Доступ предоставлен для: Guest
Journal of Environmental Pathology, Toxicology and Oncology
Главный редактор: Qian Peng (open in a new tab)

Выходит 4 номеров в год

ISSN Печать: 0731-8898

ISSN Онлайн: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Dental Implants and Implant Coatings: A Focus on Their Toxicity and Safety

Том 42, Выпуск 2, 2023, pp. 31-48
DOI: 10.1615/JEnvironPatholToxicolOncol.2022043467
Get accessGet access

Краткое описание

Dental implants are medical devices that are surgically inserted into the patient's jawbone by an orthodontist to act as roots of missing teeth. After the implantation, the maxilla or mandible integrates with the surface of the dental implant. This process, called "osseointegration," is an important period to ensure the long-term use of dental implants and prevent implant failures. Metal implants are the most used implant materials. However, they have disadvantages such as corrosion, metal ion release from metal implant surfaces and associated toxicity. To avoid these adverse effects and improve osseointegration, alternative dental implant materials such as ceramics, polymers, composites, and novel surface modification technologies have been developed. The safety of these materials are also of concern for toxicologists. This review will give general information about dental implant materials, osseointegration and successful implantation process. Moreover, we will focus on the new surface coatings materials for of dental implants and their toxicity and safety concerns will be discussed.

ЛИТЕРАТУРА
  1. Leblebicioglu B, Rawal S, Mariotti A. A review of the functional and esthetic requirements for dental implants. J Am Dent Assoc. 2007;138(3):321-9.

  2. Donos N, Mardas N, Chadha V. Clinical outcomes of implants following lateral bone augmentation: Systematic assessment of available options (barrier membranes, bone grafts, split osteotomy). J Clin Periodontol. 2008;35(Suppl 8):173-202.

  3. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155-70.

  4. Hung KY, Lo SC, Shih CS, Yang YC, Feng HP, Lin YC. Titanium surface modified by hydroxyapatite coating for dental implants. Surf Coat Technol. 2013;231:337-45.

  5. Parma F, Yazdani J, Javaherzadeh V, Maleki Dizaj S. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J Pharm Pharm Sci. 2017;20:148-60.

  6. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res. 1998;9(1):11-9.

  7. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25(7):889-902.

  8. Oshida Y, Tuna EB, Aktoren O, Genjay K. Dental implant systems. Int J Mol Sci. 2010;11(4):1580-678.

  9. Parithimarkalaignan S, Padmanabhan TV. Osseointegration: An update. J Indian Prosthodont Soc. 2013;13(1):2-6.

  10. Shahi S, Ozcan M, Maleki Dizaj S, Sharifi S, Al-Haj Husain N, Eftekhari A, Ahmadian E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods. 2019;29(5):368-77.

  11. Reinhardt B, Beikler T. Dental implants: Advanced ceramics for dentistry. Waltham, MA: Elsevier; 2014.

  12. Al-Nawas B, Wagner W. Materials in dental implantology. Compr Biomater. 2017;6:341-77.

  13. El-Hadad S, Safwat EM, Sharaf NF. In-vitro and in-vivo, cytotoxicity evaluation of cast functionally graded biomaterials for dental implantology. Mater Sci Eng C Mater Biol Appl. 2018;93:987-95.

  14. Spriano S, Yamaguchi S, Baino F, Ferraris S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018;79:1-22.

  15. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8(3):932-58.

  16. He X, Reichl FX, Milz S, Michalke B, Wu X, Sprecher CM, Yang Y, Gahlert M, Rohling S, Kniha H, Hickel R, Hogg C. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dent Mater. 2020;36(3):402-12.

  17. Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. Int J Implant Dent. 2019;5(1):10.

  18. Strietzel R, Hosch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials. 1998;19(16):1495-9.

  19. Wachi T, Shuto T, Shinohara Y, Matono Y, Makihira S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology. 2015;327:1-9.

  20. Olmedo DG, Paparella ML, Brandizzi D, Cabrini RL. Reactive lesions of peri-implant mucosa associated with titanium dental implants: A report of 2 cases. Int J Oral Maxillofac Surg. 2010;39(5):503-7.

  21. Olmedo DG, Nalli G, Verdu S, Paparella ML, Cabrini RL. Exfoliative cytology and titanium dental implants: A pilot study. J Periodontol. 2013;84(1):78-83.

  22. Penmetsa SLD, Shah R, Thomas R, Kumar ABT, Gayatri PSD, Mehta DS. Titanium particles in tissues from peri-implant mucositis: An exfoliative cytology-based pilot study. J Indian Soc Periodontol. 2017;21(3):192-4.

  23. Fretwurst T, Buzanich G, Nahles S, Woelber JP, Riesemeier H, Nelson K. Metal elements in tissue with dental peri-implantitis: A pilot study. Clin Oral Implants Res. 2016;27(9):1178-86.

  24. Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res. 2018;29 Suppl 18:37-53.

  25. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am. 2001;83(3):428-36.

  26. Lim HP, Lee KM, Koh YI, Park SW. Allergic contact stomatitis caused by a titanium nitride-coated implant abutment: A clinical report. J Prosthet Dent. 2012;108(4):209-13.

  27. Goutam M, Giriyapura C, Mishra SK, Gupta S. Titanium allergy: A literature review. Indian J Dermatol. 2014;59(6):630.

  28. Vijayaraghavan V, Sabane AV, Tejas K. Hypersensitivity to titanium: A less explored area of research. J Indian Prosthodont Soc. 2012;12(4):201-7.

  29. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006;7(4):295-6.

  30. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139-46.

  31. Papi P, Raco A, Pranno N, Di Murro B, Passarelli PC, D'Addona A, Pompa G, Barbieri M. Salivary levels of titanium, nickel, vanadium, and arsenic in patients treated with dental implants: A case-control study. J Clin Med. 2020;9(5):1264.

  32. Azim SA, Darwish HA, Rizk MZ, Ali SA, Kadry MO. Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: Possible role of some antioxidants. Exp Toxicol Pathol. 2015;67(4):305-14.

  33. Hong F, Sheng L, Ze Y, Hong J, Zhou Y, Wang L, Liu D, Yu X, Xu B, Zhao X, Ze X. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials. 2015;53:76-85.

  34. Rajapakse K, Drobne D, Valant J, Vodovnik M, Levart A, Marinsek-Logar R. Acclimation of Tetrahymena thermophila to bulk and nano-TiO2 particles by changes in membrane fatty acids saturation. J Hazard Mater. 2012;221-222:199-205.

  35. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40(14):4346-52.

  36. Zhao J, Xu L, Zhang T, Ren G, Yang Z. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology. 2009;30(2):220-30.

  37. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115(11):1631-7.

  38. Dursun E, Fron-Chabouis H, Attal JP, Raskin A. Bisphenol a release: Survey of the composition of dental composite resins. Open Dent J. 2016;10:446-53.

  39. Heringa MB, Peters RJB, Bleys RLAW, van der Lee MK, Tromp PC, van Kesteren PCE, van Eijkeren JCH, Undas AK, Oomen AG, Bouwmeester H. Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol. 2018;15(1):15.

  40. Berger CA, Arkhipova M, Farkas A, Maas G, Jacob T. Titanium deposition from ionic liquids - appropriate choice of electrolyte and precursor. Phys Chem Chem Phys. 2016;18(6):4961-5.

  41. Pettersson M, Pettersson J, Molin Thoren M, Johansson A. Release of titanium after insertion of dental implants with different surface characteristics-an ex vivo animal study. Acta Biomater Odontol Scand. 2017;3(1):63-73.

  42. Wennerberg A, Jimbo R, Allard S, Skarnemark G, Andersson M. In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. Int J Oral Maxillofac Implants. 2011;26(6):1161-6.

  43. Browning CL, The T, Mason MD, Wise JP Sr. Titanium dioxide nanoparticles are not cytotoxic or clastogenic in human skin cells. J Environ Anal Toxicol. 2014;4(6):239.

  44. Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology. 2012;6(5): 501-13.

  45. Velasco-Ortega E, Jos A, Camean AM, Pato-Mourelo J, Segura-Egea JJ. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res. 2010;702(1):17-23.

  46. Wang RR, Li Y. In vitro evaluation of biocompatibility of experimental titanium alloys for dental restorations. J Prosthet Dent. 1998;80(4):495-500.

  47. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, van Horn JR. Cytotoxic, allergic and geno-toxic activity of a nickel-titanium alloy. Biomaterials. 1997;18(16):1115-20.

  48. Tavares JC, Cornelio DA, da Silva NB, de Moura CE, de Queiroz JD, Sa JC, Alves C Jr, de Medeiros SR. Effect of titanium surface modified by plasma energy source on genotoxic response in vitro. Toxicology. 2009;262(2):138-45.

  49. Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. Bisphenol A and related compounds in dental materials. Pediatrics. 2010126(4):760-8.

  50. Jepson NJ, McGill JT, McCabe JF. Influence of dietary simulating solvents on the viscoelasticity of temporary soft lining materials. J Prosthet Dent. 2000;83(1):25-31.

  51. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22(3):211-22.

  52. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin Oral Investig. 2008;12(1):1-8.

  53. Soderholm KJ, Mariotti A. BIS-GMA-based resins in dentistry: Are they safe? JAm DentAssoc. 1999;130(2):201-9.

  54. Gitalis R, Zhou L, Marashdeh MQ, Sun C, Glogauer M, Finer Y. Human neutrophils degrade methacrylate resin composites and tooth dentin. Acta Biomater. 2019;88:325-31.

  55. Moreira MR, Matos LG, de Souza ID, Brigante TA, Queiroz ME, Romano FL, Nelson-Filho P, Matsumoto MA. Bisphenol A release from orthodontic adhesives measured in vitro and in vivo with gas chromatography. Am J Orthod Dentofacial Orthop. 2017;151(3):477-83.

  56. Lofroth M, Ghasemimehr M, Falk A, Vult von Steyern P. Bisphenol A in dental materials - existence, leakage and biological effects. Heliyon. 2019;5(5):e01711.

  57. Lopes-Rocha L, Ribeiro-Gonjalves L, Henriques B, Ozcan M, Tiritan ME, Souza JCM. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. J Biomed Mater Res B Appl Biomater. 2021;109(11):1942-52.

  58. Kingman A, Hyman J, Masten SA, Jayaram B, Smith C, Eichmiller F, Arnold MC, Wong PA, Schaeffer JM, Solanki S, Dunn WJ. Bisphenol A and other compounds in human saliva and urine associated with the placement of composite restorations. J Am Dent Assoc. 2012;143(12):1292-302.

  59. McKinney C, Rue T, Sathyanarayana S, Martin M, Seminario AL, DeRouen T. Dental sealants and restorations and urinary bisphenol A concentrations in children in the 2003-2004 national health and nutrition examination survey. J Am Dent Assoc. 2014;145(7):745-50.

  60. Gupta SK, Saxena P, Pant VA, Pant AB. Release and toxicity of dental resin composite. Toxicol Int. 2012;19(3):225-34.

  61. Nadal A, Fuentes E, Ripoll C, Villar-Pazos S, Castellano-Munoz M, Soriano S, Martinez-Pinna J, Quesada I, Alonso-Magdalena P. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus? J Steroid Biochem Mol Biol. 2018;176:16-22.

  62. Acconcia F, Pallottini V, Marino M. Molecular mechanisms of action of BPA. Dose Response. 2015;13(4): 1559325815610582.

  63. Maserejian NN, Trachtenberg FL, Wheaton OB, Calafat AM, Ranganathan G, Kim HY, Hauser R. Changes in urinary bisphenol A concentrations associated with placement of dental composite restorations in children and adolescents. J Am Dent Assoc. 2016;147(8):620-30.

  64. Drozdz K, Wysokinski D, Krupa R, Wozniak K. Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes. Arch Toxicol. 2011;85(11):1453-61.

  65. Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. Environ Sci Pollut Res Int. 2019;26(9):8459-67.

  66. Wang D, Hu L, Zhang G, Zhang L, Chen C. G protein-coupled receptor 30 in tumor development. Endocrine. 2010;38(1):29-37.

  67. Isaacson B, Jeyapalina S. Osseointegration: A review of the fundamentals for assuring cementless skeletal fixation. Orthop Res Rev. 2014;6:55-65.

  68. Gao H, Yang BJ, Li N, Feng LM, Shi XY, Zhao WH, Liu SJ. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine. 2015;94(1):e211.

  69. Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: Clues and evidence. Environ Sci Pollut Res Int. 2021;28(16): 19643-63.

  70. Toumba KJ, Twetman S, Splieth C, Parnell C, van Loveren C, Lygidakis NA. Guidelines on the use of fluoride for caries prevention in children: An updated EAPD policy document. Eur Arch Paediatr Dent. 2019;20(6):507-16.

  71. European Food Safety Authority. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13(1):3978.

  72. Maserejian NN, Trachtenberg FL, Hauser R, McKinlay S, Shrader P, Tavares M, Bellinger DC. Dental composite restorations and psychosocial function in children. Pediat-rics. 2012;130(2):e328-38.

  73. Acconcia F, Pallottini V, Marino M. Molecular mechanisms of action of BPA. Dose Response. 2015;13(4): 1559325815610582.

  74. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dent J. 2017;5(4):35.

  75. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7(4):329-45.

  76. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20(23-24): 2311-21.

  77. Prakash M, Audi K, Vaderhobli RM. Long-term success of all-ceramic dental implants compared with titanium implants. J Long Term Eff Med Implants. 2021;31(1):73-89.

  78. Liu Z, Liu X, Ramakrishna S. Surface engineering of bio-materials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J. 2021;16(7):e2000116.

  79. Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The Impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med. 2021;10(8):1641.

  80. Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev. 2017;112:88-100.

  81. Lu Z, Wu Y, Cong Z, Qian Y, Wu X, Shao N, Qiao Z, Zhang H, She Y, Chen K, Xiang H, Sun B, Yu Q, Yuan Y, Lin H, Zhu M, Liu R. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater. 2021;6(12):4531-41.

  82. Pachauri P, Bathala LR, Sangur R. Techniques for dental implant nanosurface modifications. J Adv Prosthodont. 2014;6(6):498-504.

  83. Coelho PG, Giro G, Teixeira HS, Marin C, Witek L, Thompson VP, Tovar N, Silva NR. Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces. J Biomed Mater Res A. 2012;100(7):1901-6.

  84. Choi AH, Karacan I, Ben-Nissan B. Surface modifications of titanium alloy using nanobioceramic-based coatings to improve osseointegration: A review. Mater Technol. 2020;35(11-12):742-51.

  85. Rosenberg ES, Torosian JP, Slots J. Microbial differences in 2 clinically distinct types of failures of osseointegrated implants. Clin Oral Implants Res. 1991;2(3):135-44.

  86. Meyer U, Wiesmann HP, Neunzehn J, Joos U. Bone tissue engineering. In: Ferri E, Hunziker J, editors. Preprosthetic and maxillofacial surgery. I Biomaterials, bone grafting and tissue engineering. Oxford: Woodhead Publishing; 2011. p. 1-21.

  87. Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif Cells Nanomed Biotechnol. 2018;46(2): 411-20.

  88. Dizaj SM, Barzegar-Jalali M, Hossein Zarrintan M, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles; Potential in bone and tooth disorders. Pharm Sci. 2015;20(4):175-82.

  89. van Rijt S, Habibovic P. Enhancing regenerative approaches with nanoparticles. J R Soc Interface. 2017;14(129):20170093.

  90. Zablotsky MH. Hydroxyapatite coatings in implant dentistry. Implant Dent. 1992;1(4):253-7.

  91. Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, Hayashi M, Janal MN, Andersson M, Ono D, Vandeweghe S, Wennerberg A. Nano hydroxyapatite-coated implants improve bone nanomechanical properties. J Dent Res. 2012;91(12):1172-7.

  92. Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol. 2011;205(8-9):2785-92.

  93. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14(3):195-200.

  94. van Oirschot BA, Bronkhorst EM, van den Beucken JJ, Meijer GJ, Jansen JA, Junker R. Long-term survival of calcium phosphate-coated dental implants: A meta-analytical approach to the clinical literature. Clin Oral Implants Res. 2013;24(4):355-62.

  95. Jung HD, Yook SW, Han CM, Jang TS, Kim HE, Koh YH, Estrin Y. Highly aligned porous Ti scaffold coated with bone morphogenetic protein-loaded silica/chitosan hybrid for enhanced bone regeneration. J Biomed Mater Res B Appl Biomater. 2014;102(5):913-21.

  96. He J, Feng W, Zhao BH, Zhang W, Lin Z. In vivo effect of titanium implants with porous zinc-containing coatings prepared by plasma electrolytic oxidation method on osseointegration in rabbits. Int J Oral Maxillofac Im-plants. 2018;33(2):298-310.

  97. Liang Y, Li H, Xu J, Li X, Qi M, Hu M. Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition. Int J Mol Sci. 2014;15(6):9952-62.

  98. Han L, Lin H, Lu X, Zhi W, Wang KF, Meng FZ, Jiang O. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2014;40:1-8.

  99. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31(6):729-34.

  100. Moraschini V, Almeida DCF, Calasans-Maia JA, Diuana Calasans-Maia M. The ability of topical and systemic statins to increase osteogenesis around dental implants: A systematic review of histomorphometric outcomes in animal studies. Int J Oral Maxillofac Surg. 2018;47(8):1070-8.

  101. Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S. Effect of statins on bone mineral density and bone histo-morphometry in rodents. Arterioscler Thromb Vasc Biol. 2001;21(10):1636-41.

  102. Nyan M, Hao J, Miyahara T, Noritake K, Rodriguez R, Kasugai S. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces. Clin Implant Dent Relat Res. 2014;16(5):675-83.

  103. Drake MT, Clarke BL, Khosla S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032-45.

  104. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733-59.

  105. Meng W, Kim SY, Yuan J, Kim JC, Kwon OH, Kawazoe N, Chen G, Ito Y, Kang IK. Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed. 2007;18(1):81-94.

  106. Xu X, Yang L, Xu X, Wang X, Chen X, Liang Q, Zeng J, Jing X. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release. 2005;108(1):33-42.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain