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This paper proposes techniques for constructing linear parametric models describing key features of the distribution of
an output variable given input-output data. By contrast to standard models, which yield a single output value at each
value of the input, random predictors models (RPMs) yield a random variable. The strategies proposed yield models
in which the mean, the variance, and the range of the model’s parameters, thus, of the random process describing the
output, are rigorously prescribed. As such, these strategies encompass all RPMs conforming to the prescription of
these metrics (e.g., random variables and probability boxes describing the model’s parameters, and random processes
describing the output). Strategies for calculating optimal RPMs by solving a sequence of optimization programs are
developed. The RPMs are optimal in the sense that they yield the tightest output ranges containing all (or, depending
on the formulation, most) of the observations. Extensions that enable eliminating the effects of outliers in the data
set are developed.When the data-generating mechanism is stationary, the data are independent, and the optimization
program(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary
convex program), the reliability of the prediction, which is the probability that a future observation would fall within
the predicted output range, is bounded rigorously using Scenario Optimization Theory. This framework does not require
making any assumptions on the underlying structure of the data-generating mechanism.

KEY WORDS: uncertainty quantification, representation of uncertainty, stochastic response surface
method, random process, parameter estimation, optimization

1. INTRODUCTION

Metamodeling [1] refers to the process of creating a mathematical representation of a phenomenon based on input-
output data. These models can be parametric (e.g., polynomial response surfaces, polynomial chaos expansions, boot-
strapping techniques) or no-parametric (e.g., smoothing spline models, Kriging/Gaussian process models). In the para-
metric case, the analyst first prescribes the model’s structure and then determines the value of the model's parameters
such that a measure of the discrepancy between observations and predictions is minimized. This step is commonly
referred to as model calibration or regression. Model-form uncertainty (i.e., uncertainty caused by the offset between
the structure of the computational model and the structure of the data-generating mechanism), measurement noise,
and numerical error often inhibit confidently prescribing a fixed constant value for such parameters. Consequently, it
is preferable to prescribe a set of parameter values such that the collective prediction that results from evaluating the
model at each set member accurately represents the ensemble of observations.

Several model calibration techniques are available in the literature. Most of them assume the structure

y=M(x,p)+n, Q)

wherey € R™ is theoutput M is a continuous function of its arguments,e R"= is theinput, p € R"» is a
parameteror regression coefficient, ang € R™v is a random variation caused by noise and measurement error.
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Traditionally, the realizations of the random error are assumed to be independent and identically distributed (IID)
following a Normal distribution. A typical regression problem consists of estimating the valpgigén the set of
observationgxz;, y;), fori = 1,..., N, whereN > n,. A key assumption in this model structure is that measurement
error is the only cause of discrepancy between the observations and the noise-free prediction (so there is no model-
form uncertainty).

Parameter estimation is commonly carried out by solving for the parameter realization that minimizes the sum
of squared errors between predictions and observations [2]. This approach yields the least squares (LS) parameter
estimate(i. The precision of this estimate, which prescribes how much it can deviate from its “true value” within an
epistemic framework (i.e., the true value ofs fixed and unknown), is often evaluated using confidence intervals.

The calculation of confidence intervals [2] and prediction intervals requires a probabilistic descrigtidn bhear
regression statistics, a prediction interval defines a range of values within which the output is likely to fall in given a
specified value of the input. Linearly regressed data are often non-normally distributed. Normally distributed data are
statistically independent of one another, whereas regressed data are dependédifteouncertainty represented by a
prediction interval includes not only the uncertainties associated with the population mean and the new observations,
but also with the uncertainty associated with the regression parafmeBscause the uncertainties associated with

the population mean and new observation are independent of the observations used to fit the model, the uncertainty
estimates of these three sources are combined. In general, the calculation of confidence and prediction intervals often
requires (i) assuming a distribution fqr (ii) the predictedy having a mathematically convenient dependency on

andn, or (iii) a nonlinearM being accurately represented by a linear approximation. As expected, the suitability of
the resulting predictions depend tightly on the validity of such assumptions.

A common approach to model calibration is Bayesian inference. In Bayesian inference, the objective is to describe
the model's parameters as a vector of possibly dependent random variables using Bayes'’ rule. The resulting vector,
called the posterior, depends on an assumed prior random vector and the likelihood function, which in turn depends
on the observations and on the structure\6f Whereas this approach does not make any limiting assumptions on
the manner in which\/ depends om, nor on the structure of the resulting posterior, it requires that the calibrated
variables inp be epistemic. This vector might be comprised of physical epistemic uncertainties and hyperparameters
of aleatory variables.Note that the consideration of aleatory uncertainties requires assuming a structure for them
so they can be parameterized in terms of nonphysical epistemic variables. The presence of aleatory and model-form
uncertainty yields uncertainty characterizations that fail to describe the prediction error (i.e., the offset between the
observations and the prediction resulting from a calibrated model). This deficiency can be mitigated by adding a
fictitious discrepancy term td/ [3]. This term, which can have a fixed epistemic or a fixed aleatory structure, is
calibrated as if it were part a¥/. In spite of its high computational demands, and of the potentially high sensitivity of
the posterior to the assumed prior, this method is commonly regarded as a benchmark.

Bayesian calibration is often applied to modéfshaving a physics-based structure. In contrast, this paper yields
data-based models having a linear parameter dependency. This structure enables a rigorous treatment. Extensions to
models having an arbitrary structure, including physics-based models whose parameters are real numbers, are made
in [4]. In this paper, we do not use a measurement error term sughras do we make prior assumptions about a
distribution ofp. What is here called a random predictor model (RPM) has the generalfermy (z, p), wherep is
a random vector, so the outpyis a random process parameterizedibyVe do not fully specify the distribution of
p. Instead, we only seek to find an expected value, a covariance matrix, and, in some cases, a suppgrt set for

Making the prediction match the observations by adjusting the hyperparameters of a distribytisnaoiong-
standing approach used in reliability-based design optimization, moment matching algorithms, and backward prop-
agation of variance [5-8]. In this paper, these hyperparameters are determined by solving optimization programs
according to the input-output data available and a few design parameters chosen by the analyst. The role of these
parameters is to limit the largest number of standard deviations that can separate the measured outputs from the mean
function. The resulting description pfis chosen to be as tight as possible while satisfying this restriction. We further

LFor instance, ify contains the physical parameters of the matiglwhereq; is epistemic and is aleatory, having a normal
distribution with meanu and standard deviatios, the vectorp = [q1, 1, o] contains three epistemic variables, one physical
and two nonphysical.
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provide means of identifying outliers in the data set so that eliminating them from the modeling process can result
in predictions having a narrower output range at the expense of a reduction in the reliability of the prediction. Such
a reduction can be formally quantified using the scenario approach (see Section 5). This article extends the interval
predictor models (IPMs) proposed in [9], for whiphs prescribed as a bounded setpsis prescribed as a random

vector. The developments herein enable generating random descriptigrenofthus ofy, having an arbitrary struc-

ture. This structure can be a random vector (@.gan be Gaussian or a generalized beta), or a probability box (e.g.,

all random vectors having a fixed expected value, variance, and support set). As such, the resulting characterization of
p is distribution free.

As in the Bayesian inference approach, the formulations proposed yield a probabilistic description of the model's
parameters. In contrast to the Bayesian approach, however, the proposed methods do not require any prior description
of the uncertainty i, and the resulting models yield analytical characterizations for both the predicted output and the
model’s parameters. This paper focuses on computational models having a linear dependeaog @m arbitrary
dependency onr. Furthermore, the support of the probability density function characterjzivij be prescribed as a
hyper-rectangular set. The advantage of these sets is that each compgneant b selected arbitrarily in its interval
independently of the choices made for any of the other parameters. As such, parameter interdependencies are avoided.
This independence enables the calculation of RPMs whose parameters are independent random variables.

This paper is organized as follows. Section 2 describes the problem statement and main objectives of this article.
Section 3 presents the mathematical framework for calculating IPMs. These models play an instrumental role in the
calculation of some RPMs. Section 4 presents formulations for calculating RPMs having various levels of fidelity and
insensitivity to outliers. The reliability of the these models is studied in Section 5. Finally, Section 6 presents a few
concluding remarks.

2. PROBLEM STATEMENT

A data generating mechanism (DGM) is postulated to act on a vector of input variabef®R"~, to produce an
output,y € R"™». In the following, the focus will be on the single-output,(= 1), multi-input (2, > 1) case. The
dependency of the output on the input is entirely arbitrary. This covers the case ingikialfunction ofz (so there

is one output value for each input value) and the case in whista random process parameterizedct{go there are
infinitely many output values for each input value). Assume Mamput-output pairs are obtained from a DGM, and
denote byz = {z;}, with z; = (x;,y;) fori =1,..., N, the corresponding data sequence.

It is desired to build a mathematical model of the DGM based trat will predict the output corresponding to
an unobserved realization of the input. DétC R"= a set of input variables, aridd C R™v be a set of outputs which
might result from evaluating the model at elementsXofThe presence of intrinsic variability, and parametric- and
model-form uncertainty makes it unrealistic to build a model that will predict a single output for a fixed input. Instead,
an IPM will predict an interval-valued function into which the output from an unobserved input is expected to fall,
while an RPM will predict a random process matching key features of the data. Engineering judgment is used to select
a computational model = M (z,p), wherep € R™» is a parameter vector. Instead of the standard practice of trying
to match all the data as closely as possible wifrevaluated at a single vectpiof parameters, the thrust in this work
is to restrict as much as possible a seRitr from whichp is chosen while, at the same time, having the property that
each data point im (except, possibly, for a few outliers neglected purposely by the analyst) can be fit exactly by the
model evaluated at least one elemenp @f such a set.

One restriction to be considered is foto belong to a seP. For a fixed value of the input, the propagation of
throughM vyields an interval of output values. Thus these models are called interval predictor models. The objective
here is to choos® to make the correspondingintervals as small as possible and still allow each data geint;)
to be modeled ag; = M («x;, p) for somep € P. The other form of restriction considered is to descyilzes a random
vector. For a fixed value of the input the propagation of this vector througli yields a random variable for the the
outcomey. Various properties oR,, («), such as its moments and support set, are determined by thpséta thrust
here is to choose a random vector that leads to a prediction matching key features of the data.

In this setting the two main problems of interest can be stated as follows. First, we want to find an empirical model
that, when evaluated at a new valug; of the input, returns an informative prediction of the unobserved output
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yn+1. An informative prediction can be interpreted as a narrow interval that is consistent with salient features of
the data comprising. These features, which are prescribed by the analyst as design requirements (for example, we
might want all observed outcomes to be less than 2 standard deviations from the mean function), are cast as inequality
constraints in the optimization programs used to create the model. Second, we want to quantify the probability of
yn+1 being compliant with such requirements. (In the previous example, we want to evaluate the probability that
yn+1 IS less than 2 standard deviations away from the mean function.) In this setting, the targeted prediction is a
narrow output interval of high probability. Note that the second objective implies that the prediction must conform to
the DGM foranyvalue of N without having any knowledge about its underlying structure.

3. INTERVAL PREDICTOR MODELS

This section introduces basic concepts from IPMs that are essential for the construction of RPMs. Additional infor-
mation on IPMs and examples are available in [9]. An IPM is simply a mapping that assigns an output interval for
each value of the input. In the context of this paper, an IPM assigns to each instancerveciora corresponding
outcome interval irY". That is, an IPM is a set-valued map,

I,:x— I,(x) CY, 2

wherel, (z) is the prediction interval. Depending on context, the term IPM will refer to either the fungfionits
graph{(z,y) : « € X,y € I,(z)} in X x Y. Let M be any functional acting on a vectorof inputs and a vectas
of parameters to produce an outpui.e.,y = M (z,p). A parametric IPM is obtained by associating to each X
the set of outputg corresponding to all values pfin P:

I(z, P) = {y = M(z,p), p € P}. (3)

I,(z, P) will be an interval as long a3/ (z,p) is a continuous function of andp, and P is a connected set. All
instances of\/ and P considered in this paper satisfy these restrictions. Attention will be limited to the IPM given by

Iy(z,P)={y =p"o(z), p € P}, (4)
whereo(z) is an arbitrary basis, andis a member of the hyper-rectangular uncertainty set
P={p:p <p <P} Q)

The parameter pointsandp are called the defining vertices & This model structure enables describing the IPM
as

Iy(T,P) = [Q(%@B)a y(xapvﬂ)]a (6)

where
y(z,p.p) =p" <‘W> +p' (W) , @)
5(z.5.p) =" ((p(w)+2|<0(66)> +pT ((p(x) —2|<p(~r)|> . ®)

The functionsy andy are, respectively, the lower and upper boundaries of the IPM. Each member of the family of
infinitely many functions that result from evaluating the modi&lat each realizatiop € P lies between them, and

no tighter containing functions exist. Observe that the IPM boundaries are not members of such a famiy(when
changes sign. The IPM boundaries are linear functiopsasfdp, and piecewise continuous functions of the input. As
such, they will have derivative discontinuities on the hypersurfaces wh@rgchanges sign. The spreadigiz, P),

which is the distance between the upper and lower boundaries, is

8y(z.0.p) = B —p) " |o(2)]. (9)

2We will only assume that the DGM is stationary and the observationsig IID.
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The narrower the spredg, the more informative the IPM prediction. Note that the spread depends on the size of the
uncertainty boxP but is independent of its geometric center. Furthermore, notice that a reduction in the volifme of
might yield a larger spread.

The particular case in which the basis is polynomial is considered next. A general representation of a multivariate
polynomial basis is

(p(x) = [1,$i27xi37...7xi7LP]T7 (10)

wherex = [z1,...,z,,]isthe input, and the vectoy = [i;1,...,1;,, ], Withi; # 5 for j # k having the exponents
of the monomials. For a polynomial basis we haugz|) = |¢(z)|, which further simplifies Egs. (7)—(9).

The above equations fully specify an IPM given the uncertainty/®oX means to calculat®’s leading to optimal
IPMs is provided next.

3.1 Type-1 IPMs

In this formulation we seek an IPM given by Egs. (4)—(9), whBre= P is given by the solution to the following
optimization program (OP):

Optimization Program 1 (OP1) The defining vertices d? are given by

{@a f)} = argmin {Ew[éy(xa v, U)] : y(xia v, U) < Yi < ?('ria v, U), u < U} ’ (11)
u, v

whereE, [-] is the expected value operator with respect to the inp@nd (z;,y;) fori = 1,..., N are the observa-
tions comprising.

In this formulation we search for the uncertainty bBxhat minimizes the expected interval spread such that all
the observed outputs are within the IPM. Wheis a standard joint random vector, the cost function in (11) can be
calculated analytically. Otherwise, the sample meab,dfased on the data inshould be used. The resulting IPM,
which is calculated by solving the convex OP in (11), admits a rigorous reliability assessment (see Section 5). This
assessment formally bounds the probability that a future observation will fall wigtin P).

The DGM is commonly approximated by the LS predictigns 17 @(z), where the LS parameter estiméités
given by

i=(ATA) A [yr, .. un] T, (12)

and A4, ; = o@;(z;), fori = 1,...,Nandj = 1,...,n,. The vectoru is the parameter value minimizing
vazl [yi — pT(p(:L“i)]2. The membership of in P can be ensured by replacing the first constraint with 1 < v

(i.e., i € P), or adding the constraint + v = 2{i (i.e., {1 is the geometric center d?). In general, the inclusion of

these constraints leads to IPMs with larger expected spreads, with the equality constraint leading to the larger of the
two. A formulation resulting from adding either of these two sets of constraints will be called Augmented OP1. Other
types of IPMs are considered in [9].

4. RANDOM PREDICTOR MODELS

A RPM is a mapping that assigns to each input vegter X a corresponding random variable in the output space
That is, a RPM is a random variable-valued map

R,:x— Ry(z)CY, (13)

whereR, (x) is a random process having its supporYinA parametric RPM is obtained by associating to eaeh X

the set of outputg corresponding to all values gfdescribed by a random vector with joint cumulative distribution
function (CDF)F,(p) having P in (5) as its support set. As before, attention will be limited to the case where the
output is linear irp. This leads to

Ry (z,F,) ={y=p" o), p~ F,(p)}. (14)
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Denote byu € R"», v € R™, andc € R"(»~1)/2 the mean, variance, and correlationzpfrespectively. The
variance and correlation fully prescribe the covariance matiix,c) € R™»*"»_ It can be shown that an¥,(p)
supported inP must satisfy the consistency equations:

p<u<p (15)
0<v < (b—pO@—W, (16)
-1 <¢<1, (17)
C(v,c) = 0, (18)

where the symbols and>- denote the componentwise product of vectors and positive semidefiniteness, respectively.
The random procesB, (z, F},) is fully prescribed by the model = p' ¢(z) and F,,(p). Naturally, key features

of the prediction, such as statistical moments and its range, varyswiithparticular, the mean function s, (x, 1) =

E,ly(z,p)] = n" @(x), the variance function is

vy(2,v,0) = Ep{ly(z.p) — 1y (2)]*} = @(2) "C(v, ) (@), (19)

and the interval-valued range or support function is given by (6). When the compongrateeaincorrelated, Eq. (19)
reduces to
vy(r,v) =T @*(x). (20)

A few metrics for characterizing, (x) are introduced next. The surface, which connects all the outpytthat
aret standard deviations from the mean function, is defined as

so(, 1,7, v,0) = nh (@) + 1y /vy (2,7, 0), (21)

wheret > 0 corresponds to deviations above the meanward0 to deviations below. The volume, defined as
/UO‘('I7 H? T7V7 C) = [SO_(I? H? 7T7’\/7 C), 50‘('/1;7 u? T?’\/’ C)] Y (22)

is an interval-valued function that contains all the outputisat are no more thanstandard deviations away from the
mean functiory, (z). For the value oft to be feasible; i.e., for the surface to be within the support &, (x, F},), it
must satisfy

g(zvﬁvﬂ) S 56(I7H7T7V76) S?(L@B) (23)

Equation (23) ensures that the support of the process contains outcomes that arestgmttard deviations from the
mean function. Note that the rangeo¥alues (i.e., range of standard deviations) satisfying these inequalities is a
function ofx.

The formulations that follow prescribe key featurestgf thus of the random procesg, (x, F},), based on input-
output data. As such they encompass all RPMs conforming to such features. Four types of RPMs are proposed. Type-1
RPMs prescribe the mean and varianc&®gf ) when the entire data set is used. Type-2 RPMs prescribe the same
statistics after eliminating the effects of a fixed percentage of the observations (i.e., outliers). Such observations are
worst case in the sense that their removal tightensth@ume the most. Type-3 and type-4 RPMs not only prescribe
the mean and variance, but also the suppoiVhereas type-3 RPMs emphasize the tightness of the rangéyple-4
RPMs emphasize the tightness of ih@olume. In contrast to type-1 and type-2 RPMs, which only require solving
two OPs (one fopr and another one for), type-3 and type-4 RPMs require solving a sequence of three interdependent
OPs (one for each, v, andP). A summary of the main features of all four RPMs is provided in Table 1.

The presentation that follows focuses on the uncorrelated case. This case renders convex OPs that enable having a
large number of observations. Extensions to the correlated case can easily be made. In the developments that follow,
the performance of an RPM refers to the property evaluated by the cost function in the corresponding OP.

3The upper bound in (16) results from applying the expected value op&gtbt to both sides op? < (Bi +D,)pi — P, Di»
which holds for allp; € [p,,p;], and then using; = E,, [pf] — ui fori =1,...,n,.
“When the correlation is zero, the corresponding argument of any function depending on it will be dropped from the notation.
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TABLE 1: Performance functiod, number of constraints and decision variable

s for all RPM types

First OP Second OP Third OP
J=2lyi —p o)) | J=E.lvy(2)]
Type-1 RPM c=0 c=2N+n, N/A
Ss=H s§=V
J=Ylyi —p o)) | J=E.fvy(2)]
Type-2 RPM c=0 c=np,+1 N/A
s=pu s=v
J=Ylyi—p o) | J= E;[8,(z)] | J = Ex[vy(z)]
Type-3 RPM c=0 c=2(N+np) | c=1+2n,
S=H S = {5712} S=V
J =y —p e(@)]? | J=Eu[vy(a)] | J=Eu[dy(2)]
Type-4 RPM c= c=n,+1 c¢=2N +3n,
5=p s="v s = {p,p}

475

4.1 Type-1 RPMs

Type-1 RPMs prescribe the expected value and variance functioRg(ef F,,) based on the entire data setzinA
type-1 RPM is given by Eq. (14), whefg, has a expected valtige = {1 given by (12) and a variance= v given by
the following OP:

Optimization Program 2 (OP2) For a given the mean, the variancev is equal to

V= argmin {Ew[vy(xav)] : SU(CCiv K, _Tmaxav) <y; < Sd(xia K, Tmaxf") fori = 1,...,N, v 2> 0}, (24)
v

wheret,,.x > 0is a parameter prescribed by the analyst, gng, y;) fori = 1,..., N are the observations in

Hence, a Type 1-RPM minimizes the expected value of the output’s variance such that all observations are no
more thantmax Standard deviations away from the mean function; i.e., all observations are withorwtheime
ve (2, 1, Tmax V), SUch that the sum of the squares of the prediction errors relative to the mean function is minimal.
The dependence of on T, is Studied next. Equation (24), which is subject¥ + n, inequality constraints,
is equivalent to the linear program

v = argmin {VTEQE [(92(33)} 2 v (x) > lys — uT(p(xi)]Q fori=1,...,N, v> 0} , (25)
which is subject taV + n,, constraints. The constraint set in (25) scales inversely wth., so the scaled optimal
objective value

T = ooV Eol@*(2)] (26)

is invariant with respect to,,.. It follows that the larget,,.x, the smallet|v||, and the larger the number of standard
deviations separating any given poinat, y) from the mean function. W is the solution to (25) corresponding to
Tmax,1, @NdVs = vy Wherea = (Tmax.1/Tmax,2), thenvs is the solution to (25) corresponding 9., 2. This
implies thatvg (2, 1, Tmax,1, V1) = Vo (T, K, Tmax,2, V2), andvg(z, 1, Tmax, V) is independent of the choice of, ..

A type-1 RPM does not prescribe the supportpofand thus ofR, (x, P). Any random vector satisfying the
consistency equations (15)—(18) for= {1 andv = v is a valid characterization of,(p). Note that both type-1

5The selection ofw asj1 is arbitrary, and any other value can be used instead. This applies to all OPs derived hereafter.
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IPMs and type-1 RPMs require solving a convex OP. As such, they can efficiently handle hundreds of thousands of
data points, thus many more input dimensions than alternative metamodels. Since type-1 RPMs are calculated by
solving a convex OP, they admit a rigorous reliability assessment. This assessment, presented in Section 5, bounds the
probability that a future observation will fall outside (x, W, Tmax, V)-

Example 1. Consider the DGMy = #2 cos(x) —sin(3z)e~*" — cos(z2) + z(g — 1), wherez is uniformly distributed
overX = [-5.5,5.5], andg is a standard normal distributiénA total of N = 150 independent observations from the
DGM were used to form the data sequencé/e assume thal/ is a linear combination of sixth-order polynomials so
o(z) = [1,z,2% 23, 2% 25,2°T, andn, = 7. In [9] we calculate several IPMs based on the same setup, for which
the LS parameter estimatefis= [—0.8734, —1.1059, —0.9926, 0.0026, —0.0228, —0.0004, 0.0028] .

A type-1 RPM fort,,.x = 1, to be referred to as RPM A, is shown in Fig. 1. This figure shows the observations
(x's), the mean functiom, (z) (solid line), as well asr surfaces (green dashed-dotted lines) in increments5of
standard deviations. Note that the observation rfiear15) limits the o volume from below. The only significant
variancé in v is 1, so the performance of RPM AB,[v,] =V =180.3824.

4.1.1 QOutliers

The presence of a few low-probability data points deviating considerably from the rest of the observations will
make theo volume and uncertainty sé® much larger, diminishing the RPM’s performance. Whereas the limits

of vs(x, 1, Tmax, V) Might be driven by a few observations, the majority of them might be much closer to the mean
function, e.g., for RPM A above, only nine observations are outside, u, 0.5,V), whereas the remaining 141 ob-
servations are inside. The removal of such points from the data set will lead to narrower, more informative predictions
at the expense of a reduced RPM’s reliability. These observations, to be catlezts hereafter, can be identified

using any one of several figures of merit. This paper will use

30 T T T

—LS prediction
% Data points
== o surfaces

205\

FIG. 1: RPM A: type-1 RPM fort,., = 1.

SNote that no knowledge about DGM is required to calculate RPMs. This equation has been included solely for clarity in the
presentation.

"For a given RPM, we might want to evaluate the contribution of individual ternig i the resulting prediction. The terg; ()

is insignificant when its contribution to the mean function, givemiyx.c x {|1: @:(z)|}, and its contribution to the variance,

given bymax.cx {v: @2 (x)}, are sufficiently small. Terms satisfying both of these conditions, along with the conditions affecting
I,(z, P), as explained in [9], can be removed frav without degrading the prediction.
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(v — n @(x))”

Vy (1‘,’,1/) (27)

ki, v, 0) =
The metrick; is a variance-normalized distance squared betweeithlabserved output and the mean function at the
corresponding input. Outliers will be identified by determining the data points corresponding to the largest percentiles
of the empirical CDF ok, Fy(s)(x), based on théV observations, i.e(x;, y;) is an outlier if /) (x;) > A where

0 < A < 1. Once the outliers are identified, they can be removed from the data sequence and a new type-1 RPM
will be calculated. The resulting RPM will attain tighter predictions farfaaction of the observations in while the
prediction for the remaining — A fraction might be considerably degraded. The outliers found by this procedure will

be the same regardless of the VaI0& T, ..

Example 2. We now derive a type-1 RPM for,,,.., = 1 after removing seven outliers from the data set. These
outliers attain the largest valuesof The resulting RPM, to be referred to as RPM B, is shown in Fig. 2. In this case
there are seven observations outsigér, (1, 1,v) by design (shown with circled cross symbols), and 114 within the
ve(z, 1, 0.5,v). The only sizable variances for RPM B avg = 44.5139 andv, = 0.5194. The performance of

RPM B, E,[v,] = 49.2469, is 72.7% better than that of RPM A. The approach to eliminate the effects of outliers
used above requires the identification and removal of observations from the data set and the calculation of two RPMs.
Conversely, the approach described next achieves the same objective without identifying or removing outliers and
requires calculating only a single RPM.

4.2 Type-2 RPMs

A formulation leading to an alternative RPM is presented next. In contrast to type-1 RPMs, this approach searches for
v by using only a fixed percentage of theobservations available. The observations comprising the neglected set are
worst case in the sense that their removal tightens the optimralume the most. Whereas the outliers removed to
construct RPM B are worst case for the valuevaforresponding to RPM A only, those neglected in a type-2 RPM

are worst case for the varying value-wbeing considered during the optimization. This will be carried out without
removing any point from the data sequence in advance.
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= v % Data points
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FIG. 2: RPM B: type-1 RPM after the removal of outliers.

8This is a consequence of the following observationiklf, F« (k;)] are points on the optimal CDFs corresponding t.x.1, the
points on the optimal CDF correspondingt@..x,2 are[«k;, Fi (k;)], whereo was defined earlier.
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In particular, a type-2 RPM is given by Eq. (14), whereas an expected valye= [1 given by (12) and a variance
v =V given by the following OP:

Optimization Program 3 (OP3) For a given the mean, the variancey is equal to

V = argmin {E; [vy(z,V)] : Fev) (Thax) = A, v >0}, (28)
v

wheret,., > 0 is a parameter prescribed by the analyB,. ) is the empirical CDF ok(v) in (27) based on théV

observations irz, and0 < A < 1, another parameter to be chosen by the analyst, is the proportion of observations to

be contained by, (z, 1, Tmax, V(A)).

Hence, a Type-2 RPM minimizes the expected value of the output’s variance suchtfrattion of the obser-
vations are no more thatax Standard deviations apart from the mean function, such that the sum of the squares
of the prediction errors relative to the mean function is minimal. The tightening of the prediction for such a fraction
yields ao volumev,(z, 1, Tmax, V(A)) that does not enclose the remainihg- A fraction. This shows that (28) is a
chance-constraint formulation [10], in which one is willing to accept the occurrence of unfavorable low-probability
events (probability — A) for the sake of an improved performance for high-probability events (probakjlifys with
type-1 RPMsy .., is essentially a scaling factor.

OP3 is a nonconvex formulation. Whén= 1 the solution to OP3 and the solution to OP2, which is convex,
are the sam&WhenA < 1, a fixed number of observations (outliers) are neglected as the RPM is being calculated.
Outliers can be easily identified by finding the data points for whighy (x;(v)) > A. The points violating this
condition, which are the elements ofvithin v, (z, 1, Tmax, V(A)), constitute the sequenee A type-1 RPM based
on the data sequeneeis equivalent to the type-2 RPM in (28) based on the data sequembés relationship enables
performing a reliability assessment of type-2 RPMs. This assessment, presented in Section 5, formally bounds the
probability that a future observation will fall outsiadeg (z, |, Tmax, V(A)).

Example 3. We now derive a type-2 RPM far = 143/150 andt,,.x = 1. As with RPM B, we want 143 observations
to be less than one standard deviation away from the mean function. The resulting RPM, shown in Fig. 3, will be
referred to as RPM C. Note that the process is more focused on the LS prediction than either RPM A or RPM
B. The only sizable components #farev; = 6.0124, andv, = 3.2985. Note that the outliers, falling outside

30fy T T

L —LS prediction
P % Data points

20 == o—surfaces

RPTEY  S P
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-20- K i

FIG. 3: RPM C: type-2 RPM foA = 143/150 andty,.x = 1.

“Note that ifE,,[-] is calculated based on a sample meanNatlata points ire must be used to obtain equal solutions.
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velz, 1, 1,V(A)], differ from those of RPM B. The performance of RPME,[v,] = 36.3341, is 26% better than
that of RPM B.

Figure 4 shows the empirical CDFs af = «(V)E,[v,(z,V)] for RPM A and RPM C. Note that the smaller the
value ofw, the more concentrated the data about the mean function. The suppdi@idRPM A is [0, 180.4], whereas
that for RPM B is[0, 718.1]. The upper limits of these intervals are shown as dotted lines. Hence, the concentration of
the set of N = 150 data points about the mean is about four times higher for RPM A than that for RPM B. However,
if we look at the quantilev = F;*(143/150), we note that the closedtt3 data points to the mean for RPM B
are more concentrated than those for RPM A. The range obrresponding to such points for RPM A|[i§ 48.32]
whereas that for RPM B i), 37.76]. The upper limits of these intervals are shown as dashed lines. Therefore, when
only 143 data points out of the 150 are considered, RPM B is a@tyathetter than RPM A. This illustrates that (28)
is a chance-constraint formulation in which one is willing to accept a degraded performance (i.e., larger valyes of
for low-probability events (i.e., those occurring with probability- A) for the sake of an improved performance (i.e.,
smaller values ofv) for high-probability events (i.e., those occurring with probabikjy

4.3 Type-3 RPMs

Type-3 RPMs prescribe the expected value, variance, and suppgrawné thus ofR, (). In contrast to type-1 and
type-2 RPMs, which require solving one OP for the mean and another one for the variance, a type-3-RPM requires
solving a sequence of three OPs linked by the consistency equations (15)—(18). The additional OP is used to calculate
the supportP. The order of the sequence implies that the mean has priority over the support set, and the support set
over the variance.

In particular, a type-3 RPM is defined by Eq. (14), where {1 is given by (12),P = P is given by an augmented
version of (11), and the varianee= v is the solution to the following OP:

Optimization Program 4 (OP4) For a given mearu and a given uncertainty sét with defining verticey andp,
the variancev is equal to

V = argmin {E, [v, (2,V)] : Fv) (T?nax> 20 0V < Vs -
v
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FIG. 4: Empirical CDFs ofw = E,[v,|k(V) for RPM A (red) and RPM C (blue).
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wherev,,.x = (L —p) © (p — 1) and Fy( is the empirical CDF ok(v) in (27) based on théV observations irx.
The parameters,,., andA, to be chosen by the analyst and defined earlier, must satisfy

TR )
Tmax > Trax = INAX {'yl 1 o)l } , (30)

1<izN ‘Vy(xi»‘vmax)
and0 <A < 1.

Hence a type-3 RPM minimizes the expected value of the output’s variance suely that, T,,.x, V(A)) con-
tains'® | AN | observations, subject to (i) that minimizes the expected spread for a rafigle;, P) containing the
full set of N observations, and (ii) @ that minimizes the sum of the squares of the prediction errors relative to the
mean function. Note that extreme observations from a sat efements prescribe the support £eih OP1 according
to §,,, whereas extreme observations from a set’6A | elements prescribe in OP4 according t&. The solution to
(11) enters (29) via the upper boundenv,,,,. The constraint (30) ensures the feasible design space is nonempty.
Theith component of the vector at the right-hand side of (30) is the absolute vaiyewffieret; is the solution to
Yi = So(Z4y 1y Tiy Vmax ). HENCET; is the smallest number of standard deviations that can segaratg) from the
mean function without letting exceedv,,,«.

Whereas the augmented OP1 is convex, the inequality constraints in (29) make OP4 nonconvex=\\hench
constraints are equivalent to the constraints in (25), so the solution to OP4 coincides with the solution to a convex
OP. Therefore type-3 RPMs for the case in which= 1 can be found by solving a sequence of three convex OPs.
WhenA < 1, the constraints in (29) are equivalent to a subset of the constraints in (25). This subset is given by all the
elements ire satisfyingFy ) (k;) < A. The | NA| observations satisfying this condition constitute the data sequence
w. Therefore OP4, based on the data sequenanders the same empirical model as a convex OP based on the data
sequencev. This is the basis used for bounding the reliability of type-3 RPMs. To this end (see Theorem 2), it is
useful to determine if the containment conditiof(z, 1, Tmax, V) C I, (z, P) holds for allz € X, i.e., the range of
R, (z, P) contains ther volume corresponding to,.x. This condition holds if and only if

)" [0@)] ~ |@+p 20 0(2)] ~ 2tma/ () C(v. )0 () > 0, (31)

Ve € X. Type-3 RPMs satisfying this semi-infinite constraint allow for a tighter reliability bound. Enforcing the
containment condition by design requires incorporating (31) into (29).

Example 4. Two type-3 RPMs based on the same setup used earlier are derived next. Whereas the two RPMs
differ in the value ofA used to calculaté’, both use the same support et This set is calculated via an aug-
mented OP1 s@ € P. This leads tg) = [—12.9837, —1.1488, —0.8339, 0.0013, —0.0379, —0.0001, 0.0032] T, and

p = [7.2080, —1.1488, —0.8339, 0.0013, —0.0379, —0.0001, 0.0034] ", andE,[8,] = 10.4942. These values, in turn,

yield an upper bound fov where the only significant componentis,.x 1 = 90.8037. The bound o, resulting

from (30) yieldst}, .. = 1.4094. Thus we selected,,,, = 1.5.

A type-3 RPM forA = 1 is calculated first. Therefore we require that all 150 observations be no more than 1.5
standard deviations from the mean function. The resulting RPM, to be referred to as RPM D and shown in Fig. 5, leads
to a variancev for which the only significant term i$; = 80.1699. The performance of RPM D is given by both
E.[5,] = 10.4942 andE, [v,] ~ ¥,. Whereas the boundaries bf(z, P) are shown as dashed black linesurfaces
separated by.5 units are shown as dashed-dotted green lines. Note that the augmented constraint yielded a mean
function that deviates considerably from the centef, ¢, P . Furthernore, notice that the lower limit of the support
coincides with ther surfacesq(z, {i, —1.5,v) even though the functions have different functional forms. Conversely,
the values ofr on (21) for which the correspondingsurface coincide withj(z, 7, p p) vary. Even though the portions
of the o-surfacessq(z, fi, T,v) spreading outS|déy(a;7P) are infeasible, e.g., almost the entirg(x, {1, —1.5,V),
they are plotted for clarity. The feasible rangerofalues at each value afis given by (23). Because the majority of
the observations are at the cented pfz, P), neglecting a few outliers will considerably tighten the prediction.

9The floor operatot - | is the greatest integer less or equal than or eqval to its argument.
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FIG. 5: RPM D: type-3 RPM forr,,.x = 1.5 andA = 1.

A type-3 RPM forA = 143/150 is derived next. Therefore we require that 143 observations be no more than 1.5
standard deviations from the mean function. This model, to be referred to as RPM E, leads to a vaftauveleich
V1 = 22.2497 is the only significant term. The performance of RPM E is giverEbp, | = 10.4942 as before, and
by E,[v,] ~ V1. In terms of the latter metric, RPM E is 3.6 times better than RPM D. Figure 6 sbawsfaces
corresponding to RPM E being 0.5 units apart. The same line conventions used before apply. A comparison between
Figs. 5 and 6 indicates that RPM E yields a tighter probabilistic descriptioldfoy% of the observations than RPM
D. The containment condition in (31) is not satisfied by either RPM D or RPM E. This is reflected in Figs. 5 and 6,

wheres,(z, i, 1.5,%) > 5(x,p, p) for somez in X.
The sequential construction of a type-3 RPM, where the varianigegolved for after solving for the support g&t
restricts its probabilistic performance (i.e., the variance is calculated given an opt)mibhis restriction manifests

—LS prediction
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FIG. 6: RPM E: type-3 RPM forr,,., = 1.5 andA = 143/150.
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in the lower bound (30) to admissible valueswf, . A sequential approach reversing the order and priorities of the
model is presented next.

4.4 Type-4 RPMs

As with a type-3 RPM, a type-4 RPM prescribes the expected value, variance, and supporfsearad thus of
R, (z), by solving three OPs. The first two OPs yield a type-2 RPM whereas the latter jfieldsontrast to type-3
RPMs, type-4 RPMs make the tightness of theolume more important than the spread of the output’s range.

In particular, a type-4 RPM is given by Eq. (14), where the expected yakeft is given by (12), the variance
v = v is given by (28), and® = P is given by the following OP:

Optimization Program 5 (OP5) For a given meam and a given variance, the defining vertices d? are given by

{@f)}: argmin {E; [8,(z,v,u)] tu < p <o, y(z;) <y <), i=1,...,N, v<(n—u) ® (v — n)}. (32)

Hence a type-4 RPM prescribesPathat minimizes the expected spread of the random praBgés, F),) such
that the support sdt, (z, P) contains allV observations subject to (ihathat minimizes the expected output variance
for ac volumevs(x, 1, Tmax, V(A)) containing| AN | observations, and (ii) a that minimizes the sum of the squares
of the prediction errors relative to the mean function. Note that the solution to OP3 enters OP5 via the lower bound
of the last constraint. Further notice that is further notice that OP3, used to caleulateonconvex, whereas OP5,
used to calculaté®, is convex. This is the case even though the feasible design space associated with the bilinear
constraints in (32) is nonconvex. The equivalence between OP3 and OP2, covered in Section 4.2, allows performing
a reliability analysis of type-4 RPMs. This analysis bounds the probability that a future observation will fall outside
both theo-volumevs(z, 1, Tmax, V(A)) and the rangd, (z, 15). As before, the containment condition (31) plays a
key role in the evaluation of such a bound.

Example 5. Next we derive two type-4 RPMs far,,., = 1 and the same setup used earlier. The two RPMs differ
in the value ofA used to calculaté. Becauser,,., < t*.. = 1.4094, there is no type-3 RPM that can tighten the

max

o-volume as much. This illustrates the limitations on the probabilistic performance resulting from type-3 RPMs.

The first RPM, referred to as RPM F, uskes= 1. Hence we will require that all 150 observations be less than
one standard deviation from the mean function. This setting led to RPM A in Example 1, so W& Hayé =
Y1 = 180.3824. With ¥ available, we then solve fdP using (32). This leads tp = [—12.9981, —1.1488, —0.8339,
0.0012, —0.0379, —0.0006, 0.0032]T, andp = [13.8920, —1.1488, —0.8339, 0.0012, —0.0379, 0.0001, 0.0032]T
andE,[5,] = 13.4714. Therefore, whereas the first and sixth component@dry in a range, the other ones can be
treated as fixed constants. The performance of RPM F, which is shown in Fig. 7, is given i, fath= 13.4714
andE,[v,] = 180.3824, which are128% and225% worse/larger than those of RPM D. Note that the containment
condition holds for all: € X. Both v (z, {i, Tmax, V(A)) and [, (z, P) are centered about the LS prediction. This is
not the case for other valuesaf.., (hot shown). Because most of the observations are close to the mean function, it
is natural to expect that neglecting a few outliers will considerably tighten the prediction.

We now calculate a type-4 RPM far= 143/150. This model, called RPM G, is shown in Fig. 8. The solution to
OP3 led to RPM C for whicli, [v,] = 36.3341. With v available, we then solve fdP using (32), which yields the
verticesp = [—10.2605, —3.8559, —0.8480, 0.0002, —0.0420, —0.0002, 0.0032] T, andp = [2.9670, 0.016, —0.8200,
0.0022, —0.0338, —0.0001,0.0032] T. Therefore, according to the spread of the output's range, the first, second,
and fifth components of are the dominant contributors. The performances of RPM (Eafg,] = 12.3649 and
E,[v,] = 36.3341. These values arg), and80% better/smaller than those of RPM F. The containment condition,
which will be used to quantify the model’s reliability, does not hold:at 0 (not seen in Fig. 8). The support set
of py is not centered about its expected value-08734 (see example 1). This causes a sizable offset between the
mean function and the center &6z, P). This is further evidence that, (z, {1, 1,¥(143/150)) contains most of the
observations whereas outliers only affégtz, P), whose boundaries do not coincide with angurface.
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FIG. 7: RPM F: type-4 RPM foA = 1 andTax = 1.
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FIG. 8: RPM G: type-4 RPM foA = 143/150 andTy,ax = 1.

To better compare the probabilistic performance of type-3 RPMs against type-4 RPMs we make use of the invariant
in Eqg. (26). The comparison of RPM D with RPM F, for whigh= 1, yieldsZp = Zr = 180.38. As such, changing
the order of the OP sequence did not render any improvement. The comparison of RPM E with RPM G, for which
A = 143/150, yieldsZr = 50.06 andZs = 36.33, respectively. Therefore the prioritization of the variance over the
support set improves the probabilistic performance by more2h%h As expected, the improvement in probabilistic

performanceE, [v, ] often causes a degradation of the nonprobabilistic performéniés .
The comparison of', for RPM F and RPM G (not shown) yields the same conclusions as drawn from Fig. 4. In

this case RPM G is the better empirical model ¢ of the observations, whereas RPM F is the better model for
the full data ensemble. As before, this illustrates the chance-constrained character of the formulation. As with type-2

RPMs, type-4 RPMs do not require prescribing the outliers in advance.
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4.5 Discussion

There are infinitely many CDFs with,, matching the requirements on the mean, variance, and support set resulting
from the above formulations. One way to fully characterize charactétjzgiven the features of a type-1 or type-2
RPM, is to assume thatis a vector of uncorrelated normal random variables. For a type-3 and type-4 RPM, this can
be attained by assuming th&j is an uncorrelated generalized beta random vector. The prescription of uncertainty as
a probability box eliminates the need for such assumptions. The probability boxes prescribed in [11] account for all
possible random vectors conforming to such restrictions.

The formulations above assume that the parametepsare uncorrelated. Preliminary experiments enabting
to take on nonzero values led to improved probabilistic performances. This practice requires ¢rekiadditional
decision variable in Egs. (24), (28), and (29), and making the consistency conditions (17) and (18) additional inequality
constraints. The reliability assessment of such RPMs, however, remains elusive.

4.6 Model Selection

A few comments regarding the use of the above formulations is in order. Note that the boundaries of type-1 IPMs and
the limits of type-1 RPMs are driven by extreme observations, possibly having a small chance of occurrence. As such
the resulting prediction is wider and thus less informative than those resulting from the other formulations. Type-2
RPMs tighten the prediction by neglecting extreme observations. If such observations fall within the long probability
tails of the DGM, the resulting prediction is considerably better than that of type 1 RPMs. In type-3 and type-4 RPMs,
extreme observations prescribe the support of the process, whereas only a fkaftthem prescribes the variance.
This fraction is chosen such that the informative character of the probabilistic prediction, which is where the bulk of
the probability lies, is improved. Type-4 RPMs attain a better probabilistic performance than type-3 RPMs, whereas
type-3 RPMs are better suited to describe the output’s range.

A simple case study comparing alternative metamodeling techniques is presented next. Figure 9 shwows the
volume corresponding to,,., = 1 that results from (i) a Gaussian process (GP) model, (ii) a prediction based on
the confidence intervals (COI) for the coefficients of the linear regression, (iii) a type-2 RPMHor43/150, (iv)
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FIG. 9: o-volumew, for t,,.x = 1 resulting from a few metamodeling techniques.

International Journal for Uncertainty Quantification



Random Predictor Models for Rigorous Uncertainty Quantification 485

a type-2 RPM forA = 129/150, and (v) a prediction interval (PF. All parametric techniques will use the same
polynomial structure used in previous examples. The GP model uses a zero-mean function and the square exponential
covariance function. Note that tlevolume corresponding to the GP, which implicitly assumes the structure in (1),
excludes 21 data points, whereas the COI le@%sbservations out. The first RPM led to RPM C (see example 3),
while the second RPM was built to exclude the same number of outliers as the GP model. The RPMs attain the desired
number of outliers by design, without making any assumption on the DGM, whereas the other methods require that the
assumptions on the DGM (e.g., the DGM being a Gaussian process, the measurement/prediction error being normally
distributed) be true in order to yield an accurate prediction. Note that the RPMs adjust more tightly to the spread
of the data (i.e., it contracts and expands where needed), and the COI is excessively varying, whereas the GP and
Pl have a fairly constant width where the data is present. In particular, the variance of the widthcofdhene

for the GP, COlI, the type-2 RPMs, and the PI ar@2, 1101, 35.46, 38.51, and0.33, respectively. Regarding GP
models, the largest aleatory spread of the DGM reached at soimeX prescribes the global predicted variance
throughoutX'. The calculation of an RPM requires solving a sequence of OPs, which for the convex case can be
done very efficiently for a large number of decision variables and constraints, i.e., on the orieusing standard
optimization algorithms. This enables considering problems with many more data points, such as might be wanted in a
high-dimensional input problem, than alternative approaches. For instance, GP models are restricted to a few thousand
points before becoming computationally intractable. Numerical experiments performed by the authors indicate that
the computational complexity of IPMs is about 2 orders of magnitude less than that of GP models. Whereas solving
for a GP became numerically intractable for the setup listed above (it was still running after 36 h), an IPM was solved
in about 3 min (using a desktop computer with modest hardware capabilities and standard software).

5. RELIABILITY

This section presents a framework for bounding the reliability of the predictor models proposed above. The reliability
of an arbitrary modef, (&), is the probability that a future observation will be within the predicted interval-valued
function(s). The developments that follow are based on Scenario Optimization Theory [12—-15]. Derfbotaeby
unknowndistribution of the DGM from which the points of the data sequenaee obtainedP can be interpreted as

a probabilistic cloud in theX x Y space. The case in whighis a deterministic function of only is a particular

case wheré is concentrated over the function. A gendPdleads toy being an arbitrary random processaofNo
assumption is made on the underlying structur@.of he following theorem enables bounding a model’s reliability
whenever the OP used for its calculation is convex [15].

Theorem 1. Let z be a data sequence & independent elements resulting from a stationary DGM. Suppose the
model€ is calculated by solving a convex constrained OP having a unique solution base&arthermore, assume
that k£ observations out of thé&/ available have been discarded when calculatthgAssumes < N — d, whered

is the number of optimization variables used to calcutat&hen, for any confidence parameferc (0,1) and any
reliability parametere € (0, 1) which satisfy

(k+Z—1> ’“*fl <JZ_V>€Z-(1 Vi< p, (33)

=0

then
Probpn [r(€) >1—€] >1—-f. (34)

This theorem provides an assessment of unobserved data. The theorem states that the reléaslityp aforse
thanl — e with probability greater thaih — 3. As for the probabilityl — (3, one should note that is a random model
by virtue of the randomness Ihprescribingz. Therefore its reliability can be greater than or equal te e for some
random observations but not for others, gnckfers to the probability = P x - - - x P of observing a bad set ¢

The COI and the PI are both based on a confidence levigl@(fl — 0.6827)%, which corresponds t@.,.x = 1 for a Gaussian
output.
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samples such that the reliability of the model is less thane. Parametee is referred to as the reliability parameter,
while § is the confidence parameter. It is worth noting that the confidence parameter can be made small enough that it
loses any practical significance arn@) > 1 — €. This can be done without lettinyj be too large, becaugevanishes
exponentially withV. Note that assessing the reliability of the model does not require making any assumptiyns on
and that the result is not asymptotic, i.e., it is valid for any finite valu® of

Equation (34) is a fundamental relation linking the amount of information available (represented by the number of
observationsV and the number of discarded data poikxsthe complexity of the model (represented by the number
of decision variabled of the OP), and the probabilistic levels of reliabilityand confidenc@. Inequality (33) should
be interpreted as a relationship among five different variaklgs, N, k, andd. We can solve for optimal values of
any of these variables depending upon the needs of the application.

5.1 Reliability of Type-1 IPMs
The reliability of type-1 IPMs, to be denoted Asis defined as

r(Z) = Probp [(a:,y) el, (x,ﬁ)} . (35)

The convexity of the OP1 enables the direct application of Theorem 1.

5.2 Reliability of Type-1 and Type-2 RPMs
Denote byR any type-1 or type-2 RPM. The reliability & is defined as

r(R) = Probp {(z,y) € vs (2, 1, Tmax, V(A))} . (36)

The convexity of OP2 enables the direct application of Theorem 1 to type-1 RPMs. This includes the cases in which
none ¢ = 0) and some K > 0) of the observations are removed from the data set. In contrast to OP2, OP3 is
nonconvex. This opens the possibility of (28) having multiple optima. The RPMs corresponding to each local optima
will likely be different. Because type-2 RPMs are calculated by solving a nonconvex program, Theorem 1 cannot be
applied directly. However, the reliability of such models can be established by usipgribiple of equivalencéPE).
This principle is based on identifying an auxiliary convex formulation that will result in the very same empirical model
found by solving the nonconvex formulation. If this is attained, the reliability of the model, which is independent of the
means used to calculate it, can be rigorously evaluated via the auxiliary formulation. This approach can be applied to
type-2 RPMs. In particular, the solution to OP3 using the original data sequémca given value of is equivalent?
to the solution of OP2, which is a convex OP, with the data sequen@&ecause only thé&v — £* elements inw,
where

ko= N1 =N), @37

are required by the auxiliary program, the reliability of type-2 RPMs is given by (34) ivithk™ in (33). These:™*
observations satisf ()(k) > A.

5.3 Reliability of Type-3 and Type 4 RPMs
Denote byR any type-3 or type-4 RPM. The reliability & is defined as

r(R) = Probp {(m, y) €1, (x P) Nve (2, 1L, Tnmx,@()\))} . (38)

The following theorem provides the means to bou(&):

12WhenE,[5,] is evaluated by the sample mean, equivalence is attained by wsimgvaluate the constraints aado evaluate
the cost function.
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Theorem 2. Let R be a type-3 or type-4 RPM based on the data sequereV independent elements obtained
from a stationary DGM. When the containment condition (31) holds, we have

Probpx [r(fz) >1- e] >1- B, (39)

wheree and 3 are given by (33), witld = n, andk = k*. Otherwisee = e; + €2 and 3 = 31 + 2, wheree; is
given by
2n,—1

Z <jj) ei(1—e)V " < By, (40)

=0

wherease, and 3, are given by (33) fotl = n, andk = k*.

Proof. When the containment condition holds, the two events defining the reliability are depender(ane:

Probp [(z,y) € vs]. In this case the reliability is given by Theorem 1 after applying the PE to the nonconvex OPs
(29) or (28) to type-3 and type-4 RPMs, respectively. In both casesk™ as defined in (37), and = n,. When

Eq. (31) does not hold, use the bour{@®) > Probp[(z,y) € I,(z, P)]+Probp{(z,y) € ve(z, W, Tmax, V(A)) } 1.

This bound is generally loose, so the actual model’s reliability is probably larger. Each of the two events will be
considered separately. Because the eyeny) < Iy(x,ﬁ) is enforced by solving the convex OP in (11) or (32)
with N observations, we use Theorem 1 tbr= 2n, andk = 0 to calculatee;. Conversely, the everitr,y) €

ve (2, 1, Tmax, V(A)) is enforced by solving the nonconvex OPs in (29) for a type-3 RPM and (28) for a type-4 RPM.
The PE for an auxiliary convex OP with= k* andd = n,, leads toe,. Theorem 2 results from substituting these
expressions into Theorem 1. O

Although the RPMs corresponding to different local minima will likely be different, they admit the same reliability
upper bound (i.e., the auxiliary problems use the same value¥ fér andd; thus for a giver they will lead to the
same value o€). Hence having different sets éfoutliers might lead to RPMs with different performance values for
the same reliability upper bound. The actual reliability of the model, however, will likely be different.

Example 6. The reliability of RPM D and E, which are type-3 RPMs, is considered first. Since neither model satisfies
the containment condition (31), the reliability of each event must be added. Whereas the first event in (38), for which
N = 150, k = 0, andd = 14, yields1 — ¢; = 0.8452 with confidencel — $; = 0.99, the second event, for
which N = 150, £ = 0, andd = 7, leads tol — es = 0.9058 with the same confidence. Therefore the reliability

of RPM D is no less than — e¢; — €2 = 0.7510 with confidencel — 3; — B2 = 0.98. In the case of RPM E

we have the same value feq as that for RPM D, whereas for the second event, for whith= 150, &k = 7,

andd = 7, leads tol — e; = 0.7738 with confidencel — (35. Therefore the reliability of RPM D is no less than

1 — €1 — e = 0.6190 with confidencel — B = 0.98. Hence discarding seven outliers improved performance

by 74% at the expense of a reduction in reliability 7.6%. Finally, we will evaluate the reliability of RPM F

and G, which are type-4 RPMs. Recall that the containment condition holds for RPM F but not for RPM G. The
reliability of RPM F, for whichN = 150, & = 0, andd = 7, is no less tharl — e = 0.8032 with confidence

1— B = 0.99. In the case of RPM G, the first event in (38), for whish = 150, k = k* = 7, andd = 7,

leads tol — €; = 0.7682 with confidencel — 3; = 0.995, whereas the second event, for whith= 150, £ =

0, andd = 14, leads tol — es = 0.8372 with confidencel — 32 = 0.995. Therefore the reliability of RPM
Gisnolessthanl — e; — e = 1 — € = 0.6054 with confidencel — 3 = 0.99. The values for3; and -

chosen makeg for RPM F and RPM G equal, so their reliability can be compared. The reducti®h t§% in the
reliability of RPM G relative to that of RPM F is affected by the conservatism in Theorem 2. This illustrates the
benefits of satisfying the containment condition. This example illustrates the typical trade-off between performance
and reliability. These figures of merit should be traded off until the desired balance is reached. This balance can be
reached by changing the number of observatidinof outliers viaA, or by changing the model’s structure vig,

which prescribes.
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5.4 Using the LS Parameter Estimate as the Mean Parameter

The selectionn = [t made above is subjective and solely based on engineering grounds. Unfortunately, using the
data sequenceto derive both the meap and the volume,(z, 1, Tmax, V) Violates the independence assumption

of Theorem 1. The reason for this violation is linked to the concept of support constraints and how they are used in
the corresponding proof [15]. Aupport constraints defined as a constraint whose removal from the OP changes
the optimum. The rationale supporting Theorem 1 makes ugéefng the largest number of supporting constraints

a convex OP admits. Removing an observation feooimangedt and thus all the constraints in (24), (28), and (29)

that depend oifi. Hence, strictly speaking, choosing= {1 makes all such constraints support constraints, e.g., there
are2N supporting constraints for type-1 RPMs. This unwanted dependence is expected to be minor for moderately
large values ofV as the LS parameter estimate approaches its asymptotic value and becomes practically insensitive to
additional data. As such we expect the theory to be “robust” and maintain its validity et (z, |, Tmax, V) are

based on the same data. This unwanted dependency is eliminated by choosing a valiafis independent from

the data used to build the RPM. This, for instance, can be attained by partitioning the data set into two subsets, using
one to calculaté: via (12) and using the other one to calculatéx, {1, Tax, V) Via (24), (28), or (29). Alternatively,

we can makat an additional design variable in (24), (28), and (29). This practice not only eliminates the unwanted
dependency among constraints, but also yields RPMs having an improved performance (& tightare).

6. CONCLUSIONS

This paper proposes techniques for constructing linear parametric models describing key features of the distribution of
an output variable given input-output data. This structure enables a rigorous characterization of the uncertainty in the
model’s parameters, of key features of the prediction, and of the reliability of the resulting metamodel. Because such
features conform to all possible probabilistic models)fpothe resulting characterization of both the uncertainty and

the predicted output are distribution-free. A few types of models exhibiting various degrees of insensitivity to outliers
are developed. The differences between RPMs and standard metamodels are both conceptual and practical. First and
foremost among them is the ability to formally evaluate the reliability of the resulting metamodel without having to
make any assumptions on the structure of the underlying data generating mechanism. This is a substantive advantage
over alternative techniques. Furthermore, the calculation of the proposed RPMs requires solving a sequence of opti-
mization programs, which for the convex case can be done very efficiently for a large number of design variables and
constraints, i.e., on the order d#° using standard optimization algorithms. This enables considering problems with
many more data points, thus input dimensions, than alternative approaches, e.g., Gaussian Process models become
numerically intractable after a few thousand data points.
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