Доступ предоставлен для: Guest
Composites: Mechanics, Computations, Applications: An International Journal
Главный редактор: Alexander N. Vlasov (open in a new tab)

Выходит 4 номеров в год

ISSN Печать: 2152-2057

ISSN Онлайн: 2152-2073

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00004 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.08 SJR: 0.153 SNIP: 0.178 CiteScore™:: 1 H-Index: 12

Indexed in

PHYSICAL/MECHANICAL PROPERTIES OF EPOXY COMPOSITES FILLED WITH CARBON BLACK NANODISPERSED POWDER FOR PROTECTION OF TRANSPORT VEHICLES

Том 12, Выпуск 2, 2021, pp. 1-12
DOI: 10.1615/CompMechComputApplIntJ.2021037544
Get accessGet access

Краткое описание

In this work, the effect of PowCarbon 2419G nanodispersed carbon black powder (particle size 24 ± 2 nm) on the structure and physical mechanical properties of polymer composite materials was studied. As a result of the obtained data, the optimal concentration of nanodispersed filler was selected, with the following properties of the developed materials: impact strength of the composite materials W = 0.82-1.03 J/cm2, heat resistance (by Martens) T = 355-358 K, fracture stresses during the flexion σfl = 58.6-75.1 MPa, and modulus of elasticity E = 1.5-2.1 GPa. At the final stage of the experiment, the fracture surfaces of the studied specimens were analyzed by optical microscopy.

ЛИТЕРАТУРА
  1. Akimov, A.V., Buketov, A.V., Sapronov, A.A., Brailo, M.V., Yakushchenko, S.V., and Smetankin, S.A., Development of Polymer Composites with Improved Thermophysical Properties for Shipbuilding and Ship Repair, Compos.: Mech. Comput. Appl., An Int. J., vol. 10, pp. 117-134, 2019.

  2. Buketov, A., Brailo, M., Yakushchenko, S., and Sapronova, A., Development of Epoxy-Polyester Composite with Improved Thermophysical Properties for Restoration of Details of Sea and River Transport, Adv. Mater. Sci. Eng., vol. 2018, 6378782, 2018.

  3. Buketov, A., Brailo, M., Yakushchenko, S., Sapronov, O., Vynar, V., Bezbakh, O., and Negrutsa, R., Investigation of Tribological Properties of Two-Component Bidisperse Epoxy-Polyester Composite Materials for Their Use in the Friction Units of Means of Sea Transport, Periodica Polytech. Mech. Eng., vol. 63. pp. 171-182, 2019.

  4. Buketov, A.V., Sapronov, O.O., Brailo, M.V., Maruschak, P.O., Yakushchenko, S.V., Panin, S.V., and Nigalatiy, V.D., Dynamics of Destruction of Epoxy Composites Filled with Ultra-Dispersed Diamond under Impact Conditions, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 725-733, 2020.

  5. Buketov, A.V., Stukhlyak, P.D., Dobrotvor, I.G., Mytnyk, N.M., and Dolgov, N.A., Effect of the Nature of Fillers and Ultraviolet Irradiation on the Mechanical Properties of Epoxy Composite Coatings, Strength Mater., vol. 41, pp. 431-435, 2009.

  6. Choi, H.J., Kim, M.S., Ahn, D., Yeo, S.Y., and Lee, S., Electrical Percolation Threshold of Carbon Black in a Polymer Matrix and Its Application to Antistatic Fibre, Sci. Rep., vol. 9, no. 1, pp. 1-12, 2019.

  7. Dang, Z.M., Yuan, J.K., Zha, J.W., Hu, P.H., Wang, D.R., and Cheng, Z.Y., High-Permittivity Polymer Nanocomposites: Influence of Interface on Dielectric Properties, J. Adv. Dielectrics, vol. 3, no. 3, 1330004, 2013.

  8. Dobrotvor, I.H., Stukhlyak, P.D., and Buketov, A.V., Determination of the Ranges of the Optimal Content of a Dispersed Filler in Epoxy Composites, Mater. Sci., vol. 45, no. 6, pp. 790-797, 2009.

  9. Hricova, M. and Marcincin, A., Electrically Conductive Composites and Composite Fibers, Vlakna a Text, vol. 15, pp. 31-36, 2008.

  10. Khmelev, V.N., Khmelev, S.S., Abramenko, D.S., and Tsyganok, S.N., Effectiveness Increase of Ultrasonic Cavitational Processing of Viscous Liquid Media, 2009 Int. Conf. and Seminar on Micro/Nano-technologies and Electron Devices, Italy, pp. 262-265, 2009.

  11. Kindrachuk, M.V., Vol'chenko, D.A., Vol'chenko, N.A., Stebeletskaya, N.M., and Voznyi, A.V., Influence of Hydrogen on the Wear Resistance of Materials in the Friction Couples of Braking Units, Mater. Sci., vol. 53, no. 2, pp. 282-288, 2017.

  12. Macutkevic, J., Kuzhir, P., Paddubskaya, A., Maksimenko, S., Banys, J., Celzard, A., and Bellucci, S., Epoxy Resin/Carbon Black Composites below the Percolation Threshold, J. Nanosci. Nanotechnol., vol. 13, no. 8, pp. 5434-5439, 2013.

  13. Macutkevic, J., Seliuta, D., Valusis, G., Banys, J., Kuznetsov, V., Moseenkov, S., and Shenderova, O., High Dielectric Permittivity of Percolative Composites Based on Onion-Like Carbon, Appl. Phys. Lett., vol. 95, no. 11, p. 112901, 2009.

  14. Mostovoy, A.S., Kadykova, Y.A., Bekeshev, A.Z., and Tastanova, L.K., Epoxy Composites Modified with Microfibers of Potassium Polytitanates, J. Appl. Polym. Sci., vol. 135, p. 46651, 2018a.

  15. Mostovoy, A.S., Nurtazina, A.S., Burmistrov, I.N., and Kadykova, Y.A., Effect of Finely Dispersed Chromite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites, Russ. J. Appl. Chem., vol. 91, pp. 1758-1766, 2018b.

  16. Neser, G., Polymer Based Composites in Marine Use: History and Future Trends, Procedia Eng., vol. 194, pp. 19-24, 2017.

  17. Panarin, V.Y., Svavil'nyy, M.Y., Khominych, A.I., Kindrachuk, M.V., and Kornienko, A.O., Creation of a Diffusion Barrier at the Interphase Surface of Composite Coatings Reinforced with Carbon Nano-tubes, J. Nano- and Electron. Phys., vol. 9, no. 6, pp. 06023-1-5, 2017.

  18. Rebeque, P.V., Silva, M.J., Cena, C.R., Nagashima, H.N., Malmonge, J.A., and Kanda, D.H.F., Analysis of the Electrical Conduction in Percolative Nanocomposites Based on Castor-Oil Polyurethane with Carbon Black and Activated Carbon Nanopowder, Polymer Compos., vol. 40, no. 1, pp. 7-15, 2019.

  19. Rozenberg, L., Physical Principles of Ultrasonic Technology, vol. 1, New York: Springer Science & Business Media, 2013.

  20. Sapronov, O.O., Buketov, A.V., Marushchak, P.O., Panin, S.V., Brailo, M.V., Yakushchenko, S.V., and Menou, A., Research of Crack Initiation and Propagation under Loading for Providing Impact Resilience of Protective Coating, Function. Mater., vol. 29, no. 1, pp. 114-120, 2019.

  21. Stukhlyak, P.D., Buketov, A.V., Panin, S.V., Maruschak, P.O., Moroz, K.M., Poltaranin, M.A., Vukherer, T., Kornienko, L.A., and Lyukshin, B.A., Structural Fracture Scales in Shock-Loaded Epoxy Composites, Phys. Mesomech., vol. 18, pp. 58-74, 2015.

  22. Weitzenbock, J.R., Hayman, B., Hersvik, G., McGeorge, D., Noury, P., Hill, D.M., and Echtermeyer, A., Application of Composites in Ships and Offshore-A Review and Outlook, Int. Conf. on Marine and Offshore Composites, Royal Institution of Naval Architects (RINA), pp. 1-39, 2010.

  23. Xu, J., Wong, M., and Wong, C.P., Super High Dielectric Constant Carbon Black-Filled Polymer Composites as Integral Capacitor Dielectrics, 2004 Proc. of 54th Electronic Components and Technology Conf. (IEEE Cat. No. 04CH37546), vol. 1, pp. 536-541, 2004.

  24. Youssef, M.H. and Roushdy, M., A Modified Method for Measuring Ultrasonic Attenuation in Highly Attenuating Materials, Physica Status Solidi (A), vol. 102, no. 1, pp. 287-292, 1987.

  25. Zhang, W., Blackburn, R.S., and Dehghani-Sanij, A.A., Carbon Black Reinforced Epoxy Resin Nano-composites as Bending Sensors, J. Compos. Mater., vol. 43, no. 4, pp. 367-376, 2009.

1286 Просмотры статей 12 Загрузка статей Метрики
1286 ПРОСМОТРЫ 12 ЗАГРУЗКИ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

PROCESSES OF DYNAMIC THERMAL DESTRUCTION OF COMPOSITE EPOXY MATERIALS AS A FUNCTION OF 3,3-DICHLORO-44-DIAMINODIPHENYLMETHANE CONTENT Composites: Mechanics, Computations, Applications: An International Journal, Vol.11, 2020, issue 1
Viacheslav G. Kulinich, V. M. Yatsyuk, A. V. Buketov, S. A. Smetankin, Serhii V. Yakushchenko
IMPACT TOUGHNESS OF NANOCOMPOSITE MATERIALS FILLED WITH FULLERENE C60 PARTICLES Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 2
M. Yu. Amelin, S. V. Panin, А. А. Sapronov, A. V. Buketov, N. N. Buketova, Mykola V. Brailo, P. О. Maruschak
STRUCTURE OF SURFACE LAYERS OF IRON AND CARBON STEELS TREATED BY COMPRESSION PLASMA FLOWS High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.8, 2004, issue 2
V. M. Anishchik, V. V. Astashynski, Vladimir V. Uglov, Iryna N. Rumiantseva
CHARACTERIZATION OF TRIBOLOGICAL AND MECHANICAL PROPERTIES OF AA7050/Al2O3 COMPOSITES AT ELEVATED TEMPERATURE High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.25, 2021, issue 4
P. K. Giridharan, S. Nalin Vimal Kumar, R. Ranjith, V. P. Pradeep
INFLUENCES OF TEMPORAL AND SPATIAL DISTRIBUTION OF LASER RADIATION HEAT ON THE CRACK PROPAGATION FOR CUTTING HIGH THICK MATERIALS High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.27, 2023, issue 2
Chuansong Sun, Chunkai Mu, Jilei Zhou
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain