generalized inverse weighted by the least squares residuals. Moreover, the constant
needs to be smaller than one for parameter estimation problems to be well-posed also in nonlinear case. Hence, in the
absence of any other information we approximate the congtantby (z*) and the constanb(z) by @(z*) which
is defined in a similar way to of the Local Contraction Theorerh by
oJ (z*)
=

Thus, we get the following bound for the second derivative of the parameter values:

@(z*) == Hﬁ(x*)

3 O 5 (k) + S5 ) e

The bound depends on Lipschitz constants well as onb with a squared weightAz||*.

4. CONFIDENCE REGIONS

The existence of erroneous input data leads to uncertainties in the computed sotugiod therefore a sensitivity
analysis is necessary. In order to get information about the accuracy of an estimate, we need to know how uncertainties
in the observation space are propagated into the parameter space.

One approach of quantifying the quality of an estimated parameter vector is the already mentioned confidence
regions. The idea of confidence regions is to define a doMainR™ surrounding the nominal parameter vaitig in
such a way that the true parameter veatties in this region with a certain probabilify — «). Obviously, confidence
regions depend on the observatiafs-and on their uncertainties—as a part of the input data of the underlying
parameter estimation problem. In addition the size of confidence regions is determined by the so-called confidence
level (1 — ), where0 < « < 1. Obviously, the smaller the value of the bigger is the confidence region. However,
D(n, ) is a confidence region, if the equality

PzeDnu)=1-«, (20)

or at least the inequality
PzeDmu)>1—«a (11)

holds, [4]. Basically, there are several possibilities to construct a confidence region, but some further requirements are
preferable. On the one hand, confidence regions should be numerically well tractable. This means that the computation
should be easy, fast and especially not error-prone. On the other hand, the confidence region should be as accurate as
possible, which means as small as possible having regard to (10) or (11).

Before we define a new quadratic approximation of confidence region, we consider some common confidence
regions for the estimate*.
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Likelihood ratio confidence regions.If we consider an unconstrained parameter estimation problem—where we
are confronted with the task )
. 2
min = [|F (@)3, (12)

rER™

using the notations from (2)—a confidence region for an estinrats given by
DU = D | ||Fy(2)|| = |Fu(z*)]2 < 2 13
(@) ={z e D||F@); - [F@); <y ()}, (13)

see e.g., [2, 4, 18]. In case the standard deviatmgnare known,y%z(oc) denotes thé1 — o«)-quantile of they?-
distribution. If the valuess; are unknown, we defing?2 (o) := s* - ng - Fp, m,—n,, WhereF, ., _,. is the
(1 — «)-quantile of theF-distribution and
2
e 1G] (14)
mip —nNg
An asymptotically justification of the confidence region definition (13) can be derived by a simple likelihood ratio
test, if we test a hypothesis® against another hypothesis# x*. This test results in a log-proportional expression
like ||F1(x)||§ - HFl(x*)Hg, and if under assumption that the measurement errors are independent and normally
distributed, we get asymptotically (13), se&zfhan [4].
Bock [14] adapted the nonlinear confidence region to constrained parameter estimation problems. If we consider
problem (1), with an estimate*, a confidence region is given by

Di() = {@ € D| Byfw) = 0, (@)} ~ [ Fi(a") 3 < vh() } (15)

wherem := n, — mo denotes the degrees of freedom.

The good approximation properties of likelihood ratio confidence regions must be paid by a huge complexity and
very high computational costs, especially in significantly nonlinear cases. The computation of (15), or at least of some
appropriate bounds, requires the solution of a nonlinear equatiomwitagrees of freedom. Due to this, likelihood
ratio confidence regions are not practicable in many applications, see e.g. Vanrolleghem and Keesman [19].

Linearized confidence regionsTo counteract the high computational costs of likelihood ratio confidence regions,

a common approach is to apply linearization techniques, see [2, 4, 5, 14]. By a first-order Taylor expabsjoun of
we obtain the linearized confidence region

Diin(x) :=={xz € D | Fo(z™) + Jo(z*)(x — ") =0,
11 (z) + Ji(@*) (@ = 2)II5 = [|F2(27)]13 < vae(e)},
and due to the optimality conditions fot we can rewriteD;;,, (x) as
Din(at) = {z € D | Ja(a™)(z — 2*) = 0, [T (2")(z — 2) |3 < vir(e)}, (16)
and in the unconstrained case
DUyin () := {z € D | | J1(z")(z — 2")[5 < v, (0}, an

see [14]. The meanings ¢ () andyflw (o), respectively, remain unaffected by the linearizations and are described
above.

The shape of the linearized confidence region is characterized by an ellipsoid and it is very cheap to compute this
region. In case of a linear observation functibnthese regions are optimal in the sense that they have a minimal
volume with a confidence level exactly equallo- «). However, this holds only for the linear case, and in literature
many nonlinear applications can be found, where the elliptical regions are a poor approximation, see e.g., [6-9].

Operator-based linear confidence regionsAnother approach to performing a sensitivity analysis is based on the
linear operato/*.
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According to Lemma 1, a first-order Taylor seriesicdis a function of the error weight is given by

0x(0)
ot

+O(M?) =7 — 1t (@) <2015> +O(?). (18)

z(t)=T+T

Remember that the measurement errors are assumed to be independent and normally distributed with zero mean and
variances?, i = 1,...,my. Hence, the first-order approximation:ofr) is normally distributed, too, with expected
valueE (z(t)) = T and covariance matrix

Ql

— @) (H’gl 00) T (@).

In practice, we use the estimaté instead of the unknown vectar. The use ofz* is justified by the expectation
that the solution of the generalized Gauss-Newton method is a good approximation of the trugévalues in our
further considerations we use the covariance matrix

C = Tt (Hgl o ) T (2%, (19)

This matrix is symmetric, positive semi-definite, and hask(C) = m = n, — mo.

Another linearized confidence region can be defined with the help of the first-order, error-depending representation
of z. If * is the solution of problem (1) and the Jacobidnsnd.J; satisfy the regularity assumptions (CQ) and (PD)
in x*, a linear confidence region is given by

Disn(e) o= {4 A | A = =747 () Il < valoo | (20)

Following Bock et al. [17], we can show th@;,(«) = Dy, (). Hence the properties of (16) can be adapted to
the region (20). Furthermore, the following lemma shows that the exact bounds on the region (20) are related to the
diagonal elements of the covariance matrix (19).

Lemma 5. Let z* be a solution of problem (1) and assume that the Jacobianand J, satisfy the regularity
assumptions (CQ) and (PD) ir*. Then,D;,, () is contained in a minimal box defined by the cross product of the
confidence intervals,

Ny
Dlin(“) C >< [1‘7 - Gi,xf + 9'&}7
i=1

whereo; = (C’iiy%(oc))lm. The valueg”;; denote the diagonal elements of the covariance métrikurthermore,
it holds

max |z; —xi|=0; i=1,...,n
z€Dyin (o)

The proof of this lemma is e.g., given in [17]. According to Lemma 5, it is sufficient to compute the diagonal
elements of the covariance matrix to perform a first-order sensitivity analysis.

5. A QUADRATIC APPROXIMATION OF CONFIDENCE REGIONS

To pursue the idea of the linearized region (20), we suggest a quadratic approximation of confidence regions based on
a second-order sensitivity analysis. Considering Lemma 3, a quadratic approximation of confidence regions is defined
as follows.
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Definition 5.1. Let z* be the solution of problem (1) and assume that the Jacobiaasd J, satisfy the regularity
assumptions (CQ) and (PD) irf. Then, a quadratic approximation of a confidence region is defined by

11—
Dguad(x) = {x* + Az + iAx | Ax = —J+ (g) ,

Az = -2 (dﬁ(ﬂ —JJt) - ;J+(dJ)J+> (g) , Il < vfn(oc)},

where all the functions are evaluatedrat and the total derivatives are given by

*

a7(z*) = 229 (ap e = f: (eF Ax),

ox P T
+ n
dJ*(:r*):aJTi) Az 1) = Z (2 (ef Az).

We want to remark that the derivative of the Jacobiais the only second derivative that is needed to compute
the quadratic approximation of confidence regions. The derivative of the generalized ifnvassexplicitly given in
Lemma 2. For further information of the computation of matrix derivatives we refer to Magnus and Neudecker [20].
For the sake of completeness, we want to note that the new confidence region is of course also usable in the
unconstrained case (12). Here, a quadratic approximation of confidence regions is given by

__ 1——
DU gyqalo) = {m* + Az + §A:c | Ax = —J T, (21)

1
87 = -2 (47" (1 = 1) = 3T @) ) Il <92, (@)1,

whereJ ™ = (J{'J;)~1JI is a Moore-Penrose pseudo-inverse and all the functions are evaluated at

