Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Colorectal Cancer Management by Herbal Drug-Based Nanocarriers: An Overview

Том 37, Выпуск 1, 2020, pp. 65-104
DOI: 10.1615/CritRevTherDrugCarrierSyst.2019030507
Get accessGet access

Краткое описание

Colorectal cancer is the third most common cancer in the world, affecting both men and women, and it is one of the leading causes of cancer related deaths worldwide. Current treatment modalities employed for colorectal cancer management have their own share of drawbacks, such as toxicity due to nonspecific action and chemoresistance that may develop during treatment. The quest and pursuit for newer drugs which can overcome these drawbacks has led to extensive research on plant derived phytoconstituents. Herbal molecules are known to have promising therapeutic efficacy and less toxicity as compared to the current chemotherapeutic drugs of allopathic regimen. However most of these herbal molecules have low bioavailability as a result their therapeutic efficacy gets compromised. Integration of modern delivery approaches with these herbal molecules and presenting them in the form of nanocarriers will help alleviate these drawbacks. This review describes herbal drugs that have potential for treatment of colorectal cancer and nanotechnology strategies widely investigated for the delivery of these herbal molecules. Targeted delivery methods include use of such components as polymeric nanoparticles, liposomes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and nanoemulsions. The paper also discusses in detail the formulation aspects of herbal nanocarriers, their design development, and preclinical assessment.

ЛИТЕРАТУРА
  1. Colorectal cancer [Internet]. Globocan; 2018. Available from: https://gco.iarc.fr/today/data/factsheets/ cancers/10_8_9-Colorectum-fact-sheet.pdf.

  2. Indian Council of Medical Research. Consensus document for management of colorectal cancer [Internet]. 2014. Available from: https://www.google.com/search?client=firefox-b-d&ei=NnGIXKW-AZrdz7sPmtqnkA0&q=http%3A%2F%2Fcancerindia.org.in%2Fwp-content%2Fuploads%2F2017% 2F11%2FColorectal_Canc.pdf.&oq=http%3A%2F%2Fcancerindia.org.in%2Fwp-content%2Fupload s%2F2017%2F11%2FColorectal_Canc.

  3. Meyer B, Are C. Current status and future directions in colorectal cancer. Indian J Surg Oncol. 2017;8(4):455-6.

  4. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. Dis Colon Rectum. 2010;53(7):1099.

  5. Jussawalla DJ, Gangadharan P. Cancer of the colon: 32 years of experience in Bombay, India. J Surg Oncol. 1977;9:607-22.

  6. Mohandas KM. Colorectal cancer in India: controversies, enigmas and primary prevention. Indian J Gastroenterol. 2011;30(1):3-6.

  7. Pathy S, Lambert R, Sauvaget C, Sankaranarayanan R. The incidence and survival rates of colorectal cancer in India remain low compared with rising rates in east Asia. Dis Colon Rectum. 2012;55(8):900-6.

  8. Kudryavtseva AV, Lipatova AV, Zaretsky AR, Moskalev AA, Fedorova MS, Rasskazova AS, Shibukhova GA, Snezhkina AV, Kaprin AD, Alekseev BY, Dmitriev AA, Krasnov GS. Important molecular genetic markers of colorectal cancer. Oncotarget. 2016;7(33):53959-83.

  9. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191-7.

  10. Doughty DB. Colorectal cancer: etiology and pathophysiology. Semin Oncol Nurs. 1986;2(4):235-41.

  11. Cappell MS. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol Clin North Am. 2008;37(1):1-24.

  12. Benton SC, Seaman HE, Halloran SP. Faecal occult blood testing for colorectal cancer screening: the past or the future. Curr Gastroenterol Rep. 2015;17(2):428.

  13. Simon S. Stool DNA testing for colon cancer [Internet]. American Cancer Society; 2014. Available from: https://www.cancer.org/latest-news/stool-dna-testing-for-colon-cancer.html.

  14. Benson M, Pier J, Kraft S, Kim D, Pickhardt P, Weiss J, Gopal D, Reichelderfer M, Pfau P. Optical colonoscopy and virtual colonoscopy numbers after initiation of a CT colonography program: long term data. J Gastrointestin Liver Dis. 2012;21(4):391-5.

  15. Johnson BA. Flexible sigmoidoscopy: screening for colorectal cancer. Am Fam Physician. 1999;59(6):1537-46. Available from: http://www.embase.com/search/results?subaction=viewrecord &from=export&id=L29168671.

  16. Medical Advisory Secretariat. Capsule endoscopy for colorectal cancer screening: an evidence-based analysis. Ont Health Technol Assess Ser. 2009;9(9):1-20. Available from: http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC3377534.

  17. Cancer.Net. Colectoral cancer: types of treatment [Internet]. 2018. Available from: https://www.cancer.net/cancer-types/colorectal-cancer/treatment-options.

  18. American Cancer Society. Treatment of colon cancer, by stage [Internet]. 2018. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/treating/by-stage-colon.html.

  19. Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14(1):67-77.

  20. Marin JJ, Sanchez de Medina F, Castano B, Bujanda L, Romero MR, Martinez-Augustin O, Moral-Avila RD, Briz O. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev. 2012;44(2):148-72.

  21. American Cancer Society. Chemotherapy for colorectal cancer [Internet]. 2018. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/treating/chemotherapy.html.

  22. Hagan S, Orr MCM, Doyle B. Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J. 2013;4(1):1.

  23. Chen CT, Yamaguchi H, Lee HJ, Du Y, Lee HH, Xia W, Yu WH, Hsu JL, Yen CJ, Sun HL, Wang Y, Yeh ET, Hortobagyi GN, Hung MC. Dual targeting of tumor angiogenesis and chemotherapy by endostatin-cytosine deaminase-uracil phosphoribosyltransferase. Mol Cancer Ther. 2011;10(8): 1327-36.

  24. Kaefer CM, Milner JA. Herbs and spices in cancer prevention and treatment. In: Herbal medicine: bio-molecular and clinical aspects. Boca Raton, FL: CRC Press/Taylor & Francis; 2011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22593940.

  25. Al Diab A, Qureshi S, Qureshi MF, Qureshi VF, Qureshi MR. Experimental approach to treatment of colorectal cancer by herbs and their constituents: an overview on in vivo and in vitro protocols and molecular targets. Int J Cancer Res. 2012;8:37-48.

  26. Rejhova A, Opattova A, Cumova A, Shva D, Vodicka P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582-94.

  27. Redondo-Blanco S, Fernandez J, Gutierrez-del-Rfo I, Villar CJ, Lombo F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol. 2017;8: 1-22.

  28. Kim CS, Park WH, Park JY, Kang JH, Kim MO, Kawada T, Yoo H, Yu R. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor y in HT-29 human colon cancer cells. J Med Food. 2004;7(3):267-73.

  29. Yang KM, Pyo JO, Kim GY, Yu R, Han IS, Ju SA, Kim WH, Kim BS. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett. 2009;14:477-510.

  30. Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, Wu D, Zhao Y, Zhang Y, Chen X, Mi P, Zhang L, Zhang S, Wang X, Cao H, Zhang W, Wang H, Li H, Su Y, Zhang XK, Hu T. Berberine binds RXRa to suppress P-catenin signaling in colon cancer cells. Oncogene. 2017;36(50):6906-18.

  31. Wen C, Huang L, Chen J, Lin M, Li W, Lu B, Rutnam Z-J, Iwamoto A, Wang Z, Yang X, Liu H. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int J Oncol. 2015;47(5):1663-71.

  32. Huang GM, Sun Y, Ge X, Wan X, Li CB. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. World J Gastroenterol. 2015;21(20):6194-205.

  33. Larrosa M, Tomas-Barberan FA, Espin JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J Nutr Biochem. 2006;17:611-25.

  34. Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol Cell Biochem. 2015;399(1-2):303-13.

  35. Sharma SH, Rajamanickam V, Nagarajan S. Antiproliferative effect of p-coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem Biol Interact. 2018;291:16-28. doi: doi. org/10.1016/j.cbi.2018.06.001.

  36. Jaganathan SK, Supriyanto E, Mandal M. Events associated with apoptotic effect of p-coumaric acid in HCT-15 colon cancer cells. World J Gastroenterol. 2013;19(43):7726-34.

  37. Kundu J, Choi BY, Jeong CH, Kundu JK, Chun KS. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src-mediated phosphory-lation of EGF receptor tyrosine kinase. Oncol Rep. 2014;821-8.

  38. Zhang R, Zhao J, Xu J, Jiao DX, Wang J, Gong Z-Q, Jia JH. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-KB/MMP-9 signaling pathway. Oncol Lett. 2017;14(4):4305-10.

  39. Eo HJ, Park GH, Jeong JB. Inhibition of Wnt signaling by silymarin in human colorectal cancer cells. Biomol Ther (Seoul). 2016 Jul;24(4):380-6.

  40. Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z, Xie J. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the P-catenin/T-cell factor signaling. Anticancer Drugs. 2006;17(7):753-62.

  41. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-KB/slug/E-cadherin pathway. BMC Cancer. 2017;17(1):813.

  42. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634-46.

  43. Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh Y, Jeong YJ, Hyun JW. Luteolin induces apoptotic cell death via antioxidant in human colon cancer cells. Int J Oncol. 2017;51(4):1169-78.

  44. Pandurangan AK, Esa NM. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac J Cancer Prev. 2014;15(14):5501-8.

  45. Yaffe PB, Power Coombs MR, Doucette CD, Walsh M, Hoskin DW. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog. 2015;54(10):1070-85. doi: doi.org/10.1002/mc.22176.

  46. Zhang XA, Zhang S, Yin Q, Zhang J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn Mag. 2015;11(42):404-9.

  47. Miki H, Uehara N, Kimura A, Sasaki T, Yuri T, Yoshizawa K, Tsubura A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol. 2012;40(4): 1020-8.

  48. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM, Park OJ. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2006;247(1):115-21.

  49. Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-KB-signaling pathways. Carcinogenesis. 2009;30(2):300-7.

  50. Lu X, Jung Ji, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2005;135(12):2884-90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16317137.

  51. Mo SJ, Son EW, Rhee DK, Pyo S. Modulation of TNF-a-induced ICAM-1 expression, NO and H2O2 production by alginate, allicin and ascorbic acid in human endothelial cells. Arch Pharm Res. 2003;26(3):244-51.

  52. Liao CH, Sang S, Ho CT, Lin JK. Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. J Cell Biochem. 2005;96(1):155-69.

  53. Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AKT, Soniya EV, Anto RJ. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One. 2014;9(8):e104401.

  54. Lee S-H, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog. 2008;47(3):197-208. doi: 10.1002/mc.20374.

  55. Anju R, Sunitha MC, Nevin KG. Cinnamon extract enhances the mitochondrial reactive oxygen species production and arrests the proliferation of human colon cancer cell line, HCT-116. J Herbs Spices Med Plants. 2018;24(3):1-9. doi: 10.1080/10496475.2018.1471766.

  56. Lee Y, Sung B, Kang YJ, Kim DH, Jang JY, Hwang SY, Kim M, Lim HS, Yoon JH, Chung HY, Kim ND. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int J Oncol. 2014;44(5):1599-606. Available from: https://www.spandidos-publications.com/10.3892/ijo.2014.2339.

  57. Chen W, Fu L, Zhang X, Tian Y, Liu L, Qiu H, Guo W, Cheng J, Wang J, Huang W, Shi D, Deng W. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS One. 2013;8(5):e63872.

  58. Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 2016;22(15):3952-61.

  59. Chandran SP, Nachinmuthu KP, Natarajan SB, Inamdar MG, Shahimi MSBM. Papain loaded solid lipid nanoparticles for colorectal cancer therapy. Curr Cancer Ther Rev. 2017;14(1):75-87.

  60. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM. In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Altern Med. 2012;12(1):104. doi: 10.1186/1472-6882-12-104.

  61. Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17(3): 3202-42.

  62. Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int. 2011;35(6):607-15.

  63. Singh SP, Nongalleima K, Singh NI. Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha. Sci Rep. 2018:1-11.

  64. ClinicalTrials.gov [Internet]. Resveratrol for patients with colon cancer, NCT00256334 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT00256334?term=resveratrol&cond= Colorectal+Cancer&rank=2.

  65. ClinicalTrials.gov [Internet]. Chemopreventive effects of epigallocatechin gallate (EGCG) in colorectal cancer (CRC) patients, NCT02891538, [cited 2019 May 24]. Available from: https://clinicaltrials. gov/ct2/show/NCT02891538?term=EGCG&cond=Colorectal+Cancer&rank=1.

  66. Clinical Trials.gov [Internet]. Genistein in treatment of metastaitc colorectal cancer, NCT01985763 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT01985763?term=geniste in&cond=Colorectal+Cancer&rank=1.

  67. ClinicalTrials.gov [Internet]. The efficacy of silymarin as adjuvant therapy on colorectal cancer patients undergoing FOLFIRI treatment, NCT03130634 [cited 2019 May 24]. Available from: https:// clinicaltrials.gov/ct2/show/NCT03130634?term=silymarin&cond=Colorectal+Cancer&rank=1.

  68. ClinicalTrials.gov [Internet]. A research of berberine hydrochloride to prevent colorectal adenomas in patients with previous colorectal cancer, NCT03281096 [cited 2019 May 24]. Available from: https:// clinicaltrials.gov/ct2/show/NCT03281096?term=berberine+hydrochloride&cond=Colorectal+Cance r&rank=1.

  69. ClinicalTrials.gov [Internet]. Sulindac and plant compounds in preventing colon cancer, NCT00003365 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT00003365?term=rutin+q uercetin&cond=Colorectal+Cancer&rank=1.

  70. ClinicalTrials.gov [Internet]. Curcumin in combination with 5FU for colon cancer, NCT02724202 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT02724202?term=curcum in&cond=Colorectal+Cancer&rank=6.

  71. ClinicalTrials.gov [Internet]. Curcumin for the prevention of colon cancer, NCT00027495 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT00027495?term=curcumin&cond=C olorectal+Cancer&rank=5.

  72. Clinical Trials.gov [Internet]. Combining curcumin with FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX), NCT01490996 [cited 2019 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT01490996?term=curcumin&cond=Colorectal+Cancer&r ank=7.

  73. ClinicalTrials.gov [Internet]. Avastin/FOLFIRI in combination with curcumin in colorectal cancer patients with unresectable metastasis, NCT02439385 [cited 2019 May 24]. Available from: https:// clinicaltrials.gov/ct2/show/NCT02439385?term=CURCUMIN+NANOSTRUCTURED&cond=Colo rectal+Cancer&rank=1.

  74. Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2017;9(70):33403-15.

  75. Gupta R, Bhatt LK, Johnston TP, Prabhavalkar KS. Colon cancer stem cells: potential target for the treatment of colorectal cancer. Cancer Biol Ther. 2019:1068-82. Available from: https://www.tand-fonline.com/doi/full/10.1080/15384047.2019.1599660.

  76. Chen Y, Wang XQ, Zhang Q, Zhu JY, Li Y, Xie CF, Li XT, Wu JS, Geng SS, Zhong CY, Han HY. (-)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/p-catenin pathway. Nutrients. 2017;9(6):572.

  77. Ponnurangam S, Mammen JM, Ramalingam S, He Z, Zhang Y, Umar S, Subramaniam D, Anant S. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol Cancer Ther. 2012;11(4):963-72.

  78. Sekar V, Anandasadagopan SK, Ganapasam S. Genistein regulates tumor microenvironment and exhibits anticancer effect in dimethyl hydrazine-induced experimental colon carcinogenesis. Biofactors. 2016;42(6):623-37.

  79. Wei F, Zhang T, Yang Z, Wei JC, Shen HF, Xiao D, Wang Q, Yang P, Chen H-C, Hu HC, Zhuan PH, Qing Li, Wang L, Cao J. Gambogic acid efficiently kills stem-like colorectal cancer cells by upregulating ZFP36 expression. Cell Physiol Biochem. 2018;46(2):829-46.

  80. Nunez-Sanchez MA, Karmokar A, Gonzalez-Sarrias A, Garda-Villalba R, Tomas-Barberan FA, Garda-Conesa MT, Brown K, Espin JC. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: a new potentiality for ellagitannin metabolites against cancer. Food Chem Toxicol. 2016;92:8-16. doi: 10.1016/j.fct.2016.03.011.

  81. Kumar S, Raina K, Agarwal C, Agarwal R. Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget. 2015;5(13):4972-89.

  82. Wang K, Zhang T, Liu L, Wang X, Wu P, Chen Z, Ni C, Zhang J, Hu F, Huang J. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int J Nanomedicine. 2012;7:4487-97.

  83. Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055-74. Available from: http://www.pubmedcentral.nih. gov/articlerender.fcgi?artid=PMC4592057.

  84. Mathur M, Vyas G. Role of nanoparticles for production of smart herbal drug-An overview. Indian J Nat Prod Resour. 2013;4(4):329-38.

  85. Santos IS, Ponte BM, Boonme P, Silva AM, Souto EB. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer. Biotechnol Adv. 2013;31(5):514-23. Available from: https:// www.sciencedirect.com/science/article/abs/pii/S0734975012001449?via%3Dihub.

  86. Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond). 2016;11(18):2443-56.

  87. Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1-15.

  88. Alexander A, Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release. 2016;241:110-24. Available from: https://www.sciencedirect.com/science/article/pii/S0168365916307775?via%3Dihub.

  89. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249419/.

  90. Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles - a review. Asian J Pharm Clin Res. 2012;5(Suppl 3):16-23.

  91. Ghosh PK. Hydrophilic polymeric nanoparticles as drug carriers. Indian J Biochem Biophys. 2000;37(5):273-82.

  92. Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, Ravi Kumar MN. Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J Drug Target. 2006;14(1):27-34.

  93. Mady FM, Shaker MA. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int J Nanomedicine. 2017;12:7405-17.

  94. Agbaria R, Gabarin A, Dahan A, Ben-Shabat S. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des Devel Ther. 2015;9:3119-24.

  95. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299-305.

  96. Abdel-Mottaleb MMA. Biodegradable thymoquinone nanoparticles for higher therapeutic efficiency in murine colorectal cancer. Int J Pharm Pharm Res. 2016;7(3):436-50.

  97. Aisha AFA, Abdulmajid AMS, Ismail Z, Alrokayan SA, Abu-Salah KM. Development of polymeric nanoparticles of Garcinia mangostana xanthones in eudragit RL100/RS100 for anti-colon cancer drug delivery. J Nanomater. 2015:4-7.

  98. Carbonaro M, Grant G. Absorption of quercetin and rutin in rat small intestine. Ann Nutr Metab. 2005;49(3):178-82.

  99. Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res. 2018;9:17-26. doi: 10.1016/j.jare.2017.10.003.

  100. Cai LL, Qiu N, Xiang ML, Tong RS, Yan JF, He L, Shi JY, Chen T, Wen JL, Wang WW, Chen LJ. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles. Int J Nanomedicine. 2013;9Q):243-55.

  101. Zhang Z, Qian H, Yang M, Li R, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int J Nanomedicine. 2017;12:1593-605.

  102. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release. 2003;88(1):35-42.

  103. Rao L, Bu LL, Xu JH, Cai B, Yu GT, Yu X, He Z, Huang Q, Li A, Guo SS, Zhang WF, Liu W, Sun Z-J, Wang H, Wang T-H, Zhao XZ. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small. 2015;11(46):6225-36.

  104. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiel M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:1-9.

  105. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-60.

  106. Catterall F, King LJ, Clifford MN, Ioannides C. Bioavailability of dietary doses of 3H-labelled tea antioxidants (+)-catechin and (-)-epicatechin in rat. Xenobiotica. 2003;33(7):743-53.

  107. Gulseren I, Guri A, Corredig M. Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Dig. 2012;3(1-3):36-45.

  108. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349-58. doi: 10.4103/0250-474X.57282.

  109. Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-coated cinnamon/oregano- loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J Agric Food Chem. 2017;65(36):7966-81.

  110. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198-214.

  111. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227-34. doi: 10.1016/j.reactfunctpolym.2010.10.009.

  112. Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, Huang N. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine. 2015;10:2051-63. doi: 10.2147/IJN. S75550.

  113. Qiu JF, Gao X, Wang BL, Wei XW, Gou ML, Men K, Liu XY, Guo G, Qian ZY, Huang MJ. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly (s-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int J Nanomedicine. 2013;8:3061-9.

  114. Araujo JR, Gonjalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res. 2011;31(2):77-87. doi: 10.1016/j.nutres.2011.01.006.

  115. Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. Eur J Pharm Sci. 2010;41(2):219-25. doi: 10.1016/j.ejps.2010.06.010.

  116. Yang CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res. 2008;52(Suppl 1):139-51.

  117. Haratifar S, Meckling KA, Corredig M. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J Dairy Sci. 2013;97(2):672-8. doi: 10.3168/jds.2013-7263.

  118. Chen Y, Wu Q, Song L, He T, Li Y, Li L, Su W, Liu L, Qian Z, Gong C. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces. 2015;7(1):534-42.

  119. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4(4):385-92.

  120. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 62(3):284-304.

  121. Nagel R. Living with phytic acid. [Internet]. Weston A. Price Foundation; c2019. Available from: https://www.westonaprice.org/health-topics/vegetarianism-and-plant-foods/living-with-phytic-acid/.

  122. Norazalina S, Norhaizan ME, Hairuszah I, Norashareena MS. Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Exp Toxicol Pathol. 2010;62(3):259-68. doi: 10.1016/j.etp.2009.04.002.

  123. Qu J, Liu G, Wang Y, Hong R. Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21(4):461-7. doi: 10.1016/j.apt.2010.01.008.

  124. Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, Arulselvan P, Norhaizan ME. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int J Nanomedicine. 2017;12:2361-72.

  125. Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014;13(7):1169-77.

  126. Yilmaz M, Karanastasis AA, Chatziathanasiadou MV, Oguz M, Kougioumtzi A, Clemente N, Kellici TF, Zafeiropoulos NE, Avgeropoulos A, Mavromoustakos T, Dianzani U, Karakurt S, Tzakos AG. Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl Bio Mater. 2019;2(7):2715-25.

  127. Kamal R, Chadha VD, Dhawan DK. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine. 2018;14(3):1059-71. doi: 10.1016/j.nano.2018.01.008.

  128. Huang W, Wang X, Shi C, Guo D, Xu G, Wang L, Bodman A, Luo J. Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Mol Pharm. 2015;12(4):1216-29.

  129. Mahato R. Nanoemulsion as targeted drug delivery system for cancer therapeutics. J Pharm Sci Pharmacol. 2017;3(2):83-97.

  130. Hsu HJ, Huang RF, Kao TH, Inbaraj BS, Chen BH. Preparation of carotenoid extracts and nano-emulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology. 2017;28(13):135303.

  131. Udompornmongkol P, Chiang BH. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl. 2015;30(5):537-46.

  132. Prajakta D, Ratnesh J, Chandan K, Suresh S, Grace S, Meera V, Vandana P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol. 2010;5(5):445-55.

  133. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Du XB,Wang GQ,Yao WX, Zhao QM, Ye B, Wang R, Diao P, Zhang W, Wu HB, Zhao X, Wei YQ. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006;12(10):3193-9.

  134. Mombeini M, Saki G, Khorsandi L, Bavarsad N. Effects of silymarin-loaded nanoparticles on HT-29 human colon cancer cells. Medicina (Kaunas). 2018;54(1):1-9.

  135. Wu G, Li J, Yue J, Zhang S, Yunusi K. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol Med Rep. 2018;17(2):2456-64.

  136. Pool H, Campos-Vega R, Herrera-Hernandez MG, Garda-Solis P, Garda-Gasca T, Sanchez IC, Luna-Barcenas G, Vergara-Castaneda H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res. 2018;10(8):2306-23.

  137. Merlin J, Venkadesh B, Rajan SS. Synthesis and characterization of ursolic acid loaded poly(lactic-co-glycolic acid) nanoparticles and caffiene loaded poly(lactic-co-glycolic acid) nanoparticles in colorectal cancer cell line. J Nanotechnol Mater Sci. 2018;5(1):1-7.

  138. Zaki NM. Augmented cytotoxicity of hydroxycamptothecin-loaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients. Drug Deliv. 2014;21(4):265-75.

  139. Xiao B, Si X, Han MK, Viennois E, Zhang M, Merlin D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem B. 2015;3(39):7724-33.

  140. Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev. 2014;15(21):9159-64.

  141. Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, Danjuma L, Pooi Ling M, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Hamat RA, Benelli G, Murugan K, Kumar SS. Efficiency of newly formulated camptothecin with P-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep. 2017;7(1):1-16. doi: 10.1038/s41598-017-09140-1.

ЦИТИРОВАНО В
  1. Costa Max, Blaschke Terrence F., Amara Susan G., Meyer Urs A., Insel Paul A., Introduction to the Theme “Old and New Toxicology: Interfaces with Pharmacology”, Annual Review of Pharmacology and Toxicology, 61, 1, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain