Доступ предоставлен для: Guest
Heat Transfer Research

Выходит 18 номеров в год

ISSN Печать: 1064-2285

ISSN Онлайн: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

ENTRANSY DISSIPATION ANALYSIS OF LIQUID VORTEX ISOLATED BY HOLLOW CYLINDER

Том 49, Выпуск 17, 2018, pp. 1689-1704
DOI: 10.1615/HeatTransRes.2018022685
Get accessGet access

Краткое описание

By insulating the vortex of the liquid with a hollow cylinder, the level of liquid inside the cylinder is raised. This phenomenon is caused by an air vacuum between the liquid vortex and the inside of the cylinder. At the bottom of the cylinder, a heat source is installed while the outer surface of the cylinder is thermally insulated. In this way, the cylinder can be considered as a hollow cylindrical fin. The heat from this fin is partially transmitted to the liquid. The analysis of the entransy of this system is based on the variation in the size of the inner convective cylinder surface and the angular velocity of the liquid vortex. In addition, an analysis of the entransy, efficiency, and thermal resistance of this system was carried out for the partial and complete filling of the cylinder with liquid. The novelty of this entransy analysis is in simultaneously raising and heating the liquid vortex within the hollow cylinder. By innovatively using an air vacuum above the liquid vortex, the hollow cylinder sucks the liquid vortex and the same is heated. The contribution of this research includes an established mathematical model of the entransy dissipation, which can be used in the case where the hollow cylinder is completely filled with liquid or when it is completely filled with air. The results obtained in this study are a good basis for further investigations and optimization of the various thermotechnical systems, especially in the chemical, mechanical, and process industries.

ЦИТИРОВАНО В
  1. Alic Fikret, Entransy Dissipation Analysis and New Irreversibility Dimension Ratio of Nanofluid Flow Through Adaptive Heating Elements, Energies, 13, 1, 2019. Crossref

  2. Alic Fikret, Analytical model of fluid evaporation in the nanofluid vortex field, Archive of Applied Mechanics, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain