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Physical nonlinear systems are typically characterized with n-fold convolution of the Green’s function, e.g., nonlinear
oscillators, inhomogeneous media, and scattering theory in continuum and quantum mechanics. A novel stochastic
computation method based on orthogonal expansions of random fields has been recently proposed [1]. In this study, the
idea of orthogonal expansion is formalized as the so-called nth-order convolved orthogonal expansion (COE) method,
especially in dealing with random processes in time. Although the paper is focused on presentation of the properties
of the convolved random basis processes, examples are also provided to demonstrate application of the COE method to
random vibration problems. In addition, the relation to the classical Volterra-type expansions is discussed
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1. INTRODUCTION

The modeling of complex systems involving multiscale bétvawnonlinearity, and uncertainty is recognized as one
of the most challenging engineering and scientific problgthdJncertainty propagation in a complex system can be
generally considered as a mapping of input—output proiséibiinformation through a system typically described as a
differential equation. In solving stochastic differehgguations, a random-variable-based polynomial chac® Gy
method has been introduced as a major numerical solver.[Bigijever, for most realistic random process problems,
the rv-PC method confronts a critical challenge of the cofsgimensionality, e.g., Refs. [6, 7]. Various efforts have
been made in order to alleviate the severity of the curseroédsionality, such as the stochastic collocation method
using a biorthogonal basis [8] and its sparse grid versianhined with the homogenization method [9, 10]. By
applying a separated representation strategy onto th&€rmné&thod, recent works [11, 12] show that the combined
approach can be competitive against Monte Carlo methodseigain examples with hundreds of dimensions. It is
worth noting that a random-variable representation of Weadrrelated random fields or processes is one of the major
sources of the curse of dimensionality. Distinguished fadhthe random-variable-based methods, a novel random-
field-based orthogonal expansion method has been recenppged in [1] to circumvent the curse of dimensionality
for many physical systems where the input information isesented as random fields or processes.

Physical nonlinear systems are typically characterizéld mvfold convolution of Green’s function, e.g., nonlinear
oscillators (see Section 4), inhomogeneous media [13],saattering theory in continuum [14] and quantum me-
chanics. In this study, the idea presented in [1] is furtbemfalized as the so-calledh-order convolved orthogonal
expansion (COE) method, especially in dealing with randoatgsses in the time domain. Although the paper is
focused on presentation of the properties of the convolaedom basis processes, examples are also provided to
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NOMENCLATURE
b ith random basis process of the zeroth-ordeg- power spectral density (PSD) pf
convolved orthogonal expansion c correlation of convolved basis processes
®;  fourier transform ofp; C PSD of a convolved correlation
d>§") ith random basis process of thi-order g characteristic kernel of a system
convolved orthogonal expansion G fourier transform ofy
‘I’l(-n) fourier transform Ofbf-") gsm mfol_d convolution product of
u output process of a system G™  Fourier transform og*™
u Fourier transform ofi K()  nth-order Volterra kernel
r correlation function by, nth-order functional Hermite
R spectrum or Fourier transform of polynomial
p autocorrelation ofp d(w) Dirac delta function

demonstrate application of the COE method, particulagyuitique feature on the representation of non-Gaussian
processes [15].

The paper is organized as follows. In Section 2 the basicept®s of the random basis processes (correlation,
convolution, and derivatives) are presented in the caseeaféroth-order COE. The casentfi-order COE is exam-
ined in Section 3, where the relation to classical Voltdéy@e expansions is also discussed. The properties of random
basis processes are numbered and appended with S and Ecaténsipecific applicability to stationary and ergodic
processes, respectively, e.g., Property 2.3S. It is wantimg that those properties for stationary processes gilbdly
apply to ergodic ones but not vice versa. Some applicatibtieeqproposed approach to linear and weakly nonlinear
oscillators are presented in Section 4. The paper closéssaihe concluding remarks in Section 5.

2. THE ZEROTH-ORDER CONVOLVED ORTHOGONAL EXPANSION
2.1 Correlation of Random Basis Processes

An input Gaussian process; (¢, ), stationary or nonstationary, is characterized with th®earrelation function
p(t1,t2) and unit variance, where € © indicates a sample point in random space. Based on the lsatclidgonal
class of random processes [16], an output process can lesegped as the zeroth-order convolved (or memoryless)
orthogonal expansion @, (¢,9) [1],

u(t,9) =S ui(t)di(t,9) 1)
1=0

where the random basis procesg(t,d) corresponds to théh-degree Hermite polynomial abodt; (¢,3) with
do(t,9) = 1, e.9.,¢a(t,9) = d3(¢,9) — 1, d3(t,d) = 3(t,9) — 3d1(t,9), etc. According to the generalized
Mehler’s formula [17], then-point correlation of random basis processes is given as follows:

Property 1.0 [17]

Taraz--an (tla t27 e atn) = d)a] (tlaﬁ) T d)an (tnaﬁ)

oo

Vik (t;,t
Calad 3 S Suny e B, [ ) (2a)
vi2=0 Vi —1,n=0 i<k ’v'jk.
where the overbar denotes ensemble average, and
1 ap=290
br = Z'ija Vik =Vij, Oapb, = { 0 a]]: £ bz (2b)

J7#k

Following Eq. (2), the two-point and three-point corredatiunctions are specifically obtained as
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Property 1.1 [17]
i (t1,t2) = Gi(t1,9) b (t2,9) = 8i5ilp’ (t1, t2) 3
Property 1.2 [17]
ik p
rijr(t1,t2,t3) = di(t1,9)dj(t2, D) br(ts,9) = Wp (t1,t2)p” (t1,t3)p" (t2,t3) (4a)

i,:j+k—i7 i = z‘+k—j7 b i+j5—k
2 2 2
wherei’, j/, k¥ must be non-negative integers, otherwisg, = 0.
Remark: When the input Gaussian process(¢, 9) is stationary, the autocorrelation expressidn , ¢2) in Egs. (2)—
(4) and following throughout the paper can be simply writsp(¢; — ¢2).
Denote# the Fourier transform operator, anddgtw) = .7 [¢(t)], R(w) = .F [r(t)], andS*(w) = .Z [p'(t)],

where we assume that the Fourier transform of the randors pesiesses always exists. For ergodic processes, with
the tilde denoting a complex conjugate, the power spectnasidy (PSD) is obtained as

Property 1.1E

(4b)

5(w) = 7 |B1(w, 9) (5b)

Proof: For an ergodic process, the ensemble average in Eq. (3)ecaplaced by the time average

T/2
7 (T) = 11_{2(); / i(T+t2,9)d;(t2, 9 )dtz—%d)i(taf’)*d)j(—taf’)=5iji!%¢i(t73)*¢i(—t73) (6a)
T2

wheret = t; — t2 and the symbok denotes the convolution operator. In the frequency donféa),becomes

2.2 Convolution of Random Basis Processes

The convolution functions of the random basis processesisg&ul in the convolution-type stochastic variational
method [14]. Then-point convolution of the firsh random basis processes is given as

Property 2.0

Calag---an (t) = d)al (tﬂ(}) * d)az (t,%) koeee ok d)an (ta%)

=/---/%(t—tz—---—tn,8>¢a2(t2,8>---¢an(tn,8>dt2---dtn
(7)
= Talaz.,.an(tl,tg,"' atn)dthtn
=ay! - -ap! Z Z darby ~ ann/ /H—p ik (tg, t)dta - - - dty
v12=0 Vin—1,,=0
t1=t—to—t3—---— 1,

and the variables refer to Eq. (2b). The two-point and thpeiet convolution functions are specifically obtained as
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Property 2.1
Cij (t) = d)l(t,l()) * d)j (t,%) = 5”2' / pi(t — tg, tg)dtg (8)
Property 2.2

g L E
TR P¥ (t —ta —t3,t2)p’ (t —ta — ts,t3)p" (t2,t3)dtadts (9)

—0o0—00

Cijk(t)zd)i(t,f}) * d)j(t,%) * d)k(t,l())z

wherei’, 5/, andk’ refer to (4b).
For the stationary case, Eq. (8) reduces to

Property 2.1S

Cij (t) = (SZJ’L' / pl(t — 2t2)dt2 = 6131"171 (10)
wheret; = [ p(t)dt is the correlation time of thigh random basis procesgs (¢, 9).

0
The two-point convolution functions, i.e., Egs. (8) and)(1€an be rewritten in the frequency domain for the
nonstationary and stationary cases, respectively, as

Cij ((U) = @l(w,{))tbj(w,%) = 5”2'¢9~ (/ pi(t — tg, tg)dtg) (8b)

whereC(w) = % (c(t)). Similarly the three-point convolution function in the drgency domain is obtained as

C”k((l)) = (I)l((l), 19)(1)7((1), 19)(1)]@((1), 8)

itk I , (11)
= W«g (/ / PF (t —tg — t3,t2)p7 (t — to — t3,t3)p (f27t3)dt2dt3)
wherei’, 5/, andk’ refer to (4b). For the stationary case, (11) reduces to
Property 2.2S
L iljlk! N ANy SOV E AV /
Proof:
Oljk(w) = (I)Z(was)(bj(wvﬁ)(pk(wa{))
k! T 7 ; (13)
= Wﬁz (/ / P (t — 2ty — t3)p? (t — to — 2t3)p" (t2 — t3)dt2dt3>
Lett =1t — 2ty — t3 andt’ =t — to — 2t3. Equation (13) then becomes
iljlk! 7 k' 5N ’
Cijr(w) = W«? P (T)p” (T)p" (T — 1) |J|dr dt (14)
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with the determinant of the Jacobian matrix

Oty Otg 2 1
ot ov 3 3 1
|1 = = =2 (15)
o o || L 2|73
ot ot 3 3

Equation (14) therefore immediately leads to Eq. (12).

2.3 Derivatives of Random Basis Processes

The derivatives of random basis processes are useful wigedetivatives of the output process (1) have physical
meaning, e.g., velocity and acceleration obtained frompldement. The-point correlation of the derivatives of the
first n random basis processes is given as

Property 3.0
Tayevan,didn (t1s 5 tn) = Gaydy (E1,9) - Dayd,, (Ens D)
Hdrt-+dn Vik (s, (16)
=a!-ay! Z Z T o oy = P y(-j' k)
v12=0 Vn—1, n=0 tl o tn i<k gk

where the subscrip; denoted;th derivatives about;. The two- and three-point correlations of the derivatives a
explicitly given as

Property 3.1
p+q

Corte
Tijpg(t1,t2) = §ip(t1,9)Pj q(t2, D) = 51‘3'“WP (t1,t2) (17)
1 2

Property 3.2

t,to, t3) = 1,9 t, 9 ts—i!j!k! orret Kt 1) 00 (t1,t3)0° (Lo, t 18
Tijhpgo (t1, 2, 13) = Gip(t1, D) djq(t2, D) br,v(t3,9) = TR I [P (t1,t2)p” (t1,t3)p" (t2, 3)} (18)

wherei’, 5/, andk’ refer to Eq. (4b). In the stationary case, Eqgs. (17) and (a8)oe further written, respectively, as
Property 3.1S

- gpta i
Tijpq(T) = 6ij(_1)q2!8’rp+q p'(T) (19)
T =t; — to, With 15 ,4(0) = 0 whenp + g is odd, and
Property 3.2S
ol o (0 ON 0T e
rigkon (07) = g (U™ (524 55 ) grages [0 (09 (@) (¢~ 1) (20)

wheret = t; — to andt’ = ¢t; — ta.
Then-point convolution of the derivatives is similarly obtathas
Property 4.0

Ca1~~~an,d1---dn (t) = d)al,dl (ta{)) * ¢)a2,d2 (ta{)) koeeox d)an,dn (t,%)

:/"'/¢a1.,d1(t_t2_"'_tna{))d)amdz(t%{))'"d)an,dn(tnvs)dtQ"'dtn
:/"'/Ta1~~~an,d1~~~dn(tlat27"'atn)dtQ"'dtn
adﬁ- +dn 1 .
:all...a | Z Z albl .. an . / / — H |p’\ljk(t7’tk)dt2dtn
v oty'-- Btn = Vg
12= Vn—1,n=0
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ty=t—ty—t3—--—1t,
The two-point convolution of the derivatives specificalpstthe following property:

Property 4.1
0 p£0orqg#0

Ciipa(@) = (V=Tw)" ™ @ (w, )0 (w,9) ={ 0 i#j & p=g=0 22)

Proof: The property can be proved in the time domain, i.e.,

) 7 ap+q i
Cijpg(t) = Gip(t,D) * bjq(t, D) = 854! / 5750 ° (t1,t2)dts (23)
e 1 2

wheret; = t — to. Consideringp(co, —oo) = 0 and the symmetry of the convolution operator, (23) diregitids
the results in Eq. (22).
Similarly, we have the following property for the three-pootonvolution of the derivatives:

Property 4.2

Cijpao (@) = (V=1w)" ™™ &, (w0, 9)®; (w, 9)®p(w, 9) =0 whenp £0, ¢ £0, or v £0  (24)

Proof: In the time domain

Cijk,pqu (t) = ¢)’L p(t 19) * d)j q(t 8) * d)k.,v(tvs)

Liljlk! grtaty . y (25)
= t1,t2)p? (t1,t3)p" (t2,t3)| dtsdt
iI!j/!k/' / / atpatqaty ( 1 2)p ( 1, 3)p ( 2, 3) 3wi2

—00 —O0

wheret; = ¢ — to — t3. Considering(t1, +00) = 0 for any finitet; and the symmetry of the convolution operator,
Eq. (25) leads to Eq. (24).

3. THE NTH-ORDER CONVOLVED ORTHOGONAL EXPANSION
3.1 A New Expansion Beyond Classical Volterra-Type Expansions

To model nonlinear systems, we propose to generalize tloézerder or memoryless orthogonal expansion presented

above to amth-order COE:
=3 S w1l (1, 9) (26)
n=0 =0

n N *n
O (1, 0) =Grgr Fgrd; = g™ x b 27)

whereg(t, t') is a given kernel, typically a Green'’s function. For a stagity kernel(t—t'), Eq. (27) can be simplified
in the frequency domain as

n

P (W, 9) = G(w)G(w) -+ G(w) Bi(w, 9) = G™ (W) (w, D) (28)

whereG(w) = % [¢(t)]. For notational simplicity, the superscript (0) for the @brorder COE is usually omitted
throughout the paper. The memoryless orthogonal expafikjdahus corresponds to the zeroth-order COE withO
in (26).
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The advantage of theth-order COE (26) can be especially demonstrated by comgénith classical Volterra-
type expansions. The general Volterra series expansiaut atsiationary input process (¢, d) is written as [18]

u(t,%)zz%/---/K(")(tl,tg---tn)d>1(t—t1,8)d>1(t—t2, 9) -1t —tn,D)dtydty---dt,,  (29)
n=0 '—oo e e]

Based on Cameron and Martin’s result [19], a variant of (283 @eveloped as [20, 21]
u(t,9) = i' / - / KM (ty, by ty)pn(t —t1, t —to, -t —t,,D)dt1dts - - - dt,, (30)
n.
n=0 " 0o

whered,, is thenth-order functional Hermite polynomial, e.gbg(tl,tg,%) = 1(t1,9)d1(t2,9) — 8(t1 — t2). A
further specialization of (30) can be given as [21]

u(t,a):Z% /K(")(t—tl)dJn(tl,%)dtl (31)
n=0 '700

which is close to the COE representation, Eq. (26), excapkéninels in Eq. (31) are unknown. Indeed, a common
issue of all the Volterra-type representations is sevefeudliies in solving the unknown kernels ™). In the COE
representation all the kernels are explicitly given aredgtoblem is significantly reduced to determine the unknown

coefﬂmentSu ). Some properties of convolved random basis processesesered below.

3.2 Properties of Convolved Random Basis Processes

Then-point correlation of the convolved random basis processterefore obtained as
Property 5.0

P (L e ) = GST (8, 9) - 08 (£, 9)

ai

oo

:al'”.a|z Z darby * ann/ /g*mlt t/
’V12_0 Vn—1, n—o (32)
ik (t,t
g () [T Pl ) e gy
’ij'
i<k
with the two- and three-point correlation functions exipljogiven as
Property 5.1
b1, 12) = 60 (12, 0)05 (12,9) —am/ / M0, )" (1, )41 )ty (33)
Property 5.2

zyk (tla t?a t3) d)gm) (tl ) 19)(1)5”) (tQa 19)(1);9” (t3a 19)
iljlkl (34)

T g ) o 0 G 6,0 0
—00 —00 —0O0

wherei’, 5/, andk’ refer to (4b).
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In the stationary case, i.e., both the kernel and the inpatgyfstem being stationary, the two-point correlation is
simplified in the frequency domain as follows:

Property 5.1S ) .
R (w) = 851G (w)G™ (w)S™ (w) (35)
Proof: In the stationary case (33) reduces to
" (t — ta) = 84! / / Mty — 1) g " (ta — th)p'(t) — th)dt,dth (36)

Lett =t —t}, T =ty — t), andAt = t5 — t;. Equation (36) then becomes

T (AT) = 854! / / (t)p' (T — T — AT)dt dT’ (37)
and the Fourier transform directly leads to (35).
One notes whem = n, the PSD in (35) is positive, consistent with the positivérdeness of an autocorrelation
function.
For ergodic processes, following Eq. (5), Eq. (35) can be waidtten as
Property 5.1E

RIM™(w) = 8 c1><m>(w 9)™ (w, 9) (38)

Similarly then-point correlation of the derivatives of the convolved randbasis processes is obtained as
Property 6.0

(bt ) = O (1, 9) - U (1, 9)
8d1+ +dn
:a.... | Z Z albl'. —— / / *1M t1,t/ 39
vi2=0 Vn—1,n= 8t ' 8t 5 ( )
i (Lt
g*mn tnatn H p - J| k) dt d;z
i<k gk

with the two- and three-point correlations explicitly givas

Property 6.1
(m) (n) ap-l—q *77, INAL(4! 4! rog!
zg pq (tl, tg) d)i,p (tl,%)d)j’q (tg, 19) = 8tp8tq tl, (tg, t2)p (tl, tz)dtldtQ (40)
Property 6.2

Tz]k pqu (t17t2) ¢§1Z) (t1,8)¢§1;) (t278) (l) (t378)

iljlkl  gpraty / 1y ol INAK (51 NG (2 N AT (2N 3 A 4l (41)
= T a0 / // Tt 1) g (b2, 1) g™ (Es, 15)P" (1, t5)p” (1, 15)p" (ta, t5)dty dtsydty
In the stationary case, the two-point correlation is sifigdiin frequency domain as
Property 6.1S
mn : + m ~n *1
R (w) = 851! (V—1w)" " G™(w)G™ (w)S™ (w) (42)

which is directly derived from (35).

International Journal for Uncertainty Quantification



Convolved Orthogonal Expansions for Uncertainty Propagat 391

4. APPLICATION EXAMPLES OF CONVOLVED ORTHOGONAL EXPANSIONS
4.1 Linear Oscillators

The application of COE to linear oscillators first appearefllj. Below the idea is succinctly presented, which also
prepares for the following example on nonlinear oscillat&uppose the linear oscillator

i+ 20wt + wiu = f

(43)
u(0) =4(0) =0

is subjected to a nonstationary non-Gaussian translatmeeps input, i.e.,

F£9) =" fi(t)bi(t,9) (44)
=0
By using the Green'’s function
g(t) = Lefcw"t sin(wgt) (45)
Wy

wq = wp\/1—022 (46)

1

Glw) = w2 — w? ++/—12Cww, (“7)
the first three correlations of the nonstationary outpcan be directly calculated from
t
a(t) = [ gl - %) ow)de (48)
0
ta th
T (1, t2) = //g(tl —T)g(ta —12) 3 _ilp'(T1 — T2) fi(T1) fi(T2)dT1 T2 (49)
00 =0

tz ta 11

Tuuu(tl,tQ,tg) = ///g(tl — Tl)g(tQ — Tg)g(tg — Tg) Z Tijk(Tl — T2, T1 — T3, T — Tg)dTldTQdTg (50)
0 0 O i,7,k=0

with 75, given in Eq. (4).
When the excitation in Eq. (43) is stationary, the outputpss is directly given as

u(t,9) =" fipt)(t,9) (51)
=0

which is a special case of the COE representation (26)thefjrst-order COE. Note that given the Green’s function
g and the underlying Gaussian process, the stationary pilipalensity function (pdf) of the outputin Eq. (51) can
be rapidly estimated by using Monte Carlo method in the fesgy domain.

A numerical example for application of the COE on linear batr is given in [1]. With regard to the multi-
degree-of-freedom (MDOF) linear systems, the oscillatprations given above can be directly applied by using the
modal decomposition as shown in [22].
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4.2 Weakly Nonlinear Oscillators

The accurate computation of the response of nonlinearesitegree-of-freedom (SDOF) oscillators under stochastic
loading is important in earthquake engineering where edent nonlinear SDOF systems are often used in order
to avoid the computationally intensive nonlinear respdriseory analysis of MDOF systems. These equivalent sys-
tems retain some of the dynamic characteristics of the teadtsire and are capable of representing certain response
guantities of the MDOF structure (see, e.g., Ref. [23]).

In this example a Duffing oscillator subjected to a Gaussihiteanoise excitation with intensity is considered:

i+ 2Cwnt + W2 (u+ o) = W (52)

Similar to the idea presented in [1, 14, 22] on multiscaleodggosition of random field problems, Eq. (52) can be
decomposed into a reference linear filter

iig 4+ 20wty + Wiug = W (53)
and a nonlinear fluctuation problem
i+ 20wt + w3y = —aw? (up 4+ u')? (54)
with
u=wug+u (55)

The Gaussian response of the linear filter (53) is straigivodly obtained as
up(t,9) = oo@1(t,9), (56)
whered, (¢, d) is characterized by unit variance and power spectral densit
5= S lo(@)? (57)
and the variance (see e.g., [24])

1.7 1 2 D
2
02=—D dw = ——
07 of / ‘w% —w? 4+ /—-12Cww,, 4Cw3

(58)

For a smalkx, by using iterative substitution the output of the nonlinfazctuation problem (54) is obtained as
u' = —aw?ogg x §F + 3wy opg * (GTg x dF) + O(a®) (59)
For Gaussian-based random basis processes, i.e., Hephjitomials,

& =3 +3d1, ¢ =¢2+1 (60)

The sum of Egs. (56) and (59) can be rewritten in terms of thdam basis processes in time and frequency domain,
respectively, as

w/oo = b1 — B (@57 +36(") + 39+ (02 + 1) (B(oS +3¢1)) | + OB (61)

Ufoo = — B (@) +30{") + 3G [(@; +275(0)) + (B2 +30"))| + O (BG)")  (62)

wherep = aodw?.
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By invoking ergodicity and using Properties 1.1E, 1.2, 5dr&l 5.2, the stationary PSD of the output displacement
becomes

*3 ~
5 +3(G? + G?) + 6G(G * S*?)

1 -~ ~
Suu = ZUU = 035{1 —3B(G + G) + 3p* (3 G + 2|6 g

o ) (63)
+6G(G * S*%) + 6(G + G) (GS) ) +0 ((B|G)?*) ]
where(GS) = [7_ G(w)S(w)dw. Since
T 2(w? — w?) 1 2 7r
/ (W2 — w?)? + (2Cww,)? w2 — w? 4+ /—12Cww, @ 2¢w5 (64)
(see, e.g., [24]), the variance calculated from the firsttevms of Eq. (63) is simply obtained as
o2 = 03(1 — 3ao}) (65)

which is identical to the result obtained using other apphes, e.g., [25, 26].
To justify the perturbation approach, we need the nonlitbetactor |G| < 1, i.e.,

2
x0og

VI @) P & @ajw?

In the low-frequency range whete < w.,, it leads to the conditioao? < 1. In the high-frequency range where
w > w,, the condition becomes much more relaxedxag(w, /w)? < 1. In the intermediate-frequency range,
especially near resonance, when- w,,, the weak nonlinearity condition becomes damping corgyli.e.,

2
foderst oD

In summary, the condition for all frequency ranges is cdhgdoby the nonlinearity factoy. As an example, choose
¢ = 0.02, w, = 1, and the response PSD is obtained by using the second-ardarlmtion approach (62). With
the intensity of white noise fixed & = 1, Fig. 1 shows that the PSD shifts to the right and up withdase of the
nonlinearityx from O (y = 0), to 0.00025¢ = 0.078125), and to 0.000% & 0.15625). When the nonlinearityis
fixed at 0.00025, Fig. 2 shows clearly the rise and the riglit shPSD with increase of the intensiy from 0.5
(y =0.039063) to 1y = 0.078125) and to 2y(= 0.15625). The result reflects exactly the well-known phmeenon
concerning the natural frequency of the single-well Dufiasgillator.

In addition to serving as a verification of the COE method; éxiample demonstrates the simplicity and efficiency
of the convolved orthogonal expansions for nonlinear potd.

5. CONCLUSION

By developing random process-based orthogonal expana®mr alternative way to represent high-dimensional
fluctuations in the time domain, the proposed COE method ®pamew direction to deal with nonlinear stochastic
dynamics. The advantage is especially noted for its patbsfficiency in computing of large and nonlinear dynamical
systems, in comparison with the classical Volterra-tyg@esentation and the random-variable-based polynomial
chaos expansions. Future work will be devoted to applioatiothe COE method to strongly nonlinear systems by
using the variational method [14, 27], where the propegiesented in this work are expected to play an essential role
A final remark is that the fundamentals of the COE are built@yolynomials. To apply the COE to a nonpolynomial
nonlinearity, we will need to approximate the particulantwearity with polynomials using, e.g., Taylor expansion
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FIG. 1: The PSD of the displacement (from left to rigat= 0, 0.00025, and 0.0005, respectively) with= 0.02,
w, = 1,andD = 1.
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FIG. 2: The PSD of the displacement (from bottom to @p= 0.5, 1, and 2, respectively) with= 0.02, w,, = 1,
andx = 0.00025.
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