Lemma 6. Letz* be a solution of problem (1) and assume that the Jacobiansnd J, satisfy the regularity as-
sumptions (CQ) and (PD) im*. Then

max A —uym i=1,...,ng,
InlZ<y2 () 2 (<),

wherep* is the maximum eigenvalue of the symmetric matrix2 E (7“7 el + CiTj ) with

T = el 5)
o= (G 0979 () 437 20 o))

and all the functions are assumed to be evaluatec*at

Proof. It holds that
%E - (dﬁ (T—JJ+) <8> + %J*(dJ)(—ﬁ) (’3))
— i_: (%‘f (I—JJ%) (g) + %ﬁg—i(—ﬁ) (g)) (cn)n
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and hence

Mg

%Ej = i —¢j (%f ([—=JJ7) (g) + %ﬁ ggi(—ﬁ) (g)) (C?n)n =3 (TJ-T,m) (cz-Tn)-

i=1 =1

In order to find the maximum max  (1/2)Ax;, we consider the Lagrangian
I3 <va(e)

Low=-> (v”fm) (C?n) - u(v%(oc) - nTn)

i=1
and the necessary optimality condition
a£ Ng
=1

Thus we get that the matrix i (rjyic? + cirfi> has an eigenvalu2u with the corresponding eigenvectqr
i=1 ’
Furthermore, the necessary optimality condition yields
0= < > (Tj,ic;r + Cﬂ'gj‘:i) + 2u11> ne=0=-> (nT?"j,i) (Jn) + (n%) (v"jT_,m) +2un"n

i=1 i=1
N

= 2y2 (o) =2) (TITrj,i) (c?n)
=1
and we have
1
max  —Az; = uryi (),
Inli3<v2i(a) 2 (%)

wherep* is the maximum eigenvalue of the matrix

Ny
T T
- Z (Tmci + c,»rj,i).
i=1

In the following lemma we introduce bounds on the quadratic approximation of confidence region for each com-
ponent of the parameter vector.

O

Lemma 7. Let z* be a solution of problem (1) and assume that the JacobiAnand J> satisfy the regularity
assumptions (CQ) and (PD) iti*. ThenD,,.4(x) is contained in a box defined by the cross product of the confidence
intervals,

fquad(oc) C >< [ml* — ei,.%’;k + Gi],

i=1

where .
0: = /Cirvm(o) + >4/ (jka“) Ok Vo),
k:l 22

with T+ (a*) 97(a*)

~ J(x* 1 J(x*

— H _ /* + * _ -7t * —+ * .

Je= S = T T @) = 5T @) = T @)

The constants”;; denote the diagonal elements of the covariance mdtrix = 1,...,n,. Here all the matrix

functions are evaluated at the solutioh.
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Proof. The lemma follows from the following relations

‘ <Az + ;Az) Tyt <0> +ef (dﬁ(ﬂ —JJ) - ;ﬁdJﬁ) (3)‘

1
<UT o i+ [oF (47007 = g0a0* )| e
2

< V/Cii - y(at +Z

S C Y’HL ~ / Jk Jk Ckk Y77L

where all the functions are evaluatedrat O

TJkH eF Tn] - yim()

The next lemma gives a further estimation of the new confidence region by using the two Lipschitz canstants
andk of J* andJ, respectively.

Lemma 8. Under the assumptions of Lemma 7 the following inequality holds

HA:I: + %MHQ <0+ (k(:z:*) + ;@(;ﬁ)@) 0.

The value ofd is defined byd := \/trace(C(z*))y2,(«), whereC(z*) denotes the linear approximation of the
covariance matrix, an&(z*) and w(z*) are glven by

K(z") = [IC@™) B,

B(a") == ’ 7+ (@) 247 ‘ ,
whereE (z*) = (0J] (x*)/0z)(I @ Fy(x*)).
Proof. The lemma follows from Lemma 4 and (9). O

Let us again consider the interpretations of the Lipschitz constaatsd w, following the Local Contraction
Theoreml. According to Lemma 8 we may conclude that the new confidence regions depend on the one hand on the
nonlinearity of the model functiow, and on the other hand ani.e. on the compatibility between the model and the
real observations.

6. A QUADRATIC APPROXIMATION OF THE COVARIANCE MATRIX

In Lemma 5 we have seen that the linear confidence regions have a direct relation to the diagonal elements of the
linear approximation of the covariance matrix. In particula€;'jf denotes théth diagonal element of the covariance
matrix approximation (19), we get linear approximations of confidence intervals by

{x* —/CirvE (), z* + C'iian(OC)} ; (22)

i =1,...,n.. Inthis section, we compute a quadratic approximation of the covariance matrix, to get another tool for
a higher order sensitivity analysis, by replacing in (22) the diagonal elements of the linear covariance by the diagonal
elements of the quadratic approximation of the covariance matrix.
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According to Lemma 3, and taking the estimateas a good approximation of the true parameter vectare get
up to the second order that

_y-1 1 _y—1
ple)i=ma(r=1)=a*—J* (= €)_ (dJ+)(]I - JJ+) _rrangt| (7)),
0 2 0
where all the functions are evaluatedrét For the further considerations, let the inverse of the KKT-matrix explicitly

be given by
X YT\ (IF @) ) T )\ 23
Yy z) 7 k@) 0 ’ =

If we take into account that the expected value is linear and that the measurement carersormally distributed
with the zero mean and the varianegs the expected value of(¢) is given by

st =5 0700 (% ) e (e (%)) ().

= LT (rxarese (Y)0) | <o > i) (") e @

where we introduced the notation

~ . aJ T (z*

Now, we compute a quadratic approximation of the covariance matrix:

(1- @) @) - %Jﬂx*)%g)ﬁ(x*).

Co: =E|((e) - Bla(e))) (a(e) - E(m(s»)T} = E(2(e)2(e)") - E((e))E(a(e))”

Ne Na 1 _
= X+;];Ji E ((JXJ{E%) <20 5) (2—15T,0T) (e{XJszls» Jr
JO e~ , ~ Do Do o~ ST x JT -
_;;Ji (‘%“l) (e{XJlT, OT)JkT =X+;; (Ji zin JL + J; (Jlxelgkal 8>J,{>. (25)

Here all the functions are evaluatedhdtandx;;, = el Xe;,. Important results from probability theory used here are

that thenth power of an independent random variable is also independent and that the moment of order 4, of a normal
distributed random variable with zero mean and variatces 3o*. Note that the matrixX from (23) is equal to the

linear approximation of the covariance matrix (19).

7. NUMERICAL EXAMPLES
In this section, we want to show some comparative illustrations of the different confidence regions to get an idea of
their shapes and their approximation accuracies.

Example7.1 As a first example, we consider the biochemical oxygen demand (BOD) of stream water. The experi-
mental data are taken from Marske [21], where also the setup of the experiments is described. According to Bates and
Watts [22] the corresponding observation function is

h(t;z1,22) = z1 - (1 — exp(—t - 22)).

The variablet denotes the time (in days) and the two unknown model parameteasdz, have to be estimated
using 6 observations7.322416; 13.85557; 12.27182; 15.58857; 16.62757; 22.03010) at time points(1;2;3;4;5;7)
[21]. There are no equality constraints in this parameter estimation problem.
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An application of theGauss-Newtomethod yields the optimal parameter valugs= 19.1426 andz, = 0.5311
with the corresponding linear covariance matrix

c— 0.95876  —0.066527
— \—0.066527 0.0063474 )

A comparison of the different confidence regions is given in Figs. 1 and 2. The solid lines illustrate the likelihood ratio
confidence regions (13), the dotted lines illustrate the linear confidence regions (17), and the gray areas illustrate the
guadratic approximations of the confidence regions (21). Obviously, the quadratic approximations of the confidence
regions are more precise approximations of the likelihood ratio confidence regions than the linearized regions. In
Table 1 a comparison of different confidence intervals with the probability levelsoc = 0.995 and1 — « =

0.95 is illustrated. The intervals below the colum;, (&), Dyuad(x) and Dy, (x) are the exact bounds of the
corresponding confidence regions. The values;of- 0; andz} + 0, belonging to the confidence intervals of the

T T T T T T T
22 =
21~ =
< Ar ]
2 19— o
18- &
17 —
I L 1 I L I ! L L
035 04 0.45 0.5 0.55 08 0.85 07 075
g:arameter)c,2
FIG. 1: Conf. reg. withl — o« = 0.95.
24 T T T T T
23 =
20 o

21

parameter x,

1 Il 1 1
0.3 04 05 08 07 0.8 08
parameter x,

FIG. 2: Conf. reg. withl — o« = 0.995.

Volume 5, Number 3, 2015



226

TABLE 1: Confidence intervals far — o« = 0.95 and1 — « = 0.995.

Kostina & Nattermann

1—« Diin(o) Dyuad(x) Dir(x) [zF — éi,x;‘ + éi]

0.95 1 [16.7467 21.539] [17.0627 21.983] [17.053, 22.121} [16.5897 21.695]
xo | [0.3360,0.7261] | [0.3632,0.7621] | [0.3613,0.7683] [0.3262,0.7358]

0.005 | @1 | [15.955,22.330] | [16.475,23.149] | [16.466,23.484] | [15.595,22.689]
2o | [0.2717,0.7904] | [0.3153,0.8544] | [0.3145,0.8712] [0.2491, 0.8130]

last column, are computed by using the second-order approximation of the covariance matrix. More precisely, it holds
0; = \/Ca2.:1v3(ex), WhereCs ;; is theith diagonal element of the quadratic approximation of the covariance matrix
(25). Here, it is remarkable that there is a strong similarity between the intervals of the likelihood ratio regions and
the quadratic approximations of confidence regions. In particular, only these intervals are not symmetric around the
estimater*.

Example7.2. The second example deals with the enegghat is radiated from a carbon filament lamp per’em
depending on the temperaturdt is taken from Daniel and Wood [23] and Keeping [24], where you can find a more
thorough treatment of the matter. The observation function is given by

h(t; x1,x9) = x1t™2

with the two unknown constants andz.. The data contains 6 observatiqsl 38; 3.421; 3.597; 4.340; 4.882; 5.660)
corresponding to the valug$.309; 1.471; 1.490; 1.565; 1.611; 1.680) of the absolute temperature of the filament in
thousands of degrees K. There are no equality constraints in this parameter estimation problem.

The optimal parameter vectoris = (0.7689, 3.86)T with the linear approximation of the covariance matrix

0.30967

o —0.86808
~ | —0.86808

2.479

A comparison of the different confidence regions is given in Figs. 3 and 4. As in the first example, the solid lines
illustrate the likelihood ratio confidence regions (13), the dotted lines illustrate the linear confidence regions (17), and
the gray areas illustrate the quadratic approximations of the confidence regions (21). Here it can also be seen that the
guadratic approximations of the confidence regions are more precise approximations of the likelihood ratio confidence

3.5

parameter x,

05 1

1 1 1 1 1 |
0 1 2 3

4
parameter x,,

FIG. 3: Conf. reg. withl — oc = 0.95.
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parameter x,

| | | 1
0 2 4 B 8 10
parameter x,

FIG. 4: Conf. reg. withl — & = 0.995.

regions than the linearized regions. A comparison of different confidence intervals with the probability levels

0.995 and1 — « = 0.95 is illustrated in Table 2. The intervals below the colunins, (x), Dyuqq(x), and Dy, (x)

are the exact bounds of the corresponding confidence regioné,i aﬁd\/CZiiY%(O(), where(C, ;; are the diagonal
elements of the second-order approximation of the covariance matrix (25). Again, the non-symmetric intervals of
the quadratic confidence regions are more precise approximations of the intervals belonging to the likelihood ratio
regions.

Example7.3. Further, we have performed various numerical experiments with parameter estimation problem of the
second example using synthetic data. The observations for equidistantly distributed measurement-poimis+
(i—1)h,i =1,..., M at the temperature interval = [1.3, 1.79] have been simulated using “true” parameter values

z = (0.7689, 3.8604). The observations have been corrupted by random measurement:gmdtts zero mean and
variances.

The results of the experiments are presented in Tables 3 and 4.

Figures 5-8 shows confidence regions for different measurement errors in the experiments with 5 observations.
Confidence regions for measurement error with variawcesl in the experiments with different numbers of obser-
vations are presented in Fig. 9-12.

The results of the experiments are in a very good agreement with the asymptotic behaviour to be expected with
the increasing number of observations. The same can be said for the experiments with changing error variances.

Let us point out here that the above numerical investigations are not meant to suggest computation of quadratic
approximations of confidence regions based on sampling since this would be computationally expensive in higher
dimensions of parameter or measurement spaces. Rather the numerical experiments are to demonstrate significant
distortion of confidence regions in the nonlinear case compared to linear approximations, as indicated by the Lipschitz
constantsv andk.

TABLE 2: Confidence intervals far — o« = 0.95 and1 — o = 0.995

11—« Diin () Dyuad(X) Dy () [zF — 0,2 + 0]

0.95 x1 | [—0.5932,2.130] | [0.0448,3.124] [0.0894, 3.488] [—1.226,2.764]
zo | [0.00661,7.714] | [0.2074,8.453] | [0.4042,8.384] | [—0.373,8.094]

0.905 |1 | [-1.0426,2.580] | [-0.116,4.348]) | [0.0391,5.302] | [-2.382,3.920]
x2 | [—1.2649,8.985] | [—1.095,10.36] | [—0.638,10.11] [—2.129,9.850]
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TABLE 3: Confidence intervals for different measurement errors and 5 observations

o z* Diin(x) Dyuad() Dy () [zF — ;2% + 0]
0.1 71083202] [0.68257,0.98147] | [0.69433,0.98629] | [0.69235,0.99194] | [0.68177,0.98227]
"y 3.6784 [3.293, 4.0638] [3.3019,4.0649] | [3.2986, 4.0699] 3.2926,4.0642]
0.3 %10:66362| [0.28086,1.0464] | [0.36756,1.1205] | [0.35946,1.1304] | [0.26058,1.0667)
“lag| 41209 | [2.8963,5.3455) [2.9653, 5.3624] 2.966, 5.397] [2.8817,5.3601]
0.5 %10:53103 | [~0.00071547, 1.0628] | [0.17966,1.2564] | [0.17497,1.272] |[-0.081103,1.1432)
“lag| 46263 | [2.5231,6.7295] [2.6642,6.8808] | [2.7299,6.8918] [2.4504, 6.8022]
| [#1]0-20479] [-0.35413,0.94371] |[-0.020553, 1.455] | [0.01738,1.6946] | [-0.7439,1.3335]
Ty| 5.974 [1.46,10.488] [1.9498,11.5596] | [2.1655,11.6059] | [0.8017,11.1463]
o [21]0.56327] [-2.0373,3.1638] |[-0.52592,7.6656] | [0.011393,12.6247] | [~6.7818,7.9084]
To| 4.068 | [—5.7463,13.8823] | [—6.369,19.7902] | [~4.4652,11.8672] | [-11.5786,19.7146]

TABLE 4: Confidence intervals for different number of observations and measurement error variance

M, h z* Diin(x) Dyuad() Dy, () [z — 0;, 2% + 6,
£ 01 |%1]0:29479[-0.35413,0.94371] | [-0.020553, 1.455] | [0.01738,1.6946] | [~0.7439, 1.3335)
T x| 5.974 [1.46,10.488] [1.9498,11.5596] | [2.1655,11.6059] | [0.8017,11.1463]
10.0.05 |#1[0-74559 | [~0.58062, 2.0718] | [0.042734, 3.2004] | [0.072778,3.4968] | [—1.1688, 2.66]

x2 | 3.9037 | [0.23692,7.5705] [0.58791,8.862] | [0.47297,8.4462] |[—0.14766,7.9551]

1 ]0.70573 [ [—0.42784,1.8393] | [0.030206,2.3076] | [0.10206,2.768] |[—0.85376,2.2652]
zo | 41792 | [0.93936,7.419) [1.3748,7.66] [1.2585,7.936] | [0.67262,7.6858]

1 ]0.81365 | [—0.44374,2.071] | [0.17395,2.6482] | [0.12974,3.0368] | [—0.89123,2.5185]
7o | 3.7645 | [0.64616,6.8828] | [0.73528,6.9378] | [0.94692,7.2942] | [0.40817,7.1208]
[ ]| ]
[ 1 ]

20,0.025

50,0.01

x1|0.86918 | [—0.40502,2.1434] | [0.14043,2.9166 0.14216, 3.2002] | [—0.82037,2.5587]

100, 0.05
x2 | 3.6431 [0.6853, 6.6009] 0.77962,7.0543 0.85571,7.1334] | [0.48175,6.8045]

i
w

<
=2

parameter X_|

@
-.4

3.2 3.4 36 3.8 4 4.2
parameter x

FIG.5: 0 =0.1.

2

8. CONCLUSIONS

In this paper, we presented a new confidence region based on a second-order sensitivity analysis as well as a quadratic
approximation of the covariance matrix. We analyzed and presented features of the introduced region. An important
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result is that there is a strong analogy between the quadratic approximation and the Lipschitz cerstaits
which are also used to describe the local convergence rate of the Gauss-Newton method.

The features of the quadratic approximation of the confidence region are demonstrated by numerical examples. It
is illustrated that the quadratic approximations of confidence regions are—in contrast to the linearized regions—very
good approximations of the likelihood ratio confidence regions.

The results of the paper suggest that it is important to optimize the design of experiments not only based on the
linear confidence analysis but to take into account the second-order information indicated by the Lipschitz constants
w andk.
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