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The use of model-based simulation to gain knowledge of unknown phenomena and processes behavior is a challenging
task in many natural sciences. In order to get a full description of an underlying process, an important issue is to
estimate unknown parameters from real but erroneous observations. Thus the whole system is affected by uncertainties
and a sensitivity analysis is necessary. Usually one applies first-order sensitivity analysis and resulting linearized
confidence regions to determine the statistical accuracy of the solution to parameter estimation problems. But especially
in significantly nonlinear cases linearized regions may not be an adequate representation. In this paper, we suggest
quadratic regions based on the second-order sensitivity analysis. The new region definition is based on a map that
transforms the input uncertainties onto the parameter space. Furthermore, the approximation accuracy of the quadratic
confidence regions is exemplary illustrated at two examples.

KEY WORDS: uncertainty quantification, representing of uncertainty, inverse problems, parameter esti-
mation, maximum likelihood, stochastic sensitivity analysis

1. INTRODUCTION

In simulating real-world systems by using mathematical models, it is a challenging task to adapt the model to the
process behavior by estimating unknown quantities. A common approach to identifying unknown model parameters
is the minimization of the difference between the model response and real observations at certain times in a suitable
norm. Due to inexact measuring methods, the measurements always contain defects, which lead to random influences
and uncertainties in the computed solution.

Suppose that we have a set of real observationsη := (η1, . . . , ηm1)
T at corresponding timesti, i = 1, . . . ,m1. If

the functionh denotes the mathematical description of the measured system output,x denotes the vector consisting
of thetrueparameter values andεi the corresponding measurement errors, then the measurements may be written as

ηi = h(ti, x) + εi, i = 1, . . . , m1.

It is a common assumption that the measurement errors follow a certain statistical distribution with zero means and
known, or unknown, variances. Due to the fact that the measurements contain defects, the computed estimatex∗ is
affected by uncertainties. Hence, a sensitivity analysis is necessary to determine the statistical accuracy ofx∗. In order
to do this, the use of confidence regions is a common approach. Confidence regions are domains around the nominal
parameter value, in such a way that the true values lie in this region with a certain probability.

In the case of only moderate nonlinear observation functions, without any restrictions on the parameter space, the
procedure of quantifying uncertainties is well investigated. In order to minimize the computational costs (even in high-
dimensional situations), frequently linearization techniques are used. A good overview of uncertainty quantification
by using linear confidence regions can be found in Bard [1], Draper and Smith [2], Gallant [3], Pázman [4], and Seber
and Wild [5].

∗Correspond to Ekaterina Kostina, E-mail: kostina@uni-heidelberg.de

2152–5080/15/$35.00 c© 2015 by Begell House, Inc. 209



210 Kostina & Nattermann

Nowadays, mathematical modeling and simulation of time-dependent systems get more and more attention in
many fields of application. Even in biological and chemical applications, the interest of getting knowledge about
unknown behaviors and phenomena by using mathematical simulation is permanently increasing. This leads to the
situation that mathematicians are confronted with a new kind of parameter estimation problems, which are often
characterized by a very high nonlinearity. Because of the high complexity of the emerging problems, the common
methods of quantifying errors are not longer adequate and there is a need for new investigations. To reinforce that
linearized methods are not sufficient in many situations, we would like to refer to Donaldson and Schnabel [6],
Rooney and Biegler [7], Schwaab et al. [8], Wiechert et al. [9], to name but a few.

The challenging requirements for the construction of a new confidence region are that the approximation accuracy
should be as high as possible, and furthermore that the computations should be numerically tractable with low to
moderate costs.

In literature, there are papers dealing with the construction of practical and suitable nonlinear confidence regions.
Hamilton et al. [10] defined a confidence region by using a quadratic approximation to the solution locus and geometric
concepts of sample space. Potocký and van Ban [11] developed confidence regions based on linear or quadratic
approximations of curvature measures for nonlinear regression models. Dalai et al. [12] derived a method for the
construction of confidence regions based on higher order statistics and an extension of the Leave-out Sign-Dominant
Correlation Regions (LSCR) method. According to the authors, the resulting confidence regions are characterized by
a guaranteed probability for any finite number of data samples. Modelhy and Marzouk [13] follow a Baysian inference
approach and they quantify the influence of prior errors by the construction of map which transforms the randomness
from the sample space onto the parameter space.

In this paper, we present a new definition of an approximation of confidence region based on a second-order
sensitivity analysis. The new region is based on a quadratic map which transforms the random effects of the erroneous
input data onto the parameter space. The construction of the map is based on functions that are basically available if
one uses the Gauss-Newton method to solve the underlying parameter estimation problem.

In general, the definition of the new confidence region is not dependent on a certain error distribution. In this
paper we concentrate on the situation with independent and normally distributed errors. Provided that the errors are
independent and normally distributed, we get a maximum likelihood estimate of the parameters by minimizing the
l2-norm of the difference between model and data. We analyze the new region and present some bounds of the new
confidence region. An important result is that there is a strong analogy between the quadratic approximation and the
local convergence rate of the Gauss-Newton method.

Moreover, a quadratic approximation of the covariance matrix is presented, which leads to another tool for a higher
order sensitivity analysis.

This paper is organized as follows. In Section 2 we give a brief introduction into parameter estimation problems.
After discussing some basic formulations and conditions, we choose a generalized Gauss-Newton method to solve
the problems. Section 3 presents a second-order representation of the estimated parameters depending on the prior
errors. This representation serves as the basis of definition of the new confidence region. In Section 4 we discuss the
confidence regions that are commonly used to perform a sensitivity analysis. The novel quadratic approximation of
confidence regions is the topic of Section 5. After the definition we present and discuss bounds and other properties of
the new region. In Section 6 we compute a quadratic approximation of the covariance matrix. Finally, in Section 7 we
consider some numerical examples to demonstrate features of the quadratic approximation of the confidence region.

2. PARAMETER ESTIMATION PROBLEMS

We consider equality-constrained parameter estimation problems in general form

min
x∈Rnx

1
2
‖F1(x)‖22

s.t.F2(x) = 0,

(1)

where the objective function consists of the weighted differences between erroneous measurementsη1, . . . , ηm1 , and
a corresponding measuring functionh : R× Rnx × Rnci → R, at certain times, i.e.,
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F1(x) := Σ−1




η1 − h(t1, x, c1)
...

ηm1 − h(tm1 , x, cm1)


 ∈ Rm1 . (2)

The independent variablesti ∈ R denote the measuring times, and the vectorx ∈ Rnx consists of unknown
constants—the so-called parameters—which we want to estimate. By the vectorsci ∈ Rnci we denote the control
variables of the system. By variations of the system controls, the experimenter is able to produce measurements under
different conditions, which are more or less qualified for estimating parameters. Moreover, we assume that the mea-
surement errorsεi, i = 1, . . . ,m1, are normally distributed with zero mean and the corresponding variancesσ2

i . The
matrix Σ denotes the regular diagonal matrixΣ = diag(σ1, . . . , σm1). Note that due to the assumptions of the error
distribution, the solution of problem(1) delivers a maximum likelihood estimate.

In the constrained functionF2 : Rnx → Rm2 , the whole system behavior and given restrictions can be mod-
eled. Frequently,F2 consists of the discretized model equations, describing the process behavior and some potential
conditions like boundary conditions, initial value conditions and the like.

Both functionsFi : D ⊂ Rnx → Rmi are assumed to be at least twice continuously differentiable, and
the Jacobians are given by the matricesJi(x) := ∂Fi/∂x ∈ Rmi×nx , i = 1, 2. Furthermore, we assume that
m2 < nx andm1 + m2 ≥ nx. To ensure the solvability of problem (1), the Jacobians have to satisfy two reg-
ularity conditions on the domainD. The first condition is theConstrained Qualification(CQ), where we assume
that rank J2(x) = m2. The second condition is the so-calledPositive Definiteness(PD), whererank J(x) =
nx, with JT (x) :=

(
JT

1 (x), JT
2 (x)

)
. If both assumptions are fulfilled, we make sure that we have on the one hand

enough information to estimate all unknown parameters (assumption PD), and on the other hand that it is guaranteed
that there are no contradictions and no redundancies in the constraints (assumption CQ).

Basically, any suitable optimization method can be applied to solve problem (1). The method of our choice is the
generalized Gauss-Newton method, as it was introduced by Bock [14] and Nocedal and Wright [15]. The advantages
of this method are its good performance properties and the necessity of the first-order derivatives only. The algorithm
starts with an initial guessx0, and the solution is computed iteratively. A new iterate is updated by the rule

xk+1 = xk + tk∆xk, k = 0, 1, 2, . . . , (3)

where the step sizetk ∈ (0, 1] is determined by a suitable line search (see e.g., Nocedal and Wright [15]), and the
increment∆xk ∈ Rnx is the solution of the linearized problem

min
∆xk

1
2
‖F1(xk) + J1(xk)∆xk‖22

s.t.F2(xk) + J2(xk)∆xk = 0.

(4)

The algorithm stops if an appropriate termination condition is fulfilled, e.g.,‖∆xk‖ ≤ tol, wheretol is a given
tolerance. The main cost of one Gauss-Newton iteration is basically determined by solving the linearized system (4).
According to the optimality conditions of the linearized problem in stepk, the solution∆xk, as well as the increment
∆λk of the Lagrange multiplierλk, may be written as

(
∆xk

∆λk

)
= −

(
JT

1 (xk)J1(xk) JT
2 (xk)

J2(xk) 0

)−1 (
JT

1 (xk) 0
0 I

)(
F1(xk)
F2(xk)

)
.

Note that the regularity of the Karush-Kuhn-Tucker (KKT) matrix on the domainD can be easily shown by the
conditions (CQ) and (PD), see [14]. By introducing the notations

J+(x) :=
(
I 0

)(
JT

1 (x)J1(x) JT
2 (x)

J2(x) 0

)−1 (
JT

1 (x) 0
0 I

)
, F (x) :=

(
F1(x)
F2(x)

)
(5)

the increment of a Gauss-Newton iteration can be written by the matrix-vector product∆xk = −J+(xk)F (xk).
The operatorJ+ is a generalized inverse, but in general it is not a Moore-Penrose pseudo-inverse, since the axiom
(JJ+)T = JJ+ is not necessarily fulfilled. However, at least the relationJ+(x)J(x) = Inx holds.

The local convergence properties of the Gauss-Newton method will be discussed in the following theorem.
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Theorem 1. (Local Contraction Theorem) (Bock [14])
Let FT :=

(
FT

1 , FT
2

) ∈ C1(D,Rm1+m2), with the corresponding JacobianJT =
(
JT

1 , JT
2

)
= ∂FT /∂x.

Furthermore, we assume thatJ1 andJ2 satisfy the regularity assumptions (CQ) and (PD) onD andJ+ denotes the
generalized inverse according to (5). For all vectorsx ∈ D with y := x+J+(x)F (x), which implies that∆x = y−x
andt ∈ (0, 1] we assume that:

• there exists anω < ∞ such that

‖J+(y)
(
J(x + t∆x)− J(x)

)
∆x‖ ≤ ωt‖∆x‖2;

• there exists aκ(x) ≤ κ < 1 such that

‖J+(y)R(x)‖ ≤ κ(x)‖∆x‖ (6)

with the residualR(x) =
(
I− J(x)J+(x)

)
F (x).

Further, we assume that the given initial valuex0 ∈ D satisfies the relations

δ0 := κ +
ω

2
‖∆x0‖ < 1,

δk := κ +
ω

2
‖∆xk‖ , where∆xk := −J+(xk)F (xk)

and

D0 :=
{

z ∈ Rn | ‖z − x0‖ ≤ ‖∆x0‖
1− δ0

}
⊆ D.

Then the following hold:

1. the full-step Gauss-Newton iterations are well-defined and remain inD; there exists anx∗ ∈ D with xk → x∗

for k →∞ such thatJ+(x∗)F (x∗) = 0;

2. the convergence rate is linear with

‖∆xk+1‖ ≤
(
κ +

ω

2
‖∆xk‖

)
‖∆xk‖;

3. an a priori estimate is given by

‖xk+j − x∗‖ ≤ δ
k+j
0

1− δ0
‖∆x0‖ .

The proof of Theorem 1 follows lines of the Banach fixed point theorem and is explored thoroughly in [14].
According to Theorem 1 we have asymptotic linear convergence with rateκ. The Lipschitz constantω is basically
determined by‖J+‖ · ‖dJ‖ in some norm, wheredJ := ∂J�∂x denotes the second derivative, and it can be seen
as a measure for the curvature of the nonlinear functionF . The significant meaning ofκ is that only if κ < 1, a
compatibility between the model and the measurements can be guaranteed, see Bock [14] and Bock et al. [16]. One
main result of this paper is that these Lipschitz constants are also useful to determine the statistical accuracy of the
estimatex∗. We will see that the bounds on the quadratic approximation of confidence regions are characterized by
the constantsω andκ and a first-order approximation of the covariance matrix.

3. PARAMETER REPRESENTATION

In this section we present a first- and a second-order representation of the unknown parameter vector as a function of
an error weightτ ∈ [0, 1]. To this end, we consider a modified problem as
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min
x∈Rnx

1
2
‖F1(x, τ)‖22

s.t.F2(x) = 0.
(7)

Taking (2) into account, the modified objective functionF1 is explicitly given by

F1(x, τ) = Σ−1




(h(t1, x, c1) + τε1) − h(t1, x, c1)
...

(h(tm1 , x, cm1) + τεm1) − h(tm1 , x, cm1)


 ,

wherex denotes again the vector of the true parameter values. Note that, ifτ = 0, the solution of problem (7)
corresponds tox, and if τ = 1, the original problem (1) and the modified problem (7) have the same solution. The
optimality conditions of the modified problem together with the constraints are given by

F(x, λ, τ) :=
(

JT
1 (x, τ)F1(x, τ) + JT

2 (x)λ
F2(x)

)
= 0, (8)

where we introduce the functionF : Rnx ×Rm2 × [0, 1] → Rnx+m2 . Let the Jacobian of the functionF be given by
J (x, λ, τ) = ∂F/∂(x, λ). For a more readable representation, we denote

F [τ] := F(x(τ), λ(τ), τ), F1[τ] := F1(x(τ), τ), F2[τ] := F2(x(τ)),
J [τ] := J (x(τ), λ(τ), τ), J1[τ] := J1(x(τ), τ), J2[τ] := J2(x(τ)).

The following lemma gives a representation of the first derivative of the parameter vector as a function ofτ. Using the
derivative we get a first-order Taylor approximation ofx.

Lemma 1. (First-order representation)
Let x(0) = x be the vector of the true parameters and assume that the JacobiansJ1 and J2 satisfy the regularity
assumptions (CQ) and (PD) in a neighborhood ofx. Then, forτ ∈ Uτ0=0 the derivativeṡx(τ) and λ̇(τ) are uniquely
defined by the system

J [τ]
(

ẋ(τ)
λ̇(τ)

)
= −

(
JT

1 [τ](Σ−1ε)
0

)

and a first-order representation of the parameter vector is given by

x(τ) = x(0) + τẋ(0) +O(τ2)

= x + τJ+(x)
(

Σ−1ε

0

)
+O(τ2).

Proof. The proof is given following Bock et al. [17] and is based on an application of the implicit function theorem.
Let x(τ) be a solution of the modified problem, withx(τ) → x(0) = x if τ → 0. In the case ofτ = 0, the true
parameter vectorx(0) = x is the solution of (7) andF1(x, 0) = 0. Due to the assumption that we have the true model
functions, the vectorx is a feasible point, and thus the constraintF2(x) = 0 is fulfilled. Furthermore, it holds that
λ(0) = 0 because of the regularity assumption (CQ). The JacobianJ (x, λ, τ) := ∂F/∂(x, λ) of the vector-valued
functionF(x, λ, τ) is explicitly given by

J [τ] =

(
JT

1 [τ]J1[τ] + ∂JT
1

∂x [τ](I⊗ F1[τ]) + ∂JT
2

∂x [τ](I⊗ λ) JT
2 [τ]

J2[τ] 0

)
,

where

(I⊗ F1[τ]) :=




F1[τ] 0
. ..

0 F1[τ]


 ∈ R(m1·nx)×nx and(I⊗ λ) :=




λ 0
. ..

0 λ


 ∈ R(m2·nx)×nx .
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Evaluated atτ = 0, the Jacobian reduces to

J [0] =
(

JT
1 [0]J1[0] JT

2 [0]
J2[0] 0

)
,

and according to the regularity conditions (CQ) and (PD) it is non-singular. Thus, atτ0 = 0, the assumptions of
the implicit function theorem are fulfilled, and therefore there exist aτ0-neighborhoodUτ0 and unique functions
x(τ) : Uτ0 → Rnx andλ(τ) : Uτ0 → Rm2 that satisfy the optimality condition (8) and the the initial conditions
x(0) = x andλ(0) = 0. Moreover, there exists a neighborhood ofτ0 = 0 such that for allτ in this neighborhood the
derivativesẋ(τ) := ∂x(τ)/∂τ andλ̇(τ) := ∂λ(τ)/∂τ are the unique solution of the linear system

J [τ]
(

ẋ(τ)
λ̇(τ)

)
= −∂F [τ]

∂τ
, where

∂F [τ]
∂τ

= −
(

JT
1 [τ]Σ−1ε

0

)
.

In particular, forτ = 0 the derivative of the parameter vector is given by

∂x(0)
∂τ

= −J+(x)
(

Σ−1ε

0

)
.

The first-order representation follows directly by a Taylor expansion.

Before we define the second-order representation of the parameter vector, in the following lemma we consider the
derivative of the generalized inverseJ+.

Lemma 2. Letx ∈ Rnx be a feasible vector and assume that the JacobiansJ1 andJ2 satisfy the regularity assump-
tions (CQ) and (PD) inx. Then the derivative of the generalized inverse is given by

∂J+(x)
∂x

= C(x)
∂JT (x)

∂x

((
I 0
0 0

)
− (J(x)J+(x))T

)
− J+(x)

∂J(x)
∂x

J+(x),

where

C(x) := J+(x)
(
Im1 0
0 0m2

)
J+T (x).

Proof. By definition it holds that

J+(x) =
(
I 0

)J−1(x)
(

JT
1 (x) 0
0 I

)
.

Considering

∂J+(x)
∂x

= − (
I 0

)J−1 ∂J (x)
∂x

J−1(x)
(

JT
1 (x) 0
0 I

)
+

(
I 0

)J−1(x)




∂JT
1 (x)
∂x

0

0 I




the lemma follows after a computation of∂J (x)/∂x and an appropriate simplification.

Lemma 3. Let x(0) = x be the vector of the true parameters and assume that the JacobiansJ1 andJ2 satisfy the
regularity assumptions (CQ) and (PD) in a neighborhood ofx. Then, forτ ∈ Uτ0=0 the following expansion holds

x(τ) = x(0) + τẋ(0) +
τ2

2
..
x (0) +O(τ3).

The derivatives are given by
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ẋ(0) = − (
I 0

)J−1[0]
(

JT
1 [0] 0
0 I

) (
Σ−1ε

0

)
= −J+(x)

(
Σ−1ε

0

)
,

..
x (0) = −2

(
dJ+(x)

(
I− J(x)J+(x)

)
+

1
2
J+(x)(dJ(x))(−J+(x))

)(
Σ−1ε

0

)
,

where

dJ+(x) =
n∑

i=0

∂J+(x)
∂xi

ẋi(0) anddJ(x) =
n∑

i=0

∂J(x)
∂xi

ẋi(0).

Proof. In the proof of Lemma 1, we obtained that according to the implicit function theorem, the derivativesẋ(τ) and
λ̇(τ) are defined on a domainUτ0 and that they are continuously differentiable. Hence, we are able to compute the
second derivative ofx with respect toτ. Forτ ∈ Uτ0 we obtain

∂2x(τ)
∂τ2

= − ∂

∂τ

((
I 0

)J−1[τ]
(

JT
1 [τ]

(
Σ−1ε

)
0

))

=
(
I 0

)J−1[τ]
∂J [τ]

∂τ
J−1[τ]

(
JT

1 [τ](Σ−1ε)
0

)
− (I, 0)J−1[τ]




∂JT
1 [τ]
∂τ

(
Σ−1ε

)

0




With Lemma 2 and by simplification it follows that

..
x (0) = −2

(
(dJ+(x))(I− J(x)J+(x)) +

1
2
J+(x)(dJ(x))(−J+(x))

) (
Σ−1ε

0

)
.

The second-order representation follows directly by a Taylor series and Lemma 1.

Thus, a second-order representation of the parameter vector depends on the JacobianJ , the generalized inverse
J+, the second derivativedJ and the weighted measurement errors. Note thatdJ is according to Lemma 2 the only
second derivative we need. Especially in the context of optimum experimental design, where we also need the second
derivativedJ , all matrix functions of the second-order representation in Lemma 3 are known.

There exists a remarkable relation between the introduced second-order parameter representation and the Lipschitz
constantsκ andω, which are introduced in Theorem 1. In order to verify this, the following lemma gives an adequate
estimate of the Lipschitz constantκ.

Lemma 4. Let us assume thatx is a feasible point and that the JacobiansJ1 andJ2 satisfy the regularity assumptions
(CQ) and (PD). Furthermore, we introduce the following notations

λ(x) := − (
0 I

) (
JT

1 (x)J1(x) JT
2 (x)

J2(x) 0

)−1 (
JT

1 (x) 0
0 I

)
F (x),

v(x) := F1(x)− J1(x)C(x)JT
1 (x)F1(x),

R(x) := F (x)− J(x)J+(x)F (x),

C(x) := J+(x)
(
I 0
0 0

)
J+T (x),

E(x) :=
∂JT

1 (x)
∂x

(I⊗ v(x)) +
∂JT

2 (x)
∂x

(I⊗ λ(x)) ,

where

∂JT
1 (x)
∂x

(I⊗ v(x)) :=
(

∂JT
1 (x)

∂x1
, . . . ,

∂JT
1 (x)

∂xnx

)



v(x) 0
. ..

0 v(x)


 ∈ Rm1×nx
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and

∂JT
2 (x)
∂x

(I⊗ λ(x)) :=
(

∂JT
2 (x)

∂x1
, . . . ,

∂JT
2 (x)

∂xnx

)



λ(x) 0
. . .

0 λ(x)


 ∈ Rm2×nx .

Furthermore, we define

κ̃(x) := ‖C(x)E(x)‖ .

1. Then it holds that

‖J+(y)R(x)‖ =
∥∥dJ+(x)R(x)

∥∥ +O(‖∆x‖2)
≤ κ̃ ‖∆x‖+O(‖∆x‖2),

where∆x := y − x = −J+(x)F (x), with x, y ∈ D ⊆ Rnx and the total derivative

dJ+(x) :=
nx∑

i=1

∂J+(x)
∂xi

∆xi.

2. In terms ofκ as defined in Theorem 1 it holds that

κ̃ < 1 =⇒ κ < 1.

3. If x∗ is an arbitrary point satisfying the KKT conditions of the equality-constrained parameter estimation
problem,E(x∗) reduces to

E(x∗) =
∂JT

1 (x∗)
∂x

(I⊗ F1(x∗)) .

Proof.

1. A first-order Taylor series ofJ+(y) aroundx yields

J+(y) = J+(x) +
nx∑

i=1

∂J+(x)
∂xi

∆xi +O(‖∆x‖2),

and because ofJ+(x)R(x) = 0 we get
∥∥J+(y)R(x)

∥∥ =
∥∥dJ+(x)R(x)

∥∥ +O(‖∆x‖2),
where

dJ+(x) :=
nx∑

i=1

∂J+(x)
∂xi

∆xi.

Recognizing Lemma 2, where the derivative of the generalized inverse is given, we obtain the following equation

dJ+(x)R(x) =
(
C(x) dJT (x)

((
I 0
0 0

)
− (J(x)J+(x))T

)
− J+(x)(dJ(x))J+(x)

)
R(x)

= C(x) dJT (x)
((
I 0
0 0

)
− (J(x)J+(x))T

) (
I− J(x)J+(x)

)(
F1(x)

0

)

= C(x) dJT (x)
(
I− (J(x)J+(x))T

) (
F1(x)

0

)
,
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where we used
((
I 0
0 0

)
− (J(x)J+(x))T

) (
I− J(x)J+(x)

) (
F1(x)

0

)
=

(
I− (J(x)J+(x))T

) (
F1(x)

0

)
.

Furthermore, with

J−1(x) :=
(C(x) ZT (x)

Z(x) T (x)

)
:=

(
JT

1 (x)J1(x) JT
2 (x)

J2(x) 0

)−1

anddJT = (dJT
1 , dJT

2 ) it holds that

dJT (x)
(
I− (J(x)J+(x))T

) (
F1(x)

0

)
= dJT

1 (x)
(
F1(x)− (

I 0
) (

J1 0
0 I

)
J−1(x)

(
JT

1 (x)F1(x)
0

))

+ dJT
2 (x)

(
− (

0 I
)(

J1 0
0 I

)
J−1(x)

(
JT

1 (x)F1(x)
0

))

= dJT
1 (x)

(
F1(x)− J1(x)C(x)JT

1 (x)F1(x)
)

+ dJT
2 (x)λ(x)

= dJT
1 (x)v(x) + dJT

2 (x)λ(x)

=
(

∂JT
1 (x)
∂x

(I⊗ v(x)) +
∂JT

2 (x)
∂x

(I⊗ λ(x))
)

∆x.

Therefore, we get

∥∥dJ+(x)R(x)
∥∥ = ‖C(x)E(x)∆x‖ ≤ ‖C(x)E(x)‖ ‖∆x‖ = κ̃‖∆x‖.

2. If we reduceD in such a way thatO(‖y − x‖2) ≤ (1− κ̃)‖y − x‖/2 for all x, y, it holds that

∥∥J+(y)R(x)
∥∥ = κ̃‖∆x‖+O(‖y − x‖2) ≤ κ̃‖∆x‖+

1− κ̃

2
‖y − x‖ =

1 + κ̃

2
‖y − x‖ =: κ‖∆x‖,

whereκ < 1.

3. This follows since it holds thatJT
1 (x∗)F1(x∗) = 0, if x∗ satisfies the KKT conditions of the equality-constrained

parameter estimation problem.

Considering the second-order representation in any arbitrary norm, the triangular inequality yields

1
2

∥∥..
x (0)

∥∥ ≤
∥∥∥dJ+(x)(I− J(x)J+(x))

(
Σ−1ε

0

) ∥∥∥ +
1
2

∥∥∥J+(x)(dJ(x))(−J+(x))
(

Σ−1ε

0

) ∥∥∥. (9)

The first expression of the right-hand side can be interpreted using Lemma 4. According to this lemma, it holds that

∥∥∥dJ+(x)(I− J(x)J+(x))
(

Σ−1ε

0

) ∥∥∥ =
∥∥dJ+(x)R(x)

∥∥ ≤ κ̃(x)‖∆x‖,

where

R(x) := (I− J(x)J+(x))
(

Σ−1ε

0

)
.

Note thatΣ−1ε = F1(x). The second expression of (9) can be estimated by
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1
2

∥∥∥J+(x)(dJ(x))(−J+(x))
(

Σ−1ε

0

) ∥∥∥ ≤ 1
2

∥∥∥J+(x)(dJ(x))
∥∥∥‖∆x‖

≤ 1
2

∥∥∥J+(x)
∂J(x)

∂x

∥∥∥‖∆x‖2

≤ 1
2

∥∥∥J+(x)
∥∥∥ ·

∥∥∥∂J(x)
∂x

∥∥∥‖∆x‖2

=:
1
2
ω̃(x)‖∆x‖2.

Obviously, we do not know the true parameter vectorx in practice. We assume that the computed solution of
the parameter estimation problemx∗ is indeed a parameter estimate, i.e. it is a continuous deformation of the true
parameter values, as a function of measurement errors, in a compact region. In this region we can further reasonably
assume that the constantsκ andω are bounded. Indeed,ω is a weighted Lipschitz constant on the Jacobians andκ

is a Lipschitz constant on the generalized inverse weighted by the least squares residuals. Moreover, the constantκ

needs to be smaller than one for parameter estimation problems to be well-posed also in nonlinear case. Hence, in the
absence of any other information we approximate the constantκ̃(x) by κ̃(x∗) and the constant̃ω(x) by ω̃(x∗) which
is defined in a similar way toω of theLocal Contraction Theorem1 by

ω̃(x∗) :=
∥∥∥J+(x∗)

∥∥∥ ·
∥∥∥∂J(x∗)

∂x

∥∥∥.

Thus, we get the following bound for the second derivative of the parameter values:

1
2

∥∥..
x (0)

∥∥ .
(

κ̃(x∗) +
ω̃(x∗)

2
‖∆x‖

)
‖∆x‖ .

The bound depends on Lipschitz constantsκ̃ as well as oñω with a squared weight‖∆x‖2.

4. CONFIDENCE REGIONS

The existence of erroneous input data leads to uncertainties in the computed solutionx∗ and therefore a sensitivity
analysis is necessary. In order to get information about the accuracy of an estimate, we need to know how uncertainties
in the observation space are propagated into the parameter space.

One approach of quantifying the quality of an estimated parameter vector is the already mentioned confidence
regions. The idea of confidence regions is to define a domainD ⊆ Rn surrounding the nominal parameter valuex∗, in
such a way that the true parameter vectorx lies in this region with a certain probability(1−α). Obviously, confidence
regions depend on the observationsη—and on their uncertainties—as a part of the input data of the underlying
parameter estimation problem. In addition the size of confidence regions is determined by the so-called confidence
level (1− α), where0 < α < 1. Obviously, the smaller the value ofα, the bigger is the confidence region. However,
D(η, α) is a confidence region, if the equality

P (x ∈ D(η, α)) = 1− α, (10)

or at least the inequality
P (x ∈ D(η,α)) ≥ 1− α (11)

holds, [4]. Basically, there are several possibilities to construct a confidence region, but some further requirements are
preferable. On the one hand, confidence regions should be numerically well tractable. This means that the computation
should be easy, fast and especially not error-prone. On the other hand, the confidence region should be as accurate as
possible, which means as small as possible having regard to (10) or (11).

Before we define a new quadratic approximation of confidence region, we consider some common confidence
regions for the estimatex∗.
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Likelihood ratio confidence regions.If we consider an unconstrained parameter estimation problem—where we
are confronted with the task

min
x∈Rn

1
2
‖F1(x)‖22 , (12)

using the notations from (2)—a confidence region for an estimatex∗ is given by

DU lr(α) =
{

x ∈ D | ‖F1(x)‖22 − ‖F1(x∗)‖22 ≤ γ2
nx

(α)
}

, (13)

see e.g., [2, 4, 18]. In case the standard deviationsσi are known,γ2
nx

(α) denotes the(1 − α)-quantile of theχ2-
distribution. If the valuesσi are unknown, we defineγ2

nx
(α) := s2 · nx · Fnx,m1−nx , whereFnx,m1−nx is the

(1− α)-quantile of theF -distribution and

s2 :=

∥∥F1(x2)
∥∥2

m1 − nx
. (14)

An asymptotically justification of the confidence region definition (13) can be derived by a simple likelihood ratio
test, if we test a hypothesisx∗ against another hypothesisx 6= x∗. This test results in a log-proportional expression
like ‖F1(x)‖22 − ‖F1(x∗)‖22, and if under assumption that the measurement errors are independent and normally
distributed, we get asymptotically (13), see Pázman [4].

Bock [14] adapted the nonlinear confidence region to constrained parameter estimation problems. If we consider
problem (1), with an estimatex∗, a confidence region is given by

Dlr(α) :=
{

x ∈ D | F2(x) = 0, ‖F1(x)‖22 − ‖F1(x∗)‖22 ≤ γ2
m(α)

}
, (15)

wherem := nx −m2 denotes the degrees of freedom.
The good approximation properties of likelihood ratio confidence regions must be paid by a huge complexity and

very high computational costs, especially in significantly nonlinear cases. The computation of (15), or at least of some
appropriate bounds, requires the solution of a nonlinear equation withm degrees of freedom. Due to this, likelihood
ratio confidence regions are not practicable in many applications, see e.g. Vanrolleghem and Keesman [19].

Linearized confidence regions.To counteract the high computational costs of likelihood ratio confidence regions,
a common approach is to apply linearization techniques, see [2, 4, 5, 14]. By a first-order Taylor expansion ofDlr(α)
we obtain the linearized confidence region

Dlin(α) := {x ∈ D | F2(x∗) + J2(x∗)(x− x∗) = 0,

‖F1(x∗) + J1(x∗)(x− x∗)‖22 − ‖F1(x∗)‖22 ≤ γ2
m(α)},

and due to the optimality conditions forx∗ we can rewriteDlin(α) as

Dlin(α) = {x ∈ D | J2(x∗)(x− x∗) = 0, ‖J1(x∗)(x− x∗)‖22 ≤ γ2
m(α)}, (16)

and in the unconstrained case

DU lin(α) := {x ∈ D | ‖J1(x∗)(x− x∗)‖22 ≤ γ2
nx

(α)}, (17)

see [14]. The meanings ofγ2
m(α) andγ2

nx
(α), respectively, remain unaffected by the linearizations and are described

above.
The shape of the linearized confidence region is characterized by an ellipsoid and it is very cheap to compute this

region. In case of a linear observation functionh, these regions are optimal in the sense that they have a minimal
volume with a confidence level exactly equal to(1−α). However, this holds only for the linear case, and in literature
many nonlinear applications can be found, where the elliptical regions are a poor approximation, see e.g., [6–9].

Operator-based linear confidence regions.Another approach to performing a sensitivity analysis is based on the
linear operatorJ+.
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According to Lemma 1, a first-order Taylor series ofx as a function of the error weight is given by

x(τ) = x + τ
∂x(0)

∂τ
+O(τ2) = x− τJ+(x)

(−Σ−1ε

0

)
+O(τ2). (18)

Remember that the measurement errors are assumed to be independent and normally distributed with zero mean and
variancesσ2

i , i = 1, . . . , m1. Hence, the first-order approximation ofx(τ) is normally distributed, too, with expected
valueE (x(τ)) = x and covariance matrix

C = J+(x)
(
Im1 0
0 0m2

)
J+T (x).

In practice, we use the estimatex∗ instead of the unknown vectorx. The use ofx∗ is justified by the expectation
that the solution of the generalized Gauss-Newton method is a good approximation of the true valuesx. Thus, in our
further considerations we use the covariance matrix

C := J+(x∗)
(
Im1 0
0 0m2

)
J+T (x∗). (19)

This matrix is symmetric, positive semi-definite, and hasrank(C) = m = nx −m2.
Another linearized confidence region can be defined with the help of the first-order, error-depending representation

of x. If x∗ is the solution of problem (1) and the JacobiansJ1 andJ2 satisfy the regularity assumptions (CQ) and (PD)
in x∗, a linear confidence region is given by

Dlin(α) :=
{

x∗ + ∆x | ∆x = −J+(x∗)
(

η

0

)
, ‖η‖22 ≤ γ2

m(α)
}

. (20)

Following Bock et al. [17], we can show thatDlin(α) = Dlin(α). Hence the properties of (16) can be adapted to
the region (20). Furthermore, the following lemma shows that the exact bounds on the region (20) are related to the
diagonal elements of the covariance matrix (19).

Lemma 5. Let x∗ be a solution of problem (1) and assume that the JacobiansJ1 and J2 satisfy the regularity
assumptions (CQ) and (PD) inx∗. Then,Dlin(α) is contained in a minimal box defined by the cross product of the
confidence intervals,

Dlin(α) ⊂
nx×
i=1

[x∗i − θi, x
∗
i + θi],

whereθi =
(
Ciiγ

2
m(α)

)1/2
. The valuesCii denote the diagonal elements of the covariance matrixC. Furthermore,

it holds

max
x∈Dlin(α)

|xi − x∗i | = θi, i = 1, . . . , n.

The proof of this lemma is e.g., given in [17]. According to Lemma 5, it is sufficient to compute the diagonal
elements of the covariance matrix to perform a first-order sensitivity analysis.

5. A QUADRATIC APPROXIMATION OF CONFIDENCE REGIONS

To pursue the idea of the linearized region (20), we suggest a quadratic approximation of confidence regions based on
a second-order sensitivity analysis. Considering Lemma 3, a quadratic approximation of confidence regions is defined
as follows.
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Definition 5.1. Let x∗ be the solution of problem (1) and assume that the JacobiansJ1 andJ2 satisfy the regularity
assumptions (CQ) and (PD) inx∗. Then, a quadratic approximation of a confidence region is defined by

Dquad(α) :=
{

x∗ + ∆x +
1
2
∆x | ∆x = −J+

(
η

0

)
,

∆x = −2
(

dJ+(I− JJ+)− 1
2
J+(dJ)J+

)(
η

0

)
, ‖η‖22 ≤ γ2

m(α)
}

,

where all the functions are evaluated atx∗, and the total derivatives are given by

dJ(x∗) =
∂J(x∗)

∂x
(∆x⊗ I) =

n∑

i=1

∂J(x∗)
∂xi

(
eT
i ∆x

)
,

dJ+(x∗) =
∂J+(x∗)

∂x
(∆x⊗ I) =

n∑

i=1

∂J+(x∗)
∂xi

(
eT
i ∆x

)
.

We want to remark that the derivative of the JacobianJ is the only second derivative that is needed to compute
the quadratic approximation of confidence regions. The derivative of the generalized inverseJ+ is explicitly given in
Lemma 2. For further information of the computation of matrix derivatives we refer to Magnus and Neudecker [20].

For the sake of completeness, we want to note that the new confidence region is of course also usable in the
unconstrained case (12). Here, a quadratic approximation of confidence regions is given by

DUquad(α) :=
{

x∗ + ∆x +
1
2
∆x | ∆x = −J+η, (21)

∆x = −2
(

dJ+(I− J1J
+)− 1

2
J+(dJ1)J+

)
η, ‖η‖22 ≤ γ2

nx
(α)

}
,

whereJ+ = (JT
1 J1)−1JT

1 is a Moore-Penrose pseudo-inverse and all the functions are evaluated atx∗.

Lemma 6. Let x∗ be a solution of problem (1) and assume that the JacobiansJ1 andJ2 satisfy the regularity as-
sumptions (CQ) and (PD) inx∗. Then

max
‖η‖22≤γ2

m(α)

1
2
∆xi = µ∗γ2

m(α), i = 1, . . . , nx,

whereµ∗ is the maximum eigenvalue of the symmetric matrix−1/2
nx∑
i=1

(
rj,ic

T
i + cir

T
j,i

)
with

cT
i := eT

i (−J+)
(
I
0

)

rT
j,i := −eT

j

(
∂J+

∂xi

(
I− JJ+

)(
I
0

)
+

1
2
J+ ∂J

∂xi
(−J+)

(
I
0

))
,

and all the functions are assumed to be evaluated atx∗.

Proof. It holds that

1
2
∆x = −

(
dJ+

(
I− JJ+

) (
η

0

)
+

1
2
J+(dJ)(−J+)

(
η

0

))

= −
nx∑

i=1

(
∂J+

∂xi

(
I− JJ+

) (
I
0

)
+

1
2
J+ ∂J

∂xi
(−J+)

(
I
0

))(
cT
i η

)
η
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and hence

1
2
∆xj =

nx∑

i=1

−eT
j

(
∂J+

∂xi

(
I− JJ+

) (
I
0

)
+

1
2
J+ ∂J

∂xi
(−J+)

(
I
0

)) (
cT
i η

)
η =

nx∑

i=1

(
rT
j,iη

)(
cT
i η

)
.

In order to find the maximum max
‖η‖22≤γ2

m(α)
(1/2)∆xi, we consider the Lagrangian

L(η,µ) = −
nx∑

i=1

(
rT
j,iη

)(
cT
i η

)
− µ

(
γ2

m(α)− ηT η
)

and the necessary optimality condition

0 =
∂L(η,µ)

∂η
=

(
−

nx∑

i=1

(
rj,ic

T
i + cir

T
j,i

)
+ 2µI

)
η.

Thus we get that the matrix−
nx∑
i=1

(
rj,ic

T
i + cir

T
j,i

)
has an eigenvalue2µ with the corresponding eigenvectorη.

Furthermore, the necessary optimality condition yields

0 =

(
−

nx∑

i=1

(
rj,ic

T
i + cir

T
j,i

)
+ 2µI

)
η ⇐⇒ 0 = −

nx∑

i=1

(
ηT rj,i

)(
cT
i η

)
+

(
ηT ci

)(
rT
j,iη

)
+ 2µηT η

⇐⇒ 2µγ2
m(α) = 2

nx∑

i=1

(
ηT rj,i

)(
cT
i η

)

and we have

max
‖η‖22≤γ2

m(α)

1
2
∆xi = µ∗γ2

m(α),

whereµ∗ is the maximum eigenvalue of the matrix

−
nx∑

i=1

(
rj,ic

T
i + cir

T
j,i

)
.

In the following lemma we introduce bounds on the quadratic approximation of confidence region for each com-
ponent of the parameter vector.

Lemma 7. Let x∗ be a solution of problem (1) and assume that the JacobiansJ1 and J2 satisfy the regularity
assumptions (CQ) and (PD) inx∗. ThenDquad(α) is contained in a box defined by the cross product of the confidence
intervals,

Dquad(α) ⊂
nx×
i=1

[x∗i − θi, x
∗
i + θi],

where

θi =
√

Ciiγm(α) +
nx∑

k=1

√(
J̃kJ̃T

k

)
ii

Ckk · γ2
m(α),

with

J̃k :=
∂J+(x∗)

∂xk
(I− J(x∗)J+(x∗))− 1

2
J+(x∗)

∂J(x∗)
∂xk

J+(x∗).

The constantsCii denote the diagonal elements of the covariance matrixC, i = 1, . . . , nx. Here all the matrix
functions are evaluated at the solutionx∗.
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Proof. The lemma follows from the following relations
∣∣∣∣
(

∆x +
1
2
∆x

)

i

∣∣∣∣ =
∣∣∣∣eT

i J+

(
η

0

)
+ eT

i

(
dJ+(I− JJ+)− 1

2
J+dJJ+

)(
η

0

)∣∣∣∣

≤ ‖eT
i J+‖2 · ‖η‖2 +

∥∥∥∥eT
i

(
dJ+(I− JJ+)− 1

2
J+dJJ+

)∥∥∥∥
2

· ‖η‖2

≤
√

Cii · γm(α) +
nx∑

k=1

∥∥∥eT
i J̃k

∥∥∥
2
|eT

k J+η| · γm(α)

≤
√

Cii · γm(α) +
nx∑

k=1

√(
J̃kJ̃T

k

)
ii

Ckk · γ2
m(α),

where all the functions are evaluated atx∗.

The next lemma gives a further estimation of the new confidence region by using the two Lipschitz constantsω

andκ of J+ andJ , respectively.

Lemma 8. Under the assumptions of Lemma 7 the following inequality holds

∥∥∥∆x +
1
2
∆x

∥∥∥
2
≤ θ +

(
κ̃(x∗) +

1
2
ω̃(x∗)θ

)
θ.

The value ofθ is defined byθ :=
√

trace(C(x∗))γ2
m(α), whereC(x∗) denotes the linear approximation of the

covariance matrix, and̃κ(x∗) andω̃(x∗) are given by

κ̃(x∗) := ‖C(x∗)E(x∗)‖ ,

ω̃(x∗) :=
∥∥∥∥J+(x∗)

∂J(x∗)
∂x

∥∥∥∥ ,

whereE(x∗) = (∂JT
1 (x∗)/∂x)(I⊗ F1(x∗)).

Proof. The lemma follows from Lemma 4 and (9).

Let us again consider the interpretations of the Lipschitz constantsκ andω, following the Local Contraction
Theorem1. According to Lemma 8 we may conclude that the new confidence regions depend on the one hand on the
nonlinearity of the model functionω, and on the other hand onκ, i.e. on the compatibility between the model and the
real observations.

6. A QUADRATIC APPROXIMATION OF THE COVARIANCE MATRIX

In Lemma 5 we have seen that the linear confidence regions have a direct relation to the diagonal elements of the
linear approximation of the covariance matrix. In particular, ifCii denotes theith diagonal element of the covariance
matrix approximation (19), we get linear approximations of confidence intervals by

[
x∗ −

√
Ciiγ

2
m(α), x∗ +

√
Ciiγ

2
m(α)

]
, (22)

i = 1, . . . , nx. In this section, we compute a quadratic approximation of the covariance matrix, to get another tool for
a higher order sensitivity analysis, by replacing in (22) the diagonal elements of the linear covariance by the diagonal
elements of the quadratic approximation of the covariance matrix.
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According to Lemma 3, and taking the estimatex∗ as a good approximation of the true parameter vectorx, we get
up to the second order that

x(ε) := x(τ = 1) = x∗ − J+

(−Σ−1ε

0

)
−

[
(dJ+)

(
I− JJ+

)
− 1

2
J+(dJ)J+

] (−Σ−1ε

0

)
,

where all the functions are evaluated atx∗. For the further considerations, let the inverse of the KKT-matrix explicitly
be given by (

X Y T

Y Z

)
:=

(
JT

1 (x∗)J1(x∗) JT
2 (x∗)

J2(x∗) 0

)−1

. (23)

If we take into account that the expected value is linear and that the measurement errorsεi are normally distributed
with the zero mean and the variancesσ2

i , the expected value ofx(ε) is given by

E(x(ε)) = E(x∗) + J+(x∗)E
(

Σ−1ε

0

)
+

nx∑

i=1

J̃i(x∗)E
[(

eT
i J+(x∗)

(
Σ−1ε

0

))(
Σ−1ε

0

)]

= x∗ +
1
σ2

nx∑

i=1

J̃i(x∗) E
[(

eT
i XJT

1 (x∗)Σ−1ε
) (

Σ−1ε

0

)]
= x∗ +

nx∑

i=1

J̃i(x∗)
(

J1(x∗)X
0

)
ei, (24)

where we introduced the notation

J̃i(x∗) :=
∂J+(x∗)

∂xi

(
I− J(x∗)J+(x∗)

)
− 1

2
J+(x∗)

∂J(x∗)
∂xi

J+(x∗).

Now, we compute a quadratic approximation of the covariance matrix:

C2 : = E
[(

x(ε)− E(x(ε))
)(

x(ε)− E(x(ε))
)T ]

= E
(
x(ε)x(ε)T

)
− E(x(ε))E(x(ε))T

= X +
nx∑

i=1

nx∑

k=1

J̃i E
((

eT
i XJT

1 Σ−1ε
) (

Σ−1ε

0

) (
Σ−1εT , 0T

)(
eT
k XJT

1 Σ−1ε
))

J̃T
k

−
nx∑

i=1

nx∑

k=1

J̃i

(
J1Xei

0

) (
eT
k XJT

1 , 0T
)
J̃T

k = X +
nx∑

i=1

nx∑

k=1

(
J̃i xik J̃T

k + J̃i

(
J1Xeie

T
k XJT

1 0
0 0

)
J̃T

k

)
. (25)

Here all the functions are evaluated atx∗ andxik = eT
i Xek. Important results from probability theory used here are

that thenth power of an independent random variable is also independent and that the moment of order 4, of a normal
distributed random variable with zero mean and varianceσ2, is 3σ4. Note that the matrixX from (23) is equal to the
linear approximation of the covariance matrix (19).

7. NUMERICAL EXAMPLES

In this section, we want to show some comparative illustrations of the different confidence regions to get an idea of
their shapes and their approximation accuracies.

Example7.1. As a first example, we consider the biochemical oxygen demand (BOD) of stream water. The experi-
mental data are taken from Marske [21], where also the setup of the experiments is described. According to Bates and
Watts [22] the corresponding observation function is

h(t; x1, x2) = x1 · (1− exp(−t · x2)) .

The variablet denotes the time (in days) and the two unknown model parametersx1 andx2 have to be estimated
using 6 observations(7.322416; 13.85557; 12.27182; 15.58857; 16.62757; 22.03010) at time points(1; 2; 3; 4; 5; 7)
[21]. There are no equality constraints in this parameter estimation problem.
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An application of theGauss-Newtonmethod yields the optimal parameter valuesx1 = 19.1426 andx2 = 0.5311
with the corresponding linear covariance matrix

C =
(

0.95876 −0.066527
−0.066527 0.0063474

)
.

A comparison of the different confidence regions is given in Figs. 1 and 2. The solid lines illustrate the likelihood ratio
confidence regions (13), the dotted lines illustrate the linear confidence regions (17), and the gray areas illustrate the
quadratic approximations of the confidence regions (21). Obviously, the quadratic approximations of the confidence
regions are more precise approximations of the likelihood ratio confidence regions than the linearized regions. In
Table 1 a comparison of different confidence intervals with the probability levels1 − α = 0.995 and 1 − α =
0.95 is illustrated. The intervals below the columnsDlin(α), Dquad(α) andDlr(α) are the exact bounds of the
corresponding confidence regions. The values ofx∗i − θ̃i andx∗i + θ̃i, belonging to the confidence intervals of the

FIG. 1: Conf. reg. with1− α = 0.95.

FIG. 2: Conf. reg. with1− α = 0.995.
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TABLE 1: Confidence intervals for1− α = 0.95 and1− α = 0.995.

1− α Dlin(α) Dquad(α) Dlr(α) [x∗i − θ̃i, x
∗
i + θ̃i]

0.95
x1 [16.746, 21.539] [17.062, 21.983] [17.053, 22.121] [16.589, 21.695]
x2 [0.3360, 0.7261] [0.3632, 0.7621] [0.3613, 0.7683] [0.3262, 0.7358]

0.995
x1 [15.955, 22.330] [16.475, 23.149] [16.466, 23.484] [15.595, 22.689]
x2 [0.2717, 0.7904] [0.3153, 0.8544] [0.3145, 0.8712] [0.2491, 0.8130]

last column, are computed by using the second-order approximation of the covariance matrix. More precisely, it holds
θ̃i =

√
C2,iiγ

2
2(α), whereC2,ii is theith diagonal element of the quadratic approximation of the covariance matrix

(25). Here, it is remarkable that there is a strong similarity between the intervals of the likelihood ratio regions and
the quadratic approximations of confidence regions. In particular, only these intervals are not symmetric around the
estimatex∗.

Example7.2. The second example deals with the energyy that is radiated from a carbon filament lamp per cm2,
depending on the temperaturet. It is taken from Daniel and Wood [23] and Keeping [24], where you can find a more
thorough treatment of the matter. The observation function is given by

h(t; x1, x2) = x1t
x2

with the two unknown constantsx1 andx2. The data contains 6 observations(2.138; 3.421; 3.597; 4.340; 4.882; 5.660)
corresponding to the values(1.309; 1.471; 1.490; 1.565; 1.611; 1.680) of the absolute temperature of the filament in
thousands of degrees K. There are no equality constraints in this parameter estimation problem.

The optimal parameter vector isx∗ = (0.7689, 3.86)T with the linear approximation of the covariance matrix

C =
(

0.30967 −0.86808
−0.86808 2.479

)
.

A comparison of the different confidence regions is given in Figs. 3 and 4. As in the first example, the solid lines
illustrate the likelihood ratio confidence regions (13), the dotted lines illustrate the linear confidence regions (17), and
the gray areas illustrate the quadratic approximations of the confidence regions (21). Here it can also be seen that the
quadratic approximations of the confidence regions are more precise approximations of the likelihood ratio confidence

FIG. 3: Conf. reg. with1− α = 0.95.
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FIG. 4: Conf. reg. with1− α = 0.995.

regions than the linearized regions. A comparison of different confidence intervals with the probability levels1−α =
0.995 and1 − α = 0.95 is illustrated in Table 2. The intervals below the columnsDlin(α), Dquad(α), andDlr(α)
are the exact bounds of the corresponding confidence regions, andθ̃i =

√
C2,iiγ

2
2(α), whereC2,ii are the diagonal

elements of the second-order approximation of the covariance matrix (25). Again, the non-symmetric intervals of
the quadratic confidence regions are more precise approximations of the intervals belonging to the likelihood ratio
regions.

Example7.3. Further, we have performed various numerical experiments with parameter estimation problem of the
second example using synthetic data. The observations for equidistantly distributed measurement pointsti = 1.3 +
(i− 1)h, i = 1, . . . , M at the temperature intervalT = [1.3, 1.79] have been simulated using “true” parameter values
x̄ = (0.7689, 3.8604)T . The observations have been corrupted by random measurement errorsεi with zero mean and
variancesσ.

The results of the experiments are presented in Tables 3 and 4.
Figures 5–8 shows confidence regions for different measurement errors in the experiments with 5 observations.

Confidence regions for measurement error with variancesσ = 1 in the experiments with different numbers of obser-
vations are presented in Fig. 9–12.

The results of the experiments are in a very good agreement with the asymptotic behaviour to be expected with
the increasing number of observations. The same can be said for the experiments with changing error variances.

Let us point out here that the above numerical investigations are not meant to suggest computation of quadratic
approximations of confidence regions based on sampling since this would be computationally expensive in higher
dimensions of parameter or measurement spaces. Rather the numerical experiments are to demonstrate significant
distortion of confidence regions in the nonlinear case compared to linear approximations, as indicated by the Lipschitz
constantsω andκ.

TABLE 2: Confidence intervals for1− α = 0.95 and1− α = 0.995

1− α Dlin(α) Dquad(α) Dlr(α) [x∗i − θ̃i, x
∗
i + θ̃i]

0.95
x1 [−0.5932, 2.130] [0.0448, 3.124] [0.0894, 3.488] [−1.226, 2.764]
x2 [0.00661, 7.714] [0.2074, 8.453] [0.4042, 8.384] [−0.373, 8.094]

0.995
x1 [−1.0426, 2.580] [−0.116, 4.348] [0.0391, 5.302] [−2.382, 3.920]
x2 [−1.2649, 8.985] [−1.095, 10.36] [−0.638, 10.11] [−2.129, 9.850]
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TABLE 3: Confidence intervals for different measurement errors and 5 observations

σ x∗ Dlin(α) Dquad(α) Dlr(α) [x∗i − θ̃i, x
∗
i + θ̃i]

0.1
x1 0.83202 [0.68257, 0.98147] [0.69433, 0.98629] [0.69235, 0.99194] [0.68177, 0.98227]
x2 3.6784 [3.293, 4.0638] [3.3019, 4.0649] [3.2986, 4.0699] [3.2926, 4.0642]

0.3
x1 0.66362 [0.28086, 1.0464] [0.36756, 1.1205] [0.35946, 1.1304] [0.26058, 1.0667]
x2 4.1209 [2.8963, 5.3455] [2.9653, 5.3624] [2.966, 5.397] [2.8817, 5.3601]

0.5
x1 0.53103 [−0.00071547, 1.0628] [0.17966, 1.2564] [0.17497, 1.272] [−0.081103, 1.1432]
x2 4.6263 [2.5231, 6.7295] [2.6642, 6.8808] [2.7299, 6.8918] [2.4504, 6.8022]

1
x1 0.29479 [−0.35413, 0.94371] [−0.020553, 1.455] [0.01738, 1.6946] [−0.7439, 1.3335]
x2 5.974 [1.46, 10.488] [1.9498, 11.5596] [2.1655, 11.6059] [0.8017, 11.1463]

2
x1 0.56327 [−2.0373, 3.1638] [−0.52592, 7.6656] [0.011393, 12.6247] [−6.7818, 7.9084]
x2 4.068 [−5.7463, 13.8823] [−6.369, 19.7902] [−4.4652, 11.8672] [−11.5786, 19.7146]

TABLE 4: Confidence intervals for different number of observations and measurement error varianceσ = 1

M,h x∗ Dlin(α) Dquad(α) Dlr(α) [x∗i − θ̃i, x
∗
i + θ̃i]

5, 0.1
x1 0.29479 [−0.35413, 0.94371] [−0.020553, 1.455] [0.01738, 1.6946] [−0.7439, 1.3335]
x2 5.974 [1.46, 10.488] [1.9498, 11.5596] [2.1655, 11.6059] [0.8017, 11.1463]

10, 0.05
x1 0.74559 [−0.58062, 2.0718] [0.042734, 3.2004] [0.072778, 3.4968] [−1.1688, 2.66]
x2 3.9037 [0.23692, 7.5705] [0.58791, 8.862] [0.47297, 8.4462] [−0.14766, 7.9551]

20, 0.025
x1 0.70573 [−0.42784, 1.8393] [0.030206, 2.3076] [0.10206, 2.768] [−0.85376, 2.2652]
x2 4.1792 [0.93936, 7.419] [1.3748, 7.66] [1.2585, 7.936] [0.67262, 7.6858]

50, 0.01
x1 0.81365 [−0.44374, 2.071] [0.17395, 2.6482] [0.12974, 3.0368] [−0.89123, 2.5185]
x2 3.7645 [0.64616, 6.8828] [0.73528, 6.9378] [0.94692, 7.2942] [0.40817, 7.1208]

100, 0.05
x1 0.86918 [−0.40502, 2.1434] [0.14043, 2.9166] [0.14216, 3.2002] [−0.82037, 2.5587]
x2 3.6431 [0.6853, 6.6009] [0.77962, 7.0543] [0.85571, 7.1334] [0.48175, 6.8045]

FIG. 5: σ = 0.1.

8. CONCLUSIONS

In this paper, we presented a new confidence region based on a second-order sensitivity analysis as well as a quadratic
approximation of the covariance matrix. We analyzed and presented features of the introduced region. An important

International Journal for Uncertainty Quantification



Second-Order Sensitivity Analysis 229

FIG. 6: σ = 0.5.

FIG. 7: σ = 1.

FIG. 8: σ = 2.

FIG. 9: M = 10.
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FIG. 10: M = 20.

FIG. 11: M = 50.

FIG. 12: M = 100.

result is that there is a strong analogy between the quadratic approximation and the Lipschitz constantsκ andω,
which are also used to describe the local convergence rate of the Gauss-Newton method.

The features of the quadratic approximation of the confidence region are demonstrated by numerical examples. It
is illustrated that the quadratic approximations of confidence regions are—in contrast to the linearized regions—very
good approximations of the likelihood ratio confidence regions.

The results of the paper suggest that it is important to optimize the design of experiments not only based on the
linear confidence analysis but to take into account the second-order information indicated by the Lipschitz constants
ω andκ.
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