Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Peptides as Diagnostic, Therapeutic, and Theranostic Tools: Progress and Future Challenges

Том 40, Выпуск 1, 2023, pp. 49-100
DOI: 10.1615/CritRevTherDrugCarrierSyst.2022040322
Get accessGet access

Краткое описание

Peptides are emerging as a promising candidate for therapeutic as well as diagnostic applications within the domain of clinical and scientific research. They are recognized for being highly selective, sensitive and efficacious with minimal or no toxicity. Small size, non-immunogenicity, ease of synthesis and huge scope of modification are some of the well-established properties of peptides, which make them an excellent alternative to not only small drug molecules but also to protein-based biopharmaceuticals such as antibodies and enzymes. The attractive pharmacological profile and intrinsic properties of peptides also make them an interesting diagnostic tool for imaging at the molecular and cellular levels. Molecular imaging coupled with targeted therapy using peptides as theranostics is a two-edged sword. Besides, traditional peptide formats, multifunctional newer peptide designs with improved pharmacokinetics and targetability are also being explored presently. In this review, we come up with a comprehensive summary of the latest progress on peptides and their potential applications in therapeutics and diagnosis for infectious and non-infectious diseases. The last part of the review discusses suitable carrier systems for the delivery of peptides along with highlighting the future challenges.

ЛИТЕРАТУРА
  1. Kamysz W, Okroj M, Lukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003;50(2):461-9.

  2. Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insects host defense. Curr Opin Immunol. 1999:11:23-7.

  3. Guam-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin Immunol. 2010;135(1):1-11.

  4. Thundimadathil J. Cancer treatment using peptides: Current therapies and future prospects. J Amino Acids. 2012;2012:1-13.

  5. Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18(17-18):807-17.

  6. Transparency Market Research. Peptide Therapeutics Market (by Applications, by Route of Administration, and by Marketing Status)-Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014-2020. Albany, New York; 2016.

  7. Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today. 2015;20(1):122-8.

  8. Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 2012;19(26):4451-61.

  9. Le Joncour V, Laakkonen P. Seek and destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem. 2018;26(10):2797-806.

  10. Punia K, Kronenberg JB, Montclare JK. Protein biomaterials for theranostic applications. Mol Syst Des Eng. 2019;4(6):1074-94.

  11. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-90.

  12. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.

  13. Singh RK, Singh DP, Tiwari SP, Mohapatra TM. Targeted therapies for cancer treatment. J Pharm Res. 2011;4(2):312-6.

  14. Khandare JJ, Minko T. Antibodies and peptides in cancer therapy. Crit Rev Ther Drug Carrier Syst. 2006;23(5):401-35.

  15. Eldar-Finkelman H, Eisenstein M. Peptide inhibitors targeting protein kinases. Curr Pharm Des. 2009;15(21):2463-70.

  16. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotech. 2011;12(8):1101-6.

  17. Karagiannis ED, Popel AS. Novel anti-angiogenic peptides derived from ELR-containing CXC chemokines. J Cell Biochem. 2008;104(4):1356-63.

  18. Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol. 2007;18(9):1457-66.

  19. Sotomayor S, Munoz-Moreno L, Carmena MJ, Schally AV, Sanchez-Chapado M, Prieto JC, Bajo AM. Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095). Int J Cancer. 2010;127(8):1813-22.

  20. Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One. 2012;7(7):e40812.

  21. Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res. 2006;98(5):617-25.

  22. Zhang Y, He B, Liu K, Ning L, Luo D, Xu K, Zhu W, Wu Z, Huang J, Xu X. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transd Target Ther. 2017;2(1):1.

  23. Sadremomtaz A, Mansouri K, Alemzadeh G, Safa M, Rastaghi AE, Asghari SM. Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway. Biochim Biophys Acta. 2018;1862(12):2688-700.

  24. Behelgardi MF, Zahri S, Mashayekhi F, Mansouri K, Asghari SM. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep. 2018;8(1):17924.

  25. Chan LY, Craik DJ, Daly NL. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci Rep. 2016;6(1):35347.

  26. Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294:1327-36.

  27. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocytic structure. Biochem. 2000;39(19):5722-30.

  28. Clark RJ, Daly NL, Craik DJ. Structural plasticity of the cyclic-cystine-knot framework: Implications for biological activity and drug design. Biochem J. 2006;394:85-93.

  29. Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: A diamond in the rough or split personality disorder? Expert Opin Drug Dis. 2013;8(7):769-92.

  30. Rai U, Thrimawithana TR, Valery C, Young SA. Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol Ther. 2015;152:98-110.

  31. Geng L, Wang Z, Jia X, Han Q, Xiang Z, Li D, Yang X, Zhang D, Bu X, Wang W, Hu Z. HER2 targeting peptides screening and applications in tumor imaging and drug delivery. Theranostics. 2016;6(8):1261.

  32. Lu RM, Chen MS, Chang DK, Chiu CY, Lin WC, Yan SL, Wang YP, Kuo YS, Yeh CY, Lo A, Wu HC. Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging. PLoS One. 2013;8(6):e66128.

  33. Lee E, Koskimaki JE, Pandey NB, Popel AS. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia. 2013;15(2):112-6.

  34. Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB, Popel AS. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Sci Rep. 2014;4:7139.

  35. Karagiannis ED, Popel AS. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci U S A. 2008;105(37):13775-80.

  36. Rivera CG, Rosca EV, Pandey NB, Koskimaki JE, Bader JS, Popel AS. Novel peptide-specific quanti-tative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity. J Med Chem. 2011;54(19):6492-500.

  37. Thompson III AD, Kakar SS. Insulin and IGF-1 regulate the expression of the pituitary tumor trans-forming gene (PTTG) in breast tumor cells. FEBS Lett. 2005;579:3195-200.

  38. Gotte M, Kersting C, Radke I, Kiesel L, Wulfing P. An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res. 2007;9(1):R8.

  39. Perea SE, Perera Y, Baladron I, Gonzalez L, Benavent F, Farina HG, Garda I, Rodriguez A, Reyes V, Garda Y, Gomez R. CIGB-300: A promising anti-casein kinase 2 (CK2) peptide for cancer targeted therapy. In: Ahmed K, Issinger OG, Szyszka R, editors. Protein kinase CK2 cellular function in normal and disease states. Cham, Switzerland: Springer Cham; 2015. p. 281-98.

  40. Acero FB, Capobianco CS, Garona J, Cirigliano SM, Perera Y, Urtreger AJ, Perea SE, Alonso DF, Farina HG. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer. 2017;107:14-21.

  41. Jeong-Won L, Hwang JR, Cho YJ, Lee YY, Choi CH, Bae DS, Kim BG. IGFBP5-derived peptide as a novel angiogenesis inhibitor for treatment of ovarian cancer. Cancer Res. 2016;76(14):3384.

  42. Liang B, Wang S, Zhu XG, Yu YX, Cui ZR, Yu YZ. Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer. World J Gastroenterol. 2005;11(5):623-8.

  43. Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MT, Bassarova A, Kvalheim G, Nesland JM, Reich R. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol. 2006;102(3):453-61.

  44. Riebe C, Pries R, Kemkers A, Wollenberg B. Increased cytokine secretion in head and neck cancer upon p38 mitogen-activated protein kinase activation. Int J Mol Med. 2007;20(6):883-7.

  45. Gill K, Singh AK, Kapoor V, Nigam L, Kumar R, Holla P, Das SN, Yadav S, Subbarao N, Mohanti BK, Dey S. Development of peptide inhibitor as a therapeutic agent against head and neck squamous cell carcinoma (HNSCC) targeting p38alpha MAP kinase. Biochim Biophys Acta. 2013;1830(3):2763-9.

  46. Gill K, Nigam L, Singh R, Kumar S, Subbarao N, Chauhan SS, Dey S. The rational design of specific peptide inhibitor against p38a MAPK at allosteric-site: A therapeutic modality for HNSCC. PLoS One. 2014;9(7):e101525.

  47. Hou J, Diao Y, Li W, Yang Z, Zhang L, Chen Z, Wu Y. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy. Int J Pharm. 2016;505(1-2):329-40.

  48. Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294.

  49. Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21(12):556-62.

  50. Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res. 2011;13(5):R102.

  51. Huang CY, Huang HY, Forrest MD, Pan YR, Wu WJ, Chen HM. Inhibition effect of a custom peptide on lung tumors. PLoS One. 2014;9:e109174.

  52. Davitt K, Babcock BD, Fenelus M, Poon CK, Sarkar A, Trivigno V, Zolkind PA, Matthew SM, Grin'kina N, Orynbayeva Z, Shaikh MF. The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells. Ann Clin Lab Sci. 2014;44(3):241-8.

  53. Preet S, Bharati S, Panjeta A, Tewari R, Rishi P. Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis: A possible adjunct therapy. Tumor Biol. 2015;36(11):8301-8.

  54. Waghray A, Murali AR, Menon KN. Hepatocellular carcinoma: From diagnosis to treatment. World J Hepatol. 2015;7:1020-9.

  55. Zhang C, Yang M, Ericsson AC. Antimicrobial peptides: Potential application in liver cancer. Front Microbiol. 2019;10:1257.

  56. Anand P, Filipenko P, Huaman J, Lyudmer M, Hossain M, Santamaria C, Huang K, Ogunwobi OO, Holford M. Antitumor effects of Tv1 venom peptide in liver cancer [Preprint]. BioRxiv 518340. 2019. doi: 10.1101/518340. DOI: 10.1101/518340

  57. Chen JT, Ma R, Sun SC, Zhu XF, Xu XL, Mu Q. Synthesis and biological evaluation of cyclo-peptide GG-8-6 and its analogues as anti-hepatocellular carcinoma agents. Bioorgan Med Chem. 2018;26:609-22.

  58. Wu CH, Lan CH, Wu KL, Wu YM, Jane WN, Hsiao M, Wu HC. Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. Int J Oncol. 2018;52:389-401.

  59. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10:785-94.

  60. Kim JE, Phan TX, Nguyen VH, Dinh-Vu HV, Zheng JH, Yun M, Park SG, Hong Y, Choy HE, Szardenings M, Hwang W. Salmonella Typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1beta. Theranostics. 2015;5:1328-42.

  61. Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, Min JH, Hong Y, Choy HE, Min JJ. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated salmonella-mediated cancer therapy. Theranostics. 2016;6(10):1672.

  62. Li B, Lyu P, Xi X, Ge L, Mahadevappa R, Shaw C, Kwok HF. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide - Gonearrestide. J Cell Mol Med. 2018;22(9):4460-73.

  63. Ma Y, Zhao S, Shen S, Fang S, Ye Z, Shi Z, Hong A. A novel recombinant slow-release TNF a-derived peptide effectively inhibits tumor growth and angiogensis. Sci Rep. 2015;5:13595.

  64. Yan Q, Chen X, Gong H, Qiu P, Xiao X, Dang S, Hong A, Ma Y. Delivery of a TNF-a-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis. FASEB J. 2018;32(12):6948-64.

