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Physical nonlinear systems are typically characterized with n-fold convolution of the Green’s function, e.g., nonlinear

oscillators, inhomogeneous media, and scattering theory in continuum and quantum mechanics. A novel stochastic

computation method based on orthogonal expansions of random fields has been recently proposed [1]. In this study, the

idea of orthogonal expansion is formalized as the so-called nth-order convolved orthogonal expansion (COE) method,

especially in dealing with random processes in time. Although the paper is focused on presentation of the properties

of the convolved random basis processes, examples are also provided to demonstrate application of the COE method to

random vibration problems. In addition, the relation to the classical Volterra-type expansions is discussed
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1. INTRODUCTION

The modeling of complex systems involving multiscale behavior, nonlinearity, and uncertainty is recognized as one
of the most challenging engineering and scientific problems[2]. Uncertainty propagation in a complex system can be
generally considered as a mapping of input–output probabilistic information through a system typically described as a
differential equation. In solving stochastic differential equations, a random-variable-based polynomial chaos (rv-PC)
method has been introduced as a major numerical solver [3–5]. However, for most realistic random process problems,
the rv-PC method confronts a critical challenge of the curseof dimensionality, e.g., Refs. [6, 7]. Various efforts have
been made in order to alleviate the severity of the curse of dimensionality, such as the stochastic collocation method
using a biorthogonal basis [8] and its sparse grid version combined with the homogenization method [9, 10]. By
applying a separated representation strategy onto the rv-PC method, recent works [11, 12] show that the combined
approach can be competitive against Monte Carlo methods forcertain examples with hundreds of dimensions. It is
worth noting that a random-variable representation of weakly correlated random fields or processes is one of the major
sources of the curse of dimensionality. Distinguished fromall the random-variable-based methods, a novel random-
field-based orthogonal expansion method has been recently proposed in [1] to circumvent the curse of dimensionality
for many physical systems where the input information is represented as random fields or processes.

Physical nonlinear systems are typically characterized with n-fold convolution of Green’s function, e.g., nonlinear
oscillators (see Section 4), inhomogeneous media [13], andscattering theory in continuum [14] and quantum me-
chanics. In this study, the idea presented in [1] is further formalized as the so-callednth-order convolved orthogonal
expansion (COE) method, especially in dealing with random processes in the time domain. Although the paper is
focused on presentation of the properties of the convolved random basis processes, examples are also provided to
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NOMENCLATURE

φi ith random basis process of the zeroth-order
convolved orthogonal expansion

Φi fourier transform ofφi

φ
(n)
i ith random basis process of thenth-order

convolved orthogonal expansion

Φ
(n)
i fourier transform ofφ(n)

i

u output process of a system
U Fourier transform ofu
r correlation function
R spectrum or Fourier transform ofr
ρ autocorrelation ofφ1

S∗i power spectral density (PSD) ofρi

c correlation of convolved basis processes
C PSD of a convolved correlation
g characteristic kernel of a system
G fourier transform ofg
g∗m m-fold convolution product ofg
Gm Fourier transform ofg∗m

K(n) nth-order Volterra kernel
φ̂n nth-order functional Hermite

polynomial
δ(ω) Dirac delta function

demonstrate application of the COE method, particularly its unique feature on the representation of non-Gaussian
processes [15].

The paper is organized as follows. In Section 2 the basic properties of the random basis processes (correlation,
convolution, and derivatives) are presented in the case of the zeroth-order COE. The case ofnth-order COE is exam-
ined in Section 3, where the relation to classical Volterra-type expansions is also discussed. The properties of random
basis processes are numbered and appended with S and E to indicate specific applicability to stationary and ergodic
processes, respectively, e.g., Property 2.3S. It is worth noting that those properties for stationary processes will equally
apply to ergodic ones but not vice versa. Some applications of the proposed approach to linear and weakly nonlinear
oscillators are presented in Section 4. The paper closes with some concluding remarks in Section 5.

2. THE ZEROTH-ORDER CONVOLVED ORTHOGONAL EXPANSION

2.1 Correlation of Random Basis Processes

An input Gaussian processφ1(t, ϑ), stationary or nonstationary, is characterized with the autocorrelation function
ρ(t1, t2) and unit variance, whereϑ ∈ Θ indicates a sample point in random space. Based on the so-called diagonal
class of random processes [16], an output process can be represented as the zeroth-order convolved (or memoryless)
orthogonal expansion ofφ1(t, ϑ) [1],

u(t, ϑ) =
∑

i=0

ui(t)φi(t, ϑ) (1)

where the random basis processφi(t, ϑ) corresponds to theith-degree Hermite polynomial aboutφ1(t, ϑ) with
φ0(t, ϑ) = 1, e.g.,φ2(t, ϑ) = φ2

1(t, ϑ) − 1, φ3(t, ϑ) = φ3
1(t, ϑ) − 3φ1(t, ϑ), etc. According to the generalized

Mehler’s formula [17], then-point correlation ofn random basis processes is given as follows:

Property 1.0 [17]
ra1a2···an

(t1, t2, · · · , tn) = φa1
(t1, ϑ) · · ·φan

(tn, ϑ)

= a1! · · · an!

∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∏

j<k

ρνjk(tj , tk)

νjk!
(2a)

where the overbar denotes ensemble average, and

bk =
∑

j 6=k

νjk, νjk = νkj , δakbk
=

{
1 ak = bk

0 ak 6= bk
(2b)

Following Eq. (2), the two-point and three-point correlation functions are specifically obtained as
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Property 1.1 [17]
rij(t1, t2) = φi(t1, ϑ)φj(t2, ϑ) = δiji!ρ

i(t1, t2) (3)

Property 1.2 [17]

rijk(t1, t2, t3) = φi(t1, ϑ)φj(t2, ϑ)φk(t3, ϑ) =
i!j!k!

i′!j′!k′!
ρk′

(t1, t2)ρ
j′ (t1, t3)ρ

i′ (t2, t3) (4a)

i′ =
j + k − i

2
, j′ =

i + k − j

2
, k′ =

i + j − k

2
(4b)

wherei′, j′, k′ must be non-negative integers, otherwise,rijk = 0.
Remark: When the input Gaussian processφ1(t, ϑ) is stationary, the autocorrelation expressionρ(t1, t2) in Eqs. (2)–
(4) and following throughout the paper can be simply writtenasρ(t1 − t2).

DenoteF the Fourier transform operator, and letΦ(ω) = F [ϕ(t)], R(ω) = F [r(t)], andS∗i(ω) = F
[
ρi(t)

]
,

where we assume that the Fourier transform of the random basis processes always exists. For ergodic processes, with
the tilde denoting a complex conjugate, the power spectral density (PSD) is obtained as

Property 1.1E
Rij(ω) = δiji!S

∗i(ω) (5a)

S∗i(ω) =
1

T
|Φi(ω, ϑ)|2 (5b)

Proof: For an ergodic process, the ensemble average in Eq. (3) can be replaced by the time average

rij(τ) = lim
T→∞

1

T

T/2∫

−T/2

φi(τ + t2, ϑ)φj(t2, ϑ)dt2 =
1

T
φi(t, ϑ) ∗ φj(−t, ϑ) = δiji!

1

T
φi(t, ϑ) ∗ φi(−t, ϑ) (6a)

whereτ = t1 − t2 and the symbol∗ denotes the convolution operator. In the frequency domain,(6a) becomes

Rij(ω) = δiji!
1

T
Φi(ω, ϑ)Φi(−ω, ϑ) = δiji!

1

T
Φi(ω, ϑ)Φ̃i(ω, ϑ) = δiji!

1

T
|Φi(ω, ϑ)|2 (6b)

2.2 Convolution of Random Basis Processes

The convolution functions of the random basis processes areuseful in the convolution-type stochastic variational
method [14]. Then-point convolution of the firstn random basis processes is given as

Property 2.0

ca1a2···an
(t) = φa1

(t, ϑ) ∗ φa2
(t, ϑ) ∗ · · · ∗ φan

(t, ϑ)

=

∞∫

−∞

· · ·
∞∫

−∞

φa1
(t − t2 − · · · − tn, ϑ)φa2

(t2, ϑ) · · ·φan
(tn, ϑ)dt2 · · · dtn

=

∞∫

−∞

· · ·
∞∫

−∞

ra1a2···an
(t1, t2, · · · , tn)dt2 · · · dtn

= a1! · · ·an!
∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∞∫

−∞

· · ·
∞∫

−∞

∏

j<k

1

νjk!
ρνjk(tj , tk)dt2 · · ·dtn

(7)

t1 = t − t2 − t3 − · · · − tn

and the variables refer to Eq. (2b). The two-point and three-point convolution functions are specifically obtained as
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Property 2.1

cij(t) = φi(t, ϑ) ∗ φj(t, ϑ) = δiji!

∞∫

−∞

ρi(t − t2, t2)dt2 (8)

Property 2.2

cijk(t)=φi(t, ϑ) ∗ φj(t, ϑ) ∗ φk(t, ϑ)=
i!j!k!

i′!j′!k′!

∞∫

−∞

∞∫

−∞

ρk′

(t − t2 − t3, t2)ρ
j′ (t − t2 − t3, t3)ρ

i′ (t2, t3)dt2dt3 (9)

wherei′, j′, andk′ refer to (4b).
For the stationary case, Eq. (8) reduces to

Property 2.1S

cij(t) = δiji!

∞∫

−∞

ρi(t − 2t2)dt2 = δiji!τi (10)

whereτi =
∞∫

0

ρi(t)dt is the correlation time of theith random basis processφi(t, ϑ).

The two-point convolution functions, i.e., Eqs. (8) and (10), can be rewritten in the frequency domain for the
nonstationary and stationary cases, respectively, as

Cij(ω) = Φi(ω, ϑ)Φj(ω, ϑ) = δiji!F





∞∫

−∞

ρi(t − t2, t2)dt2



 (8b)

Cij(ω) = Φi(ω, ϑ)Φj(ω, ϑ) = 2πδiji!τiδ(ω) (10b)

whereC(ω) = F (c(t)). Similarly the three-point convolution function in the frequency domain is obtained as

Cijk(ω) = Φi(ω, ϑ)Φj(ω, ϑ)Φk(ω, ϑ)

=
i!j!k!

i′!j′!k′!
F





∞∫

−∞

∞∫

−∞

ρk′

(t − t2 − t3, t2)ρ
j′ (t − t2 − t3, t3)ρ

i′ (t2, t3)dt2dt3




(11)

wherei′, j′, andk′ refer to (4b). For the stationary case, (11) reduces to

Property 2.2S

Cijk(ω) = δ(ω)
1

3

i!j!k!

i′!j′!k′!

∞∫

−∞

S∗k′

(ω′)S∗j′ (ω′)S∗i′(ω′)dω′ (12)

Proof:
Cijk(ω) = Φi(ω, ϑ)Φj(ω, ϑ)Φk(ω, ϑ)

=
i!j!k!

i′!j′!k′!
F





∞∫

−∞

∞∫

−∞

ρk′

(t − 2t2 − t3)ρ
j′ (t − t2 − 2t3)ρ

i′ (t2 − t3)dt2dt3




(13)

Let τ = t − 2t2 − t3 andτ′ = t − t2 − 2t3. Equation (13) then becomes

Cijk(ω) =
i!j!k!

i′!j′!k′!
F





∞∫

−∞

∞∫

−∞

ρk′

(τ)ρj′ (τ′)ρi′(τ′ − τ) |J | dτ dτ′



 (14)
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with the determinant of the Jacobian matrix

|J | =

∣
∣
∣
∣
∣
∣
∣
∣

∂t2
∂τ

∂t2
∂τ′

∂t3
∂τ

∂t3
∂τ′

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

−2

3

1

3

1

3
−2

3

∣
∣
∣
∣
∣
∣
∣
∣

=
1

3
(15)

Equation (14) therefore immediately leads to Eq. (12).

2.3 Derivatives of Random Basis Processes

The derivatives of random basis processes are useful when the derivatives of the output process (1) have physical
meaning, e.g., velocity and acceleration obtained from displacement. Then-point correlation of the derivatives of the
first n random basis processes is given as

Property 3.0
ra1···an,d1···dn

(t1, · · · , tn) = φa1,d1
(t1, ϑ) · · ·φan,dn

(tn, ϑ)

= a1! · · ·an!

∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∂d1+···+dn

∂td1

1 · · · ∂tdn
n

∏

j<k

ρνjk (tj , tk)

νjk!

(16)

where the subscriptsdi denotedith derivatives aboutti. The two- and three-point correlations of the derivatives are
explicitly given as

Property 3.1

rij,pq(t1, t2) = φi,p(t1, ϑ)φj,q(t2, ϑ) = δiji!
∂p+q

∂tp1∂tq2
ρi(t1, t2) (17)

Property 3.2

rijk,pqv(t1, t2, t3) = φi,p(t1, ϑ)φj,q(t2, ϑ)φk,v(t3, ϑ) =
i!j!k!

i′!j′!k′!

∂p+q+v

∂tp1∂tq2∂tv3

[

ρk′

(t1, t2)ρ
j′ (t1, t3)ρ

i′ (t2, t3)
]

(18)

wherei′, j′, andk′ refer to Eq. (4b). In the stationary case, Eqs. (17) and (18) can be further written, respectively, as

Property 3.1S

rij,pq(τ) = δij(−1)qi!
∂p+q

∂τp+q
ρi(τ) (19)

τ = t1 − t2, with rij,pq(0) = 0 whenp + q is odd, and

Property 3.2S

rijk,pqv(τ, τ′) =
i!j!k!

i′!j′!k′!
(−1)q+v

(
∂

∂τ
+

∂

∂τ′

)p
∂q+v

∂τq∂τ
′v

[

ρk′

(τ)ρj′ (τ′)ρi′ (τ′ − τ)
]

(20)

whereτ = t1 − t2 andτ′ = t1 − t3.
Then-point convolution of the derivatives is similarly obtained as

Property 4.0

ca1···an,d1···dn
(t) = φa1,d1

(t, ϑ) ∗ φa2,d2
(t, ϑ) ∗ · · · ∗ φan,dn

(t, ϑ)

=

∞∫

−∞

· · ·
∞∫

−∞

φa1,d1
(t − t2 − · · · − tn, ϑ)φa2,d2

(t2, ϑ) · · ·φan,dn
(tn, ϑ)dt2 · · · dtn

=

∞∫

−∞

· · ·
∞∫

−∞

ra1···an,d1···dn
(t1, t2, · · · , tn)dt2 · · ·dtn

= a1! · · ·an!

∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∞∫

−∞

· · ·
∞∫

−∞

∂d1+···+dn

∂td1

1 · · · ∂tdn
n

∏

j<k

1

νjk!
ρνjk (tj , tk)dt2 · · ·dtn

(21)
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t1 = t − t2 − t3 − · · · − tn

The two-point convolution of the derivatives specifically has the following property:

Property 4.1

Cij,pq(ω) =
(√

−1ω
)p+q

Φi(ω, ϑ)Φj(ω, ϑ) =







0 p 6= 0 or q 6= 0

0 i 6= j & p = q = 0

∞ i = j = p = q = 0

(22)

Proof: The property can be proved in the time domain, i.e.,

cij,pq(t) = φi,p(t, ϑ) ∗ φj,q(t, ϑ) = δiji!

∞∫

−∞

∂p+q

∂tp1∂tq2
ρi(t1, t2)dt2 (23)

wheret1 = t − t2. Consideringρ(∞,−∞) = 0 and the symmetry of the convolution operator, (23) directlyyields
the results in Eq. (22).

Similarly, we have the following property for the three-point convolution of the derivatives:

Property 4.2

Cijk,pqv(ω) =
(√

−1ω
)p+q+v

Φi(ω, ϑ)Φj(ω, ϑ)Φk(ω, ϑ) = 0 when p 6= 0, q 6= 0, or v 6= 0 (24)

Proof: In the time domain

cijk,pqv(t) = φi,p(t, ϑ) ∗ φj,q(t, ϑ) ∗ φk,v(t, ϑ)

=
i!j!k!

i′!j′!k′!

∞∫

−∞

∞∫

−∞

∂p+q+v

∂tp1∂tq2∂tv3

[

ρk′

(t1, t2)ρ
j′ (t1, t3)ρ

i′(t2, t3)
]

dt3dt2
(25)

wheret1 = t − t2 − t3. Consideringρ(t1,±∞) = 0 for any finitet1 and the symmetry of the convolution operator,
Eq. (25) leads to Eq. (24).

3. THE NTH-ORDER CONVOLVED ORTHOGONAL EXPANSION

3.1 A New Expansion Beyond Classical Volterra-Type Expansions

To model nonlinear systems, we propose to generalize the zeroth-order or memoryless orthogonal expansion presented
above to annth-order COE:

u(t, ϑ) =
∑

n=0

∑

i=0

u
(n)
i (t)φ

(n)
i (t, ϑ) (26)

φ
(n)
i (t, ϑ) =

n
︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g ∗φi = g∗n ∗ φi (27)

whereg(t, t′) is a given kernel, typically a Green’s function. For a stationary kernelg(t−t′), Eq. (27) can be simplified
in the frequency domain as

Φ
(n)
i (ω, ϑ) =

n
︷ ︸︸ ︷

G(ω)G(ω) · · ·G(ω)Φi(ω, ϑ) = Gn(ω)Φi(ω, ϑ) (28)

whereG(ω) = F [g(t)]. For notational simplicity, the superscript (0) for the zeroth-order COE is usually omitted
throughout the paper. The memoryless orthogonal expansion(1) thus corresponds to the zeroth-order COE withn = 0
in (26).
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The advantage of thenth-order COE (26) can be especially demonstrated by comparing it with classical Volterra-
type expansions. The general Volterra series expansion about a stationary input processφ1(t, ϑ) is written as [18]

u(t, ϑ) =
∑

n=0

1

n!

∞∫

−∞

· · ·
∞∫

−∞

K(n)(t1, t2 · · · tn)φ1(t − t1, ϑ)φ1(t − t2, ϑ) · · ·φ1(t − tn, ϑ)dt1dt2 · · ·dtn (29)

Based on Cameron and Martin’s result [19], a variant of (29) was developed as [20, 21]

u(t, ϑ) =
∑

n=0

1

n!

∞∫

−∞

· · ·
∞∫

−∞

K(n)(t1, t2 · · · tn)φ̂n(t − t1, t − t2, · · · t − tn, ϑ)dt1dt2 · · · dtn (30)

whereφ̂n is thenth-order functional Hermite polynomial, e.g.,φ̂2(t1, t2, ϑ) = φ1(t1, ϑ)φ1(t2, ϑ) − δ(t1 − t2). A
further specialization of (30) can be given as [21]

u(t, ϑ) =
∑

n=0

1

n!

∞∫

−∞

K(n)(t − t1)φn(t1 , ϑ)dt1 (31)

which is close to the COE representation, Eq. (26), except the kernels in Eq. (31) are unknown. Indeed, a common
issue of all the Volterra-type representations is severe difficulties in solving the unknown kernelsK(n). In the COE
representation, all the kernels are explicitly given and the problem is significantly reduced to determine the unknown
coefficientsu(n)

i . Some properties of convolved random basis processes are presented below.

3.2 Properties of Convolved Random Basis Processes

Then-point correlation of the convolved random basis processesis therefore obtained as

Property 5.0

rm1···mn

a1···an
(t1, t2, · · · , tn) = φ

(m1)
a1

(t1, ϑ) · · ·φ(mn)
an (tn, ϑ)

= a1! · · · an!
∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∞∫

−∞

· · ·
∞∫

−∞

g∗m1(t1, t
′
1) · · ·

g∗mn(tn, t′n)
∏

j<k

ρνjk (tj , tk)

νjk!
dt′1 · · · dt′n

(32)

with the two- and three-point correlation functions explicitly given as

Property 5.1

rmn
ij (t1, t2) = φ

(m)
i (t1, ϑ)φ

(n)
j (t2, ϑ) = δiji!

∞∫

−∞

∞∫

−∞

g∗m(t1, t
′
1)g

∗n(t2, t
′
2)ρ

i(t′1, t
′
2)dt′1dt′2 (33)

Property 5.2

rmnl
ijk (t1, t2, t3) = φ

(m)
i (t1, ϑ)φ

(n)
j (t2, ϑ)φ

(l)
k (t3, ϑ)

=
i!j!k!

i′!j′!k′!

∞∫

−∞

∞∫

−∞

∞∫

−∞

g∗m(t1, t
′
1)g

∗n(t2, t
′
2)g

∗l(t3, t
′
3)ρ

k′

(t′1, t
′
2)ρ

j′ (t′1, t
′
3)ρ

i′ (t′2, t
′
3)dt′1dt′2dt′3

(34)

wherei′, j′, andk′ refer to (4b).
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In the stationary case, i.e., both the kernel and the input ofa system being stationary, the two-point correlation is
simplified in the frequency domain as follows:

Property 5.1S
Rmn

ij (ω) = δiji!G
m(ω)G̃n(ω)S∗i(ω) (35)

Proof: In the stationary case (33) reduces to

rmn
ij (t1 − t2) = δiji!

∞∫

−∞

∞∫

−∞

g∗m(t1 − t′1)g
∗n(t2 − t′2)ρ

i(t′1 − t′2)dt′1dt′2 (36)

Let τ = t1 − t′1, τ′ = t2 − t′2, and∆τ = t2 − t1. Equation (36) then becomes

rmn
ij (∆τ) = δiji!

∞∫

−∞

∞∫

−∞

g∗m(τ)g∗n(τ′)ρi(τ′ − τ − ∆τ)dτ dτ′ (37)

and the Fourier transform directly leads to (35).
One notes whenm = n, the PSD in (35) is positive, consistent with the positive definiteness of an autocorrelation

function.
For ergodic processes, following Eq. (5), Eq. (35) can be also written as

Property 5.1E

Rmn
ij (ω) = δij

1

T
Φ

(m)
i (ω, ϑ)Φ̃

(n)
i (ω, ϑ) (38)

Similarly then-point correlation of the derivatives of the convolved random basis processes is obtained as

Property 6.0

rm1···mn

a1···an,d1···dn
(t1, t2, · · · , tn) = φ

(m1)
a1,d1

(t1, ϑ) · · ·φ(mn)
an,dn

(tn, ϑ)

= a1! · · · an!

∞∑

ν12=0

· · ·
∞∑

νn−1,n=0

δa1b1 · · · δanbn

∂d1+···+dn

∂td1

1 · · ·∂tdn
n

∞∫

−∞

· · ·
∞∫

−∞

g∗m1(t1, t
′
1) · · ·

g∗mn(tn, t′n)
∏

j<k

ρνjk(tj , tk)

νjk!
dt′1 · · · dt′n

(39)

with the two- and three-point correlations explicitly given as

Property 6.1

rmn
ij,pq(t1, t2) = φ

(m)
i,p (t1, ϑ)φ

(n)
j,q (t2, ϑ) = δiji!

∂p+q

∂tp1∂tq2

∞∫

−∞

∞∫

−∞

g∗m(t1, t
′
1)g

∗n(t2, t
′
2)ρ

i(t′1, t
′
2)dt′1dt′2 (40)

Property 6.2

rmnl
ijk,pqv(t1, t2) = φ

(m)
i,p (t1, ϑ)φ

(n)
j,q (t2, ϑ)φ

(l)
k,v(t3, ϑ)

=
i!j!k!

i′!j′!k′!

∂p+q+v

∂tp1∂tq2∂tv3

∞∫

−∞

∞∫

−∞

∞∫

−∞

g∗m(t1, t
′
1)g

∗n(t2, t
′
2)g

∗l(t3, t
′
3)ρ

k′

(t′1, t
′
2)ρ

j′ (t′1, t
′
3)ρ

i′ (t′2, t
′
3)dt′1dt′2dt′3

(41)

In the stationary case, the two-point correlation is simplified in frequency domain as

Property 6.1S
Rmn

ij,pq(ω) = δiji!
(√

−1ω
)p+q

Gm(ω)G̃n(ω)S∗i(ω) (42)

which is directly derived from (35).
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4. APPLICATION EXAMPLES OF CONVOLVED ORTHOGONAL EXPANSIONS

4.1 Linear Oscillators

The application of COE to linear oscillators first appeared in [1]. Below the idea is succinctly presented, which also
prepares for the following example on nonlinear oscillators. Suppose the linear oscillator

ü + 2ζωnu̇ + ω2
nu = f

u(0) = u̇(0) = 0
(43)

is subjected to a nonstationary non-Gaussian translation process input, i.e.,

f(t, ϑ) =
∑

i=0

fi(t)φi(t, ϑ) (44)

By using the Green’s function

g(t) =
1

ωd
e−ζωnt sin(ωdt) (45)

ωd = ωn

√

1 − ζ2 (46)

G(ω) =
1

ω2
n − ω2 +

√
−12ζωωn

(47)

the first three correlations of the nonstationary outputu can be directly calculated from

ū(t) =

t∫

0

g(t − τ)f0(τ)dτ (48)

ruu(t1, t2) =

t2∫

0

t1∫

0

g(t1 − τ1)g(t2 − τ2)
∑

i=0

i!ρi(τ1 − τ2)fi(τ1)fi(τ2)dτ1dτ2 (49)

ruuu(t1, t2, t3) =

t3∫

0

t2∫

0

t1∫

0

g(t1 − τ1)g(t2 − τ2)g(t3 − τ3)
∑

i,j,k=0

rijk(τ1 − τ2, τ1 − τ3, τ2 − τ3)dτ1dτ2dτ3 (50)

with rijk given in Eq. (4).
When the excitation in Eq. (43) is stationary, the output process is directly given as

u(t, ϑ) =
∑

i=0

fiφ
(1)
i (t, ϑ) (51)

which is a special case of the COE representation (26), i.e.,the first-order COE. Note that given the Green’s function
g and the underlying Gaussian process, the stationary probability density function (pdf) of the output in Eq. (51) can
be rapidly estimated by using Monte Carlo method in the frequency domain.

A numerical example for application of the COE on linear oscillator is given in [1]. With regard to the multi-
degree-of-freedom (MDOF) linear systems, the oscillator equations given above can be directly applied by using the
modal decomposition as shown in [22].
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4.2 Weakly Nonlinear Oscillators

The accurate computation of the response of nonlinear single-degree-of-freedom (SDOF) oscillators under stochastic
loading is important in earthquake engineering where equivalent nonlinear SDOF systems are often used in order
to avoid the computationally intensive nonlinear responsehistory analysis of MDOF systems. These equivalent sys-
tems retain some of the dynamic characteristics of the real structure and are capable of representing certain response
quantities of the MDOF structure (see, e.g., Ref. [23]).

In this example a Duffing oscillator subjected to a Gaussian white noise excitation with intensityD is considered:

ü + 2ζωnu̇ + ω2
n(u + αu3) = W (52)

Similar to the idea presented in [1, 14, 22] on multiscale decomposition of random field problems, Eq. (52) can be
decomposed into a reference linear filter

ü0 + 2ζωnu̇0 + ω2
nu0 = W (53)

and a nonlinear fluctuation problem

ü′ + 2ζωnu̇′ + ω2
nu′ = −αω2

n(u0 + u′)3 (54)

with
u = u0 + u′ (55)

The Gaussian response of the linear filter (53) is straightforwardly obtained as

u0(t, ϑ) = σ0ϕ1(t, ϑ), (56)

whereφ1(t, ϑ) is characterized by unit variance and power spectral density

S =
D

σ2
0

|G(ω)|2 (57)

and the variance (see e.g., [24])

σ2
0 =

1

2π
D

∞∫

−∞

∣
∣
∣
∣

1

ω2
n − ω2 +

√
−12ζωωn

∣
∣
∣
∣

2

dω =
D

4ζω3
n

(58)

For a smallα, by using iterative substitution the output of the nonlinear fluctuation problem (54) is obtained as

u′ = −αω2
nσ3

0g ∗ φ3
1 + 3α2ω4

nσ5
0g ∗

(
φ2

1g ∗ φ3
1

)
+ O(α3) (59)

For Gaussian-based random basis processes, i.e., Hermite polynomials,

φ3
1 = φ3 + 3φ1, φ2

1 = φ2 + 1 (60)

The sum of Eqs. (56) and (59) can be rewritten in terms of the random basis processes in time and frequency domain,
respectively, as

u/σ0 = φ1 − β
(

φ
(1)
3 + 3φ

(1)
1

)

+ 3βg ∗
[

(φ2 + 1)
(

β(φ
(1)
3 + 3φ

(1)
1 )

)]

+ O(β3g∗3) (61)

U/σ0 = Φ1 − β
(

Φ
(1)
3 + 3Φ

(1)
1

)

+ 3βG
[

(Φ2 + 2πδ(0)) ∗
(

β(Φ
(1)
3 + 3Φ

(1)
1 )

)]

+ O
(
(βG)3

)
(62)

whereβ = ασ2
0ω

2
n.

International Journal for Uncertainty Quantification



Convolved Orthogonal Expansions for Uncertainty Propagation 393

By invoking ergodicity and using Properties 1.1E, 1.2, 5.1S, and 5.2, the stationary PSD of the output displacement
becomes

SUU =
1

T
UŨ = σ2

0S

[

1 − 3β(G + G̃) + 3β2

(

3 |G|2 + 2 |G|2 S∗3

S
+ 3(G2 + G̃2) + 6G(G ∗ S∗2)

+6G̃(G̃ ∗ S∗2) + 6(G + G̃) 〈GS〉
)

+ O
(
(β |G|)3

)
] (63)

where〈GS〉 =
∫ ∞

−∞
G(ω)S(ω)dω. Since

∞∫

−∞

2(ω2
n − ω2)

(ω2
n − ω2)2 + (2ζωωn)2

∣
∣
∣
∣

1

ω2
n − ω2 +

√
−12ζωωn

∣
∣
∣
∣

2

dω =
π

2ζω5
n

(64)

(see, e.g., [24]), the variance calculated from the first twoterms of Eq. (63) is simply obtained as

σ2 = σ2
0(1 − 3ασ2

0) (65)

which is identical to the result obtained using other approaches, e.g., [25, 26].
To justify the perturbation approach, we need the nonlinearity factorβ |G| < 1, i.e.,

ασ2
0

√

[1 − (ω/ωn)2]2 + (2ζω/ωn)2
< 1

In the low-frequency range whereω � ωn, it leads to the conditionασ2
0 < 1. In the high-frequency range where

ω � ωn, the condition becomes much more relaxed asασ2
0(ωn/ω)2 < 1. In the intermediate-frequency range,

especially near resonance, whenω ∼ ωn, the weak nonlinearity condition becomes damping controlled, i.e.,

γ =
ασ2

0

2ζ
=

αD

8ζ2ω3
n

< 1 (66)

In summary, the condition for all frequency ranges is controlled by the nonlinearity factorγ. As an example, choose
ζ = 0.02, ωn = 1, and the response PSD is obtained by using the second-order perturbation approach (62). With
the intensity of white noise fixed atD = 1, Fig. 1 shows that the PSD shifts to the right and up with increase of the
nonlinearityα from 0 (γ = 0), to 0.00025 (γ = 0.078125), and to 0.0005 (γ = 0.15625). When the nonlinearityα is
fixed at 0.00025, Fig. 2 shows clearly the rise and the right shift of PSD with increase of the intensityD from 0.5
(γ = 0.039063) to 1 (γ = 0.078125) and to 2 (γ = 0.15625). The result reflects exactly the well-known phenomenon
concerning the natural frequency of the single-well Duffingoscillator.

In addition to serving as a verification of the COE method, this example demonstrates the simplicity and efficiency
of the convolved orthogonal expansions for nonlinear problems.

5. CONCLUSION

By developing random process-based orthogonal expansionsas an alternative way to represent high-dimensional
fluctuations in the time domain, the proposed COE method opens a new direction to deal with nonlinear stochastic
dynamics. The advantage is especially noted for its potential efficiency in computing of large and nonlinear dynamical
systems, in comparison with the classical Volterra-type representation and the random-variable-based polynomial
chaos expansions. Future work will be devoted to application of the COE method to strongly nonlinear systems by
using the variational method [14, 27], where the propertiespresented in this work are expected to play an essential role.
A final remark is that the fundamentals of the COE are built on the polynomials. To apply the COE to a nonpolynomial
nonlinearity, we will need to approximate the particular nonlinearity with polynomials using, e.g., Taylor expansion.
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FIG. 1: The PSD of the displacement (from left to rightα = 0, 0.00025, and 0.0005, respectively) withζ = 0.02,
ωn = 1, andD = 1.
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FIG. 2: The PSD of the displacement (from bottom to topD = 0.5, 1, and 2, respectively) withζ = 0.02, ωn = 1,
andα = 0.00025.
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