  65. Durrant LG, Pudney VA, Spendlove I. Using monoclonal antibodies to stimulate antitumor cellular immunity. Exp Rev Vaccines. 2011;10:1093-106.

  66. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344:641-5.

  67. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12:509-17.

  68. He X, Abrams SI, Lovell JF. Peptide delivery systems for cancer vaccines. Adv Ther. 2018;1(5):1800060.

  69. Saif J, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, Pockley AG, Durrant L, Metheringham R, Rees RC, McArdle SE. Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol. 2014;44(4):994-1004.

  70. Gupta S, Carballido E, Fishman M. Sipuleucel-T for therapy of asymptomatic or minimally symptomatic, castrate-refractory prostate cancer:An update and perspective among other treatments. Onco Targets Therapy. 2011;4:79-96.

  71. Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH, Inderberg EM. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891-901.

  72. Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology. 2012;1(5):670-86.

  73. Mizukoshi E, Kaneko S. Telomerase-targeted cancer immunotherapy. Int J Mol Sci. 2019;20(8):1823.

  74. Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016;16(1):49.

  75. Gross S, Lennerz V, Gallerani E, Mach N, Bohm S, Hess D, Von Boehmer L, Knuth A, Ochsenbein A, Gnad-Vogt U, Forssmann U. Short peptide vaccine induces CD4+ T helper cells in patients with different solid cancers. Cancer Immunol Res. 2016;4(1):18-25.

  76. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383:2168-79.

  77. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: Systematic review and meta-analysis. JAMA Surg. 2014;149:565-74.

  78. Loffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Gunder M, Yanez VAC, Mohr C, Sturm M, Nguyen H-P, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bosmuller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanovic S, Konigsrainer A, Rammensee H-G. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol. 2016;65(4):849-55.

  79. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M, Franceschi S. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30:F12-23.

  80. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer world-wide. J Pathol. 1999;189:12-9.

  81. zur Hausen H. Papillomaviruses in the causation of human cancers-a brief historical account. Virology. 2009;384:260-5.

  82. Khallouf H, Grabowska AK, Riemer A. Therapeutic vaccine strategies against human papillomavirus. Vaccines. 2014;2:422-62.

  83. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petty U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92:276-84.

  84. Reuschenbach M, Pauligk C, Karbach J, Rafiyan MR, Kloor M, Prigge ES, Sauer M, Al-Batran SE, Kaufmann AM, Schneider A, Jager E. A phase 1/2a study to test the safety and immunogenicity of a p16INK4a peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer. 2016;122(9):1425-33.

  85. Costopoulos C, Niespialowska-Steuden M, Kukreja N, Gorog DA. Novel oral anticoagulants in acute coronary syndrome. Int J Cardiol. 2013;167:2449-55.

  86. Cheng J, Zhang W, Zhang X, Han F, Li X, He X, Li Q, Chen J. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardio-vascular events in patients with diabetes mellitus: A meta-analysis. JAMA Intern Med. 2014;174:773-85.

  87. Stein EA, Raal FJ. Lipid-lowering drug therapy for CVD prevention: Looking into the future. Curr Cardiol Rep. 2015;17:104.

  88. Gentilucci L, Tolomelli A, Squassabia F. Peptides and peptidomimetics in medicine, surgery and bio-technology. Curr Med Chem. 2006;13:2449-66.

  89. Vlieghe P, Lisowski V, Martinez J. Synthetic therapeutic peptides: Science and market. Drug Discov Today. 2010;15:40-56.

  90. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317-25.

  91. Trengove MC, Ward AC. SOCS proteins in development and disease. Am J Clin Exp Immunol. 2013;2:1-29.

  92. Marrero MB. Introduction to JAK/STAT signaling and the vasculature. Vascul Pharmacol. 2005;43:307-9.

  93. Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signaling for human diseases. Nat Rev Drug Discov. 2013;12:611-29.

  94. Doti N, Scognamiglio PL, Madonna S, Scarponi C, Ruvo M, Perretta G, Albanesi C, Marasco D. New mimetic peptides of the kinase-inhibitory region (KIR) of SOCS1 through focused peptide libraries. Biochem J. 2012;443:231-40.

  95. Madonna S, Scarponi C, Doti N, Carbone T, Cavani A, Scognamiglio PL, Marasco D, Albanesi C.Therapeutical potential of a peptide mimicking the SOCS1 kinase inhibitory region in skin immune responses. Eur J Immunol. 2013;43:1883-95.

  96. Ahmed CM, Larkin J, Johnson HM. SOCS1 mimetics and antagonists: A complementary approach to positive and negative regulation of immune function. Front Immunol. 2015;6:183.

  97. Recio C, Oguiza A, Lazaro I, Mallavia B, Egido J, Gomez-Guerrero C. Suppressor of cytokine signaling1-derived peptide inhibits Janus kinase/signal transducers and activators of transcription pathway and improves inflammation and atherosclerosis in diabetic mice. Arterioscler Thromb Vasc Biol. 2014;34:1953-60.

  98. Buckley CD, Gilroy DW, Serhan CN. Pro-resolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315-27.

  99. Perretti M, D'Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9:62-70.

  100. Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, Kuriakose G, Perretti M, Farokhzad O, Tabas I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7(275):275ra20.

  101. Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics. Handb Exp Pharmacol. 2015;224:631-48.

  102. Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32:2813-20.

  103. Yui Y, Aoyama T, Morishita H, Takahashi M, Takatsu Y, Kawai C. Serum prostacyclin stabilizing factor is identical to apolipoprotein AI (Apo AI). A novel function of Apo AI. J Clin Investig. 1988;82(3):803-7.

  104. Anantharamaiah GM, Jones JL, Brouillette CG, Schmidt CF, Chung BH, Hughes T, Bhown A, Segrest JP. Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J Biol Chem. 1985;260(18):10248-55.

  105. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Yu N, Ansell BJ, Datta G, Garber DW, Fogelman AM. Apolipoprotein AI mimetic peptides. Arterioscler Thromb Vasc Biol. 2005;25(7):1325-31.

  106. Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, Lallone R, Fogelman AM. Oral administration of an Apo AI mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002;105(3):290-2.

  107. Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res. 2016;57(7):1175-93.

  108. White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: A review. J Lipid Res. 2014;55(10):2007-21.

  109. He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises re-endothelialization impaired by oxidized HDL through SR-B1. Redox Biol. 2018;15:228-42.

  110. Van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Waring AJ, Lehrer RI, Watson AD, Hama S, Navab M, Anantharamaiah GM, Fogelman AM. Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J Lipid Res. 2008;49(11):2302-11.

  111. Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, Chang I, Navab M, Hama S, Hough G, Reddy ST, Soffer D. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res. 2011;52(2):361-73.

  112. Chattopadhyay A, Navab M, Hough G, Gao F, Meriwether D, Grijalva V, Springstead JR, Palgnachari MN, Namiri-Kalantari R, Su F, Van Lenten BJ. A novel approach to oral apoA-I mimetic therapy. J Lipid Res. 2013;54(4):995-1010.

  113. Dunbar RL, Movva R, Bloedon LT, Duffy D, Norris RB, Navab M, Fogelman AM, Rader DJ. Oral apolipoprotein A-I mimetic D-4F lowers HDL-inflammatory index in high-risk patients: A first-in-human multiple-dose, randomized controlled trial. Clin Transl Sci. 2017;10(6):455-69.

  114. Navab M, Hough G, Buga GM, Su F, Wagner AC, Meriwether D, Chattopadhyay A, Gao F, Grijalva V, Danciger JS, Van Lenten BJ. Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid. J Lipid Res. 2013;3403-18.

  115. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB, Bocharov AV, Vishnyakova TG, Patterson AP, Eggerman TL, Santamarina-Fojo S. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res. 2003;44(4):828-36.

  116. Amar MJ, D'Souza W, Turner S, Demosky S, Sviridov D, Stonik J, Luchoomun J, Voogt J, Hellerstein M, Sviridov D, Remaley AT. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Ther. 2010;334(2):634-41.

  117. Tabet F, Remaley AT, Segaliny AI, Millet J, Yan L, Nakhla S, Barter PJ, Rye KA, Lambert G. The 5A apolipoprotein AI mimetic peptide displays anti-inflammatory and antioxidant properties in vivo and in vitro. Arterioscler Thromb Vasc Biol. 2010;30(2):246-52.

  118. Di Bartolo BA, Nicholls SJ, Bao S, Rye KA, Heather AK, Barter PJ, Bursill C. The apolipoprotein AI mimetic peptide ETC-642 exhibits anti-inflammatory properties that are comparable to high density lipoproteins. Atherosclerosis. 2011;217(2):395-400.

  119. Iwata A, Miura SI, Zhang B, Imaizumi S, Uehara Y, Shiomi M, Saku K. Anti-atherogenic effects of newly developed apolipoprotein AI mimetic peptide/phospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits. Atherosclerosis. 2011;218(2):300-7.

  120. Uehara Y, Ando S, Yahiro E, Oniki K, Ayaori M, Abe S, Kawachi E, Zhang B, Shioi S, Tanigawa H, Imaizumi S. FAMP, a novel apoA-I mimetic peptide, suppresses aortic plaque formation through promotion of biological HDL function in ApoE-deficient mice. J Am Heart Assoc. 2013;2(3):e000048.

  121. Mahley RW, Huang Y, Weisgraber KH. Putting cholesterol in its place: APOE and reverse cholesterol transport. J Clin Invest. 2006;116(5):1226-9.

  122. Bocksch L, Stephens T, Lucas A, Singh B. Apolipoprotein E: Possible therapeutic target for athero-sclerosis. Curr Drug Targets Cardiovasc Hematol Disord. 2001;1(2):93-106.

  123. Bielicki JK, Zhang H, Cortez Y, Zheng Y, Narayanaswami V, Patel A, Johansson J, Azhar S. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J Lipid Res. 2010;51(6):1496-503.

  124. Sharifov OF, Nayyar G, Garber DW, Handattu SP, Mishra VK, Goldberg D, Anantharamaiah GM, Gupta H. Apolipoprotein E mimetics and cholesterol-lowering properties. Am J Cardiovasc Drugs. 2011;11(6):371-81.

  125. Jia C, Yan-Yong X, Liang S, Hong-Mei L, Fen D, Hong Y. Effect of the apolipoprotein E mimetic peptide EpK on atherosclerosis in apoE (-/-) mice. Prog Biochem Biophys. 2015;42(9):833-42.

  126. Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, Meng X, Gu H, Xu J, Zhou L, Sluijter JP. Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med. 2019;17(1):1-20.

  127. Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I, Shah R. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112(4):38.

  128. Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K. The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem. 2004;279(2):1513-25.

  129. Wang X, Chen L, Zhao X, Xiao L, Yi S, Kong Y, Jiang Y, Zhang J. A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKa. Cell Death Dis. 2020;11(2):1-5.

  130. Klyachkin YM, Idris A, Rodell CB, Tripathi H, Ye S, Nagareddy P, Asfour A, Gao E, Annabathula R, Ratajczak M, Burdick JA. Cathelicidin related antimicrobial peptide (CRAMP) enhances bone marrow cell retention and attenuates cardiac dysfunction in a mouse model of myocardial infarction. Stem Cell Rev. 2018;14(5):702-14.

  131. Meems LM, Andersen IA, Pan S, Harty G, Chen Y, Zheng Y, Harders GE, Ichiki T, Heublein DM, Iyer SR, Sangaralingham SJ. Design, synthesis, and actions of an innovative bispecific designer peptide: NPA7. Hypertension. 2019;73(4):900-9.

  132. Pinheiro da Silva F, Machado MCC. Antimicrobial peptides: Clinical relevance and therapeutic implications. Peptides. 2012;36:308-14.

  133. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H Jr, Corriden R, Rohde M, Hensler ME. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant Gram-negative bacterial pathogens. EBioMedicine. 2015;2(7):690-8.

  134. Sochacki KA, Barns KJ, Bucki R. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci U S A. 2011;108:E77-81.

  135. Rajasekaran G, Kim EY, Shin SY. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr. 2017;1859:722-33.

  136. Mohammed I, Said DG, Nubile M, Mastropasqua L, Dua HS. Cathelicidin-derived synthetic peptide improves therapeutic potential of vancomycin against Pseudomonas aeruginosa. Front Microbiol. 2019;10:2190.

  137. Kang J, Dietz MJ, Li B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 2019;14(6):e0216676.

  138. Preet S, Rishi P. Antimicrobial activity of Paneth-cell derived cryptdin-2 against selected pathogens. Am J Biomed Sci. 2010;2(1):13-22.

  139. Preet S, Verma I, Rishi P. Cryptdin-2: A novel therapeutic agent for experimental Salmonella Typhimurium infection. J Antimicrob Chemother. 2010;65(5):991-4.

  140. Rishi P, Preet S, Bharrhan S, Verma I. In vitro and in vivo synergistic effects of cryptdin 2 and ampicillin against Salmonella. Antimicrob Agents Chemother. 2011;55(9):4176-82.

  141. Singh AP, Prabha V, Rishi P. Efficacy of cryptdin-2 as an adjunct to antibiotics from various generations against Salmonella. Indian J Microbiol. 2014;54(3):323-8.

  142. Singh AP, Prabha V, Rishi P. Synergism in dual functionality of cryptdin-2 in conjunction with antibiotics against Salmonella. Indian J Med Res. 2016;144(5):761.

  143. Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep. 2020;10(1):12164.

  144. Singh AP, Preet S, Rishi P. Nisin/p-lactam adjunct therapy against Salmonella enterica serovar Typhimurium: A mechanistic approach. J Antimicrob Chemother. 2014;69(7):1877-87.

  145. Singh AP, Prabha V, Rishi P. Value addition in the efficacy of conventional antibiotics by nisin against Salmonella. PLoS One. 2013;8(10):e76844.

  146. Rishi P, Singh AP, Garg N, Rishi M. Evaluation of nisin-P-lactam antibiotics against clinical strains of Salmonella enterica serovar Typhi. J Antibiot Res. 2014;67(12):807-11.

  147. Kasetty G, Smeds E, Holmberg E, Wrange L, Adikesavan S, Papareddy P. Vertebrate TFPI-2 C-terminal peptides exert therapeutic applications against Gram-negative infections. BMC Microbiol. 2016;16(1):129.

  148. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49-79.

  149. Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 2014;22:326-33.

  150. de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock RE. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Bio. 2015;22(2):196-205.

  151. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, Wu Y, Li W, Harrison PL, Strong PN, Xie Y. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Front Microbiol. 2018;9:1159.

  152. Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, Lai R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A. 2019;116(52):26516-22.

  153. Woodburn KW, Jaynes JM, Clemens LE. Evaluation of the antimicrobial peptide, RP557, for the broad-spectrum treatment of wound pathogens and biofilm. Front Microbiol. 2019;10:1688.

  154. Lee HR, You DG, Kim HK, Sohn JW, Kim MJ, Park JK, Lee GY, Yoo YD. Romo1-derived antimicrobial peptide is a new antimicrobial agent against multidrug-resistant bacteria in a murine model of sepsis. mBio. 2020;11(2):e03258-19.

  155. Mark D, Haeberie S, Roth G, Von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms:requirements, characteristics and applications. Chem Soc Rev. 2010;39:1153-82.

  156. Faintuch BL, Oliveira EA, Nunez EG, Moro AM, Nanda PK, Smith CJ. Comparison of two peptide radiotracers for prostate carcinoma targeting. Clinics. 2012;67(2):163-70.

  157. Wang CH, Weng CH, Che YJ, Wang K, Lee GB. Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics. 2015;5(4):431.

  158. Cambioli S, Ambrosini V, Morigi JJ, Tabacchi E, Fanti S. 68Ga-labelled peptides for diagnosis of neuroendocrine tumours. Med Nucl. 2013;37(3):66-70.

  159. Deppen SA, Liu E, Blume JD, Clanton J, Shi C, Jones-Jackson LB, Lakhani V, Baum RP, Berlin J, Smith GT, Graham M. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J Nucl Med. 2016;57(5):708-14.

  160. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, Nanni C, Rizzello A, Franchi R, Fanti S. Comparison between 68 Ga-DOTA-NOC and 18 F-DOPA-PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol I. 2008;35(8):1431-8.

  161. Haug A, Auernhammer CJ, Wangler B, Tiling R, Schmidt G, Goke B, Bartenstein P, Popperl G. Intra-individual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36(5):765-70.

  162. Janssen I, Chen CC, Taieb D, Patronas NJ, Millo CM, Adams KT, Nambuba J, Herscovitch P, Sadowski SM, Fojo AT, Buchmann I. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared with other functional imaging modalities and CT/MRI. J Nucl Med. 2016;57(2):186-91.

  163. Chen SH, Chang YC, Hwang TL, Chen JS, Chou WC, Hsieh CH, Yeh TS, Hsu JT, Yeh CN, Tseng JH, Chen TC. 68Ga-DOTATOC and 18F-FDG PET/CT for identifying the primary lesions of suspected and metastatic neuroendocrine tumors: A prospective study in Taiwan. J Formos Med Assoc. 2018;117(6):480-7.

  164. Pfeifer A, Knigge U, Binderup T, Mortensen J, Oturai P, Loft A, Berthelsen AK, Langer SW, Rasmussen P, Elema D, von Benzon E. 64Cu-DOTATATE PET for neuroendocrine tumors: A prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. J Nucl Med. 2015;56(6):847-54.

  165. Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, Binderup T, Rasmussen P, Elema D, Klausen TL, Holm S. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: First-in-humans study. J Nucl Med. 2012;53(8):1207-15.

  166. Wang W, Wu KJ, Vellaisamy K, Leung CH, Ma DL. Peptide-conjugated long-lived theranostic imaging for targeting GRPR in cancer and immune cells. Angew Chem Int Ed Engl. 2020;59(41):17897-902.

  167. Wieser G, Popp I, Rischke HC, Drendel V, Grosu AL, Bartholoma M, Weber WA, Mansi R, Wetterauer U, Schultze-Seemann W, Meyer PT. Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist 68 Ga-RM2:Preliminary results in patients with negative or inconclusive [18F] Fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(9):1463-72.

  168. Stein BC, Levin RI. Natriuretic peptides: Physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J. 1998;135(5):914-23.

  169. Maries L, Manitiu I. Diagnostic and prognostic values of B-type natriuretic peptides (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP). Cardiovasc J Afr. 2013;24(7):286-9.

  170. Liu Y, Abendschein D, Woodard GE, Rossin R, McCommis K, Zheng J, Welch MJ, Woodard PK. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51(1):85-91.

  171. Liu Y, Pressly ED, Abendschein DR, Hawker CJ, Woodard GE, Woodard PK, Welch MJ. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med. 2011;52(12):1956-63.

  172. Liu L, Yin J, Liu C, Guan G, Shi D, Wang X, Xu B, Tian Z, Zhao J, Nie Y, Wang B. In vivo molecular imaging of gastric cancer in human-murine xenograft models with confocal laser endomicroscopy using a tumor vascular homing peptide. Cancer Lett. 2015;356(2):891-8.

  173. Zhang J, Hu H, Liang S, Yin J, Hui X, Hu S, He M, Wang J, Wang B, Nie Y, Wu K. Targeted radio-therapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer. J Control Release. 2013;172(1):322-9.

  174. Su T, Wang YB, Han D, Wang J, Qi S, Gao L, Shao YH, Qiao HY, Chen JW, Liang SH, Nie YZ. Multimodality imaging of angiogenesis in a rabbit atherosclerotic model by gebp11 peptide targeted nanoparticles. Theranostics. 2017;7(19):4791.

  175. Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomed Nanotechnol. 2013;9(7):1067-76.

  176. McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, Jaffer FA. Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem. 2009;20(6):1251-5.

  177. Ciesienski KL, Yang Y, Ay I, Chonde DB, Loving GS, Rietz TA, Catana C, Caravan P. Fibrin-targeted PET probes for the detection of thrombi. Mol Pharma. 2013;10(3):1100-10.

  178. Kwon SP, Jeon S, Lee SH, Yoon HY, Ryu JH, Choi D, Kim JY, Kim J, Park JH, Kim DE, Kwon IC. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials. 2018;150:125-36.

  179. Van Pelt C,Verduin CM, Goessens WH, Vos MC, Tummler B, Segonds C, Reubsaet F, Verbrugh H, van Belkum A. Identification of Burkholderia spp. in the clinical microbiology laboratory: Comparison of conventional and molecular methods. J Clin Microbiol. 1999;37:2158-64.

  180. Palka-Santini M, Cleven BE, Eichinger L, Kronke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol. 2009;9:1.

  181. Kulagina NV, Lassman ME, Ligler FS, Taitt CR. Antimicrobial peptides for detection of bacteria in biosensor assays. Anal Chem. 2005;77:6504-8.

  182. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1-8.

  183. Mannoor MS, Zhang S, Link AJ, McAlpine MC. Electrical detection of pathogenic bacteria via im-mobilized antimicrobial peptides. Proc Natl Acad Sci U S A. 2010;107(45):19207-12.

  184. Li Y, Afrasiabi R, Fathi F, Wang N, Xiang C, Love R, She Z, Kraatz HB. Impedance based detection of pathogenic E. coliO157: H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens Bioelectron. 2014;58:193-9.

  185. Lillehoj PB, Kaplan CW, He J, Shi W, Ho CM. Rapid, electrical impedance detection of bacterial pathogens using immobilized antimicrobial peptides. J Lab Autom. 2014;19:42-9.

  186. Etayash H, Jiang K, Thundat T, Kaur K. Impedimetric detection of pathogenic Gram-positive bacteria using an antimicrobial peptide from classII a bacteriocins. Anal Chem. 2014;86:1693-700.

  187. Lv E, Ding J, Qin W. Potentiometric detection of Listeria monocytogenes via a short antimicrobial peptide pair-based sandwich assay. Anal Chem. 2018;90(22):13600-6.

  188. Ebenhan T, Lazzeri E, Gheysens O. Imaging of bacteria: Is there any hope for the future based on past experience? Curr Pharm Des. 2018;24(7):772-86.

  189. Saeed S, Zafar J, Khan B, Akhtar A, Qurieshi S, Fatima S, Ahmad N, Irfanullah J. Utility of 99m Tc-labelled antimicrobial peptide ubiquicidin (29-41) in the diagnosis of diabetic foot infection. Eur J Nucl Med Mol Imaging. 2014;40(5):737-43.

  190. Welling MM, Bunschoten A, Kuil J, Nelissen RG, Beekman FJ, Buckle T, van Leeuwen FW. Development of a hybrid tracer for SPECT and optical imaging of bacterial infections. Bioconjug Chem. 2015;26(5):839-49.

  191. Akram AR, Avlonitis N, LilienkampfA, Perez-Lopez AM, McDonald N, Chankeshwara SV, Scholefield E, Haslett C, Bradley M, Dhaliwal K. A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci. 2015;6(12):6971-9.

  192. Akram AR, Avlonitis N, Scholefield E, Vendrell M, McDonald N, Aslam T, Craven TH, Gray C, Collie DS, Fisher AJ, Corris PA. Enhanced avidity from a multivalent fluorescent antimicrobial peptide enables pathogen detection in a human lung model. Sci Rep. 2019;9(1):8422.

  193. Akram AR, Chankeshwara SV, Scholefield E, Slam T, McDonald N, Megia-Fernandez A, Marshall A, Mills B, Avlonitis N, Craven TH, Smyth AM. In situ identification of Gram-negative bacteria in human lungs using a topical fluorescent peptide targeting lipid A. Sci Transl Med. 2018;10(464):eaa10033.

  194. Seelig J. Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta Biomembr. 2004;1666(1-2):40-50.

  195. Oliveira MDL, Franco OL, Nascimento JM, de Melo CP, Andrade CAS. Mechanistic aspects of peptide-membrane interactions determined by optical, dielectric and piezoelectric techniques: An overview. Curr Protein Pept Sci. 2013;14(7):543-55.

  196. Fernandes FC, Rigden DJ, Franco OL. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application. Pep Sci. 2012;98(4):280-7.

  197. Papo N, Shai Y. Exploring peptide membrane interaction using surface plasmon resonance: Differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry. 2003;42(2):458-66.

  198. Yuan Y, Kwok RT, Tang BZ, Liu B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for non-invasive early evaluation of its therapeutic responses in situ. J Am Chem Soc. 2014;136:2546-54.

  199. Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics. 2012;2(9):916.

  200. Bryden F, Savoie H, Rosca EV, Boyle RW. PET/PDT theranostics: Synthesis and biological evaluation of a peptide-targeted gallium porphyrin. Dalton Trans. 2015;44:4925-32.

  201. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, Holland-Letz T, Hadaschik BA, Giesel FL, Debus J, Haberkorn U. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11-20.

  202. Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, Luoto P, Sipila HJ, Tolvanen T, Alanen K, Silen J. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19:5434-43.

  203. Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtio K, Rantala T, Rottmann A, Sipila H, Sparks R. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med. 2013;54:867-72.

  204. Kristell LS, Chatalic Konijnenberg M, Nonnekens J, de Blois E, Hoeben S, de Ridder C, Brunel L, Fehrentz JA, Martinez J, van Gent DC, Nock BA. In vivo stabilization of a gastrin-releasing peptide receptor antagonist enhances PET imaging and radionuclide therapy of prostate cancer in preclinical studies. Theranostics. 2016;6(1):104.

  205. Cao J, Ge R, Chi J, Liang Y, Han S, Zhang T, Sun Y. A multifunctional theranostic platform based on peptide modified dendrimer for image-guided combination phototherapy. Proceeding of the International Conference on Biological Information and Biomedical Engineering; 2018 June 6-8; Shanghai, China. VDE, 2018. p. 1-6.

  206. Chang CH, Tsai IC, Chiang CJ, Chao YP. A theranostic approach to breast cancer by a quantum dots- and magnetic nanoparticles-conjugated peptide. J Taiwan Inst Chem Eng. 2019;97:88-95.

  207. Cho HJ, Park SJ, Lee YS, Kim S. Theranostic iRGD peptide containing cisplatin prodrug: Dual-cargo tumor penetration for improved imaging and therapy. J Control Release. 2019;300:73-80.

  208. Qu X, Liu Z, Ma B, Li N, Zhao H, Yang T, Xue Y, Zhang X, Shao Y, Chang Y, Xu J. All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Res. 2019;12(3):593-9.

  209. Panikar SS, Ramnez-Garda G, Vallejo-Cardona AA, Banu N, Patron-Soberano OA, Cialla-May D, Camacho-Villegas TA, de la Rosa, E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF 4:Yb, Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale. 2019;11(43):20598-613.

  210. Gao Z, He T, Zhang P, Li X, Zhang Y, Lin J, Hao J, Huang P, Cui J. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy. ACS Appl Mater Inter. 2020;12(18):20271-80.

  211. Chin DD, Poon C, Trac N, Li X, Zhang Y, Lin J, Hao J, Huang P, Cui J. Collagenase-cleavable peptide amphiphile micelles as a novel theranostic strategy in atherosclerosis. Adv Ther. 2020;3(3):1900196.

  212. Liu C, Gu Y. Non-invasive optical imaging of Staphylococcus aureus infection in vivo using an antimicrobial peptide fragment based near-infrared fluorescent probes. J Innov Opt Heal Sci. 2013;6(03):1350026.

  213. Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharma. 2015;12(7):2505-16.

  214. Chen H, Zhang M, Li B, Chen D, Dong X, Wang Y, Gu Y. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials. 2015;53:532-44.

  215. Zhang C, Yang L, Wan F, Bera H, Cun D, Rantanen J, Yang M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm. 2020;585:119441.

  216. Yang Y, Chen Q, Lin J, Cai Z, Liao G, Wang K, Bai L, Zhao P, Yu YZ. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery. Curr Med Chem. 2019;26:2285-96.

  217. Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm. 2016;498(1-2):82-95.

  218. Mustata G, Dinh SM. Approaches to oral drug delivery for challenging molecules. Crit Rev Ther Drug Carrier Syst. 2006;23(2):111-35.

  219. Lawrence PB, Price JL. How PEGylation influences protein conformational stability. Curr Opin Chem Biol. 2016;34:88-94.

  220. Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2013;30(4):293-329.

  221. U.S. Food and Drug Administration. FDA approves first oral GLP-1 treatment for type 2 diabetes. Press release 2019. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-glp-1-treatment-type-2-diabetes.

  222. Zhang F, Liu MR, Wan HT. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull 2014;37(3):335-9.

  223. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537(1-2):223-44.

  224. He S, Fu W, Zou M, Xing W, Liu Z, Xu D. Construction and evaluation of SAK-HV protein oral dosage form based on chitosan quaternary ammonium salt-PLGA microsphere. J Dru Targ. 2019;27(10):1108-17.

  225. Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release. 2020;320:265-82.

  226. Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 2019;85:1-26.

  227. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(4):317-53.

  228. Khan I, Gothwal A, Sharma AK, Kesharwani P, Gupta L, Iyer AK, Gupta U. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst. 2016;33(2):159-93.

  229. Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD, Sun XH. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019;20(5):190.

  230. Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: A translational perspective. Nanomedicine. 2018;14(7):2023-50.

  231. Rishi P, Bhogal A, Arora S, Pandey SK, Verma I, Kaur IP. Improved oral therapeutic potential of nano- encapsulated cryptdin formulation against Salmonella infection. Eur J Pharm Sci. 2015;72:27-33.

  232. Roberts R, Smyth JW, Will J, Roberts P, Grek CL, Ghatnekar GS, Sheng Z, Gourdie RG, Lamouille S, Foster EJ. Development of PLGA nanoparticles for sustained release of a connexin43 mimetic peptide to target glioblastoma cells. Mat Sci Eng. 2020;108:110191.

  233. Sheng JY, He HN, Han LM, Qin J, Chen SH, Ru G. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181-90.

  234. Mukhopadhyay P, Kundu PP. Chitosan-graft-PAMAM-alginate core-shell nanoparticles: A safe and promising oral insulin carrier in an animal model. RSC Adv. 2015;5:93995-4007.

  235. Imperiale JC, Schlachet I, Lewicki M, Sosnik A, Biglione MM. Oral pharmacokinetics of a chitosan-based nano-drug delivery system of interferon alpha. Polymers. 2019;11(11):1862.

  236. Barkat MA, Das SS, Pottoo FH, Beg S, Rahman Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr Pharm Des. 2020;26(11):1167-80.

  237. Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm. 2016;502(1-2):80-97.

  238. Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Reviews. 2019;39(6):2343-96.

  239. Drayton M, Kizhakkedathu JN, Straus SK. Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules. 2020;25(13):3048.

  240. Guimaraes D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571.

  241. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives. Oncol Rep. 2017;38(2):611-24.

  242. Lila AS, Ishida T. Liposomal delivery systems: Design optimization and current applications. Biol Pharm Bull. 2017;40(1):1-10.

  243. Tagami T, Foltz WD, Ernsting MJ, Lee CM, Tannock IF, May JP, Li SD. MRI monitoring of intra-tumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials. 2011;32(27):6570-8.

  244. Kaul A, Chaturvedi S, Attri A, Kalra M, Mishra AK. Targeted theranostic liposomes: Rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 2016;6(34):28919-26.

  245. Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm. 2015;482(1-2):2-10.

  246. Ren L, Chen S, Li H, Zhang Z, Ye C, Liu M, Zhou X. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies. Nanoscale. 2015;7(30):12843-50.

  247. Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces. 2020;196:111305.

  248. Lazar LF, Olteanu ED, Iuga R, Burz C, Achim M, Clichici S, Tefas LR, Nenu I, Tudor D, Baldea I, Filip GA. Solid lipid nanoparticles: Vital characteristics and prospective applications in cancer treatment. Crit Rev Ther Drug Carrier Syst. 2019;36(6):537-81.

  249. Sharma G, Wilson K, Van der Walle CF, Sattar N, Petrie JR, Kumar MR. Microemulsions for oral delivery of insulin: Design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharma Biopharma. 2010;76(2):159-69.

  250. Li X, Qi J, Xie Y, Zhang X, Hu S, Xu Y, Lu Y, Wu W. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats. Int J Nanomed. 2013;8:23.

  251. Guada M, Beloqui A, Kumar MR, Preat V, del Carmen Dios-Vieitez M, Blanco-Prieto MJ. Reformulating cyclosporine A (CsA): More than just a life cycle management strategy. J Control Release. 2016;225:269-82.

  252. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19-40.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain