Доступ предоставлен для: Guest
Critical Reviews™ in Biomedical Engineering

Выходит 6 номеров в год

ISSN Печать: 0278-940X

ISSN Онлайн: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Meta-Analysis of Efficacy of Chemotherapy Delivered by Mesoporous Silica Nanoparticles to Tumor-Bearing Mice

Том 48, Выпуск 6, 2020, pp. 327-418
DOI: 10.1615/CritRevBiomedEng.2020035804
Get accessDownload

Краткое описание

Nanomedicines have played an important role in the management of cancer patients with PEGylated liposomal doxorubicin (e.g., Doxil) and nab-paclitaxel (Abraxane) being two examples that have been commercially successful. However, the number of patients benefitting from these therapies is small compared with the potential impact. While off-site toxicities have been reduced, long term survival has not been realized. Thus, there continues to be a need for improved therapies and nanomedicine (delivery of drugs using nanoparticle carriers) that provide advantages over the delivery of free drug. Mesoporous silica nanoparticles (MSNs) are a unique class of nanomedicine that offers high loading capacity, the ability of targeting specificity, potential for stimulated drug release and are considered generally safe and non-toxic. This paper provides a comprehensive analysis of 166 published studies in which MSNs were evaluated in vivo and tumor response was reported. Eleven studies with liposomal doxorubicin and 3 studies with Abraxane are also included in the analysis. The MSN formulations exhibit a wide range of size, charge, drug loading and drug release. The tumor inhibition ratio (TIR) of some MSN formulations compared favorably to the FDA approved nanomedicines. However, TIR reached at least 99% in only 14 MSN formulations reported. On average, targeted MSNs and MSNs with combined therapy (multiple drugs, or drugs combined with thermal therapy) performed best. Survival was reported in 14 MSN studies. The reported increased life survival (ILS) tended to be longer for liposomal doxorubicin and Abraxane than for the MSN formulations. The paper also provides an overview of MSN synthesis strategies and compares the development timeline of MSNs to that of Doxil and Abraxane, discussing the barriers to commercialization. Finally, the paper provides recommendations to advance the development and commercialization of MSNs for cancer therapy.

ЛИТЕРАТУРА
  1. Gerlowski L, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31:288-305. .

  2. Jain RK, Gerlowski LE. Extravascular transport in normal and tumor-tissues. Crit Rev Oncol Hematol 1986;5:115-70. .

  3. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387-92. .

  4. Maeda NY, Takeuchi M, Takada Y, Sadzuka Y, Namba, Oku N. Anti-neovascular therapy by use of tumor neo-vasculature-targeted long-circulating liposome. J Control Release. 2004;100:41-52. .

  5. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine. 2019;14:93-126. .

  6. Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85-98. .

  7. Bhardwaj V, Kaushik A, Khatib ZM, Nair M, McGoron AJ. Recalcitrant issues and new frontiers in nano-pharmacology. Front Pharmacol. 2019;10:1369. .

  8. Martinelli, C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng. 2019;3:011502. .

  9. McGoron AJ. Perspectives on the future of nanomedicine to impact patients: An analysis of US federal funding and interventional clinical trials. Bioconjug Chem. 2020;31:436-47. .

  10. Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, Valizadeh H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm. 2020;581:119269. .

  11. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691. .

  12. Ahmed KS, Hussein SA, Ali AH, Korma SA, Qiu L, Chen J. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27:742-61. .

  13. Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, Velazquez-Fernandez JB, Vallejo-Cardona AA. Nano-medicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10:UNSP 11. .

  14. Harshita M, Barkat A, Beg S, Pottoo FH, Ahmad FJ. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges. Nano-medicine. 2019;14:1323-41. .

  15. Lamichhane S, Lee S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res. 2020;43:118-33. .

  16. Frank LA, Onzi GR, Morawski AS, Pohlmann AR, Guterres SS, Contri RV. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2020;147:104459. .

  17. Essa D, Kondiah PPD, Choonara YE, Pillay V. The design of poly(lactide-co-glycolide) nanocarriers for medical applications. Front Bioengineer Biotechnol. 2020;8:48. .

  18. Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29:1604634. .

  19. Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong K. The application ofmesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev. 2016;319:86-109. .

  20. Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, Yao C, Zhou Q, Kwon M, Hartman JA, Dobrucki IT, Dobrucki LW, Borst LB, Lezmi S, Helferich WG, Ferguson AL, Fan TM, Cheng J. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci U S A. 2014;111:15344-9. .

  21. Balakrishnan S, Bhat FA, Jagadeesan A. Applications of gold nanoparticles in cancer. In: Khosrow-Pour M, editor. Biomedical engineering: Concepts, methodologies, tools, and applications. Hershey, PA: Information Resources Management Association; 2018. p. 780-808. .

  22. Angelakeris M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim Biophys Acta. 2017;1861:1642-51. .

  23. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials. 2018;8:634. .

  24. Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol. 2019;47:4222-33. .

  25. Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater Sci Eng R Rep. 2019;137:66-105. .

  26. Arnbekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur Polymer J. 2020;126: UNSP109546. .

  27. Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release. 2020;321:285-311. .

  28. Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic pluronic-like polymeric micelles: Shedding light into the dark shadows of tumors. Mol Pharm. 2019;16(12):4757-74. .

  29. Fan W, Zhang L, Li Y, Wu H. Recent progress of cross-linking strategies for polymeric micelles with enhanced drug delivery in cancer therapy. Curr Med Chem. 2019;26(13):2356-76. .

  30. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16:108-23. .

  31. de la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020;25(3):745. .

  32. Gauzy-Lazo L, Sassoon I, Brun MP. Advances in anti-body-drug conjugate design: Current clinical landscape and future innovations. SLAS Discov. 2020;25(8):843-68. .

  33. Tanaka K, Shinoda S, Takai N, Takahashi H, Saito Y. The preparation of mesoporous silica-gel and the nature of the modification of its surface with organo-alkoxysilane. Bull Chem Soc Jpn. 1980;53:1242-6. .

  34. Coffer J, Li X, John J, Pinizzotto R, Chen Y, Newey J, Canham L. Fabrication and characterization of calcium phosphate/porous silicon/silicon structures doped with platinum antitumor compounds. MRS Proceedings. 1999;599:61. doi: 10.1557/PR0C-599-61. .

  35. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc. 2003;125:4451-9. .

  36. Szczesniak B, Choma J, Jaroniec M. Major advances in the development of ordered mesoporous materials. Chem Commun. 2020;56:7836-48. .

  37. Stober W, Fink A, Bohn E. Controlled growth of mono-disperse silica spheres in micron size range. J Colloid Interface Sci. 1968;26:62-9. .

  38. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc. 1992;114:10834-43. .

  39. Antonelli DM, Nakahira A, Ying JY. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorg Chem. 1996;35(11):3126-36. .

  40. Inagaki, S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frame-works. J Am Chem Soc. 1999;121:9611-4. .

  41. Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107:2821-60. .

  42. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261-79. .

  43. Hoffmann F, Cornelius M, Morell J, Froeba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed Engl. 2006;45:3216-51. .

  44. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay J, Sing K, Unger KK. Recom-mendations for the characterization of porous solids. Pure Appl Chem. 1994;66:1739-58. .

  45. McCusker LB, Liebau F, Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts-(IUPAC recommendations 2001). Pure Appl Chem. 2001;73:381-394. .

  46. Oroyo M. International tables for crystallography, Volume A, Space-group symmetry: Wiley. For The International Union Of Crystallography; 2016. .

  47. Dauter Z, Jaskolski M. How to read (and understand) volume A of international tables for crystallography: An introduction for nonspecialists. J Appl Crystallogr. 2010;43:1150-71. .

  48. Ohsuna T, Sakamoto Y, Terasaki O, Kuroda K. TEM image simulation of mesoporous crystals for structure type identification. Solid State Sci. 2011;13:736-44. .

  49. Arkhireeva A, Hay JN, Lane JM, Manzano M, Masters H, Oware W, Shaw SJ. Synthesis of organic-inorganic hybrid particles by sol-gel chemistry. J Sol Gel Sci Technol. 2004;31:31-6. .

  50. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A. 2005;102(32):11539-44. .

  51. Tang W, Xu H, Kopelman R, Philbert MA. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol. 2005;81(2):242-9. .

  52. Espiard P, Revillon A, Guyot A, Mark JE. Nucleation of emulsion polymerization in the presence of small silica particles. In: Daniels ES, Sudol ED, El-Aasser MS, editors. Polymer latexes preparation, characterization, and applications. Washington, DC: American Chemical Society; 1992. p. 387-404. .

  53. Fornasieri G, Badaire W, Backov R, Mondain-Monval O, Zakri U, Poulin P. Mesoporous and homothetic silica capsules in reverse-emulsion microreactors. Adv Mater. 2004;16:1094-7. .

  54. Jaramillo N, Paucar C, Garcia C. Influence of the reaction time and the Triton x-100/Cyclohexane/Methanol/H2O ratio on the morphology and size of silica nanoparticles synthesized via sol-gel assisted by reverse micelle micro-emulsion. J Mater Sci. 2014;49:3400-6. .

  55. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photo-dynamic therapy. J Am Chem Soc. 2003;125(26):7860-5. .

  56. Roy I, Kumar P, Kumar R, Ohulchanskyy TY, Yong K, Prasad PN. Ormosil nanoparticles as a sustained-release drug delivery vehicle. RSC Adv. 2014;4:53498-504. .

  57. Nagesetti A, McGoron AJ. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging. Colloids Surf B Biointerfaces. 2016;147:492-500. .

  58. Nagesetti A, Srinivasan S, McGoron AJ. Polyethylene glycol modified ORMOSIL theranostic nanoparticles for triggered doxorubicin release and deep drug delivery into ovarian cancer spheroids. J Photochem Photobiol B. 2017;174:209-16. .

  59. Ravaine D, Seminel A, Charbouillot Y, Vincens M. A new family of organically modified silicates prepared from gels. J Non Cryst Solids. 1986;82:210-9. .

  60. Frasch J, Lebeau B, Soulard M, Patarin J, Zana R. In situ investigations on cetyltrimethyl ammonium surfactant/silicate systems, precursors of organized mesoporous MCM-41-type siliceous materials. Langmuir. 2000;16:9049-57. .

  61. Han SH, Hou WG, Dang WX, Xu J, Hu JF, Li DQ. Synthesis of rod-like mesoporous silica using mixed surfactants of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride as templates. Mater Lett. 2003;57:4520-4. .

  62. Atkin R, Craig V, Wanless EJ, Biggs S. The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface. J Colloid Interface Sci. 2003;266:236-44. .

  63. Lin Y, Zhang J, Liu S, Ye H. Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy. J Nanosci Nanotechnol. 2018;18:2330-6. .

  64. Wang Y, Liu X, Deng G, Sun J, Yuan H, Li Q, Wang Q, Lu J. SeSiO2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy. Nanoscale. 2018;10:2866-75. .

  65. Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, Jiang L, Qin M, Liang H, Gao L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomed. 2018;13:5113-26. .

  66. Tabor RF, Eastoe J, Dowding PJ, Grillo I, Heenan RK, Hollamby M. Formation of surfactant-stabilized silica organosols. Langmuir. 2008;24:12793-7. .

  67. Shaparenko N, Beketova D, Demidova M, Bulavchenko A. Regulation of the charge and hydrodynamic diameter of silica nanoparticles in AOT microemulsions. Colloid J. 2019;81:43-9. .

  68. Nagesetti A, McGoron AJ. Corrigendum to "Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging" Colloids Surf B Biointerfaces 147 (2016) 492-500. Colloids Surf B Biointerfaces. 2018;170:663. .

  69. Kumar D, Mutreja I, Keshvan PC, Bhat M, Dinda AK, Mitra S. Organically modified silica nanoparticles interaction with macrophage cells: Assessment of cell viability on the basis of physicochemical properties. J Pharm Sci. 2015;104(11):3943-51. .

  70. Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. Mater Sci Eng C. 2018;90:257-63. .

  71. Mannerstrom M, Zou J, Toimela T, Pyykko I, Heinonen T. The applicability of conventional cytotoxicity assays to predict safety/toxicity of mesoporous silica nanoparticles, silver and gold nanoparticles and multi-walled carbon nanotubes. Toxicol In Vitro. 2016;37:113-20. .

  72. Pham DH, De Roo B, Nguyen XB, Vervaele M, Kecskes A, Ny A, Copmans D, Vriens H, Locquet JP, Hoet P, de Witte PA. Use of zebrafish larvae as a multi-endpoint platform to characterize the toxicity profile of silica nanoparticles. Sci Rep. 20162;6:37145. .

  73. Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release. 2019;311-312:1-15. .

  74. Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, Dobrovolskaia MA, Ghandehari H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their ex vivo human hemo-compatibility. J Control Release. 2020;324:471-81. .

  75. Barenholz Y. Doxil((R)) - The first FDA-approved nano-drug: From an idea to a product. In: Peer D, editor. Handbook of harnessing biomaterials in nanomedicine. Singapore: Jenny Stanford Publishing; 2012. p. 335-98. .

  76. Shinozawa S, Araki Y, Oda T. Tissue distribution and antitumor effect of liposome-entrapped doxorubicin (adriamycin) in Ehrlich solid tumor-bearing mouse. Acta Med Okayama. 1981;35:395-405. .

  77. Rahman A, Herman E, Ferrang V, Schein P. Protection of doxorubicin induced cardiotoxicity in beagle dogs by administration in cardiolipin liposomes. Clin Res. 1982;30:A534. .

  78. Smith F, Rahman A, Jenson A, Kline I, Schein PS. Toxicity evaluation of doxorubicin entrapped in cardiolipin liposomes in mice. Proc Am Assoc Cancer Res. 1983;24:260. .

  79. Goldin A, Rahman A, Harris M, Fumagalli A, Schein PS. Anti-tumor and pharmacologic disposition studies of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Proc Am Assoc Cancer Res. 1983;24:260. .

  80. Delgado G, Potkul RK, Treat JA, Lewandowski GS, Barter JF, Forst D, Rahman A. A phase I/II study of intraperitoneally administered doxorubicin entrapped in cardiolipin liposomes in patients with ovarian cancer. Am J Obstet Gynecol. 1989;160(4):812-817; discussion 817-9. .

  81. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317-24. .

  82. Desai NP, Trieu V, Hwang LY, Wu R, Soon-Shiong P, Gradishar WJ. Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs. 2008;19(9):899-909. .

  83. Antunes A, Fierro I, Guerrante R, Mendes F, de M Alencar MS. Trends in nanopharmaceutical patents. Int J Mol Sci. 2013;14:7016-31. .

  84. Gabizon A, Peretz T, Sulkes A, Amselem S, Benyosef R, Benbaruch N, Catane R, Biran S, Barenholz Y. Systemic administration of doxorubicin-containing liposomes in cancer-patients - a phase-1 study. Eur J Cancer Clin Oncol. 1989;25:1795-803. .

  85. Segal AW, Gregoriadis G, Lavender JP, Tarin D, Peters TJ. Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms. Clin Sci Mol Med. 1976;51(4):421-5. .

  86. Damascelli B, Cantu G, Mattavelli F, Tamplenizza P, Bidoli P, Leo E, Dosio F, Cerrotta AM, Di Tolla G, Frigerio LF, Garbagnati F, Lanocita R, Marchiano A, Patelli G, Spreafico C, Ticha V, Vespro V, Zunino F. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): Phase I study of patients with squamous cell carcinoma of the head and neck and anal canal: Preliminary evidence of clinical activity. Cancer. 2001; 92(10):2592-602. .

  87. Bawa R, Barenholz Y, Owen A. The challenge of regulating nanomedicine: Key issues. Nanomedicines. 2016;51:290-314. .

  88. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149. .

  89. Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U. Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core-shell silica nanoparticle growth in water. Chem Mater. 2015;27:4119-33. .

  90. Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: From inception to market domination. J Drug Deliv. 2012;2012:389485. .

  91. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS Pharm-SciTech. 2014;15(6):1527-34. .

  92. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. .

  93. Nichols JW, Bae YH. EPR: Evidence and fallacy. J Control Release. 2014;190:451-64. .

  94. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nano-medicine? J Control Release. 2016;244(Pt A):108-121. .

  95. Ekdawi SN, Jaffray DA, Allen C. Nanomedicine and tumor heterogeneity: Concept and complex reality. Nano Today. 2016;11:402-14. .

  96. Nel A, Ruoslahti E, Meng H. New insights into "permeability" as in the enhanced permeability and retention effect of cancer nanotherapeutics. Acs Nano. 2017;11:9567-9. .

  97. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. .

  98. McGonigle P, Ruggeri B. Animal models of human disease: Challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162-71. .

  99. Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging bio-nano science and cancer nano-medicine. ACS Nano. 2017;11(10):9594-613. .

  100. Gbabe OF, Okwundu CI, Dedicoat M, Freeman EE. Treatment of severe or progressive Kaposi's sarcoma in HIV-infected adults. Cochrane Database Syst Rev. 2014:CD003256. .

  101. Duggan ST, Keating GM. Pegylated liposomal doxorubicin A review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma. Drugs. 2011;71:2531-58. .

  102. Hung CC, Yang Y, Tsai IC, Hsu CY, Liu CH, Yang JR. The efficacy of pegylated liposomal doxorubicin-based neoadjuvant chemotherapy in breast cancer: A retrospective case-control study in Taiwan. Biochem Res Int. 2020;2020:5729389. .

  103. Yao J, Pan S, Fan X, Jiang X, Yang Y, Jin J, Liu Y. Pegylated liposomal doxorubicin as neoadjuvant therapy for stage II-III locally advanced breast cancer. J Chemother. 2020;32(4):202-7. .

  104. Venkatraman S. Has nanomedicine lived up to its promise? Nanotechnology. 2014;25:372501. .

  105. Torrice M. Does nanomedicine have a delivery problem? ACS Central Sci. 2016;2:434-7. .

  106. Park K. The drug delivery field at the inflection point: Time to fight its way out of the egg. J Control Release. 2017;267:2-14. .

  107. van der Meel R, Lammers T, Hennink WE. Cancer nano-medicines: Oversold or underappreciated? Expert Opin Drug Deliv. 2017;14(1):1-5. .

  108. Greish K, Mathur A, Bakhiet M, Taurin S. Nanomedicine: Is it lost in translation? Ther Deliv. 2018;9(4):269-85. .

  109. Sarmento B. Have nanomedicines progressed as much as we'd hoped for in drug discovery and development? Expert Opin Drug Discov. 2019;14(8):723-5. .

  110. Chan WCW. Nanomedicine 2.0. Acc Chem Res. 2017;50: 627-632. .

  111. Park K. The beginning of the end of the nanomedicine hype. J Control Release. 2019;305:221-2. .

  112. Thomas OS, Weber W. Overcoming physiological barriers to nanoparticle delivery-are we there yet? Front Bioeng Biotechnol. 2019;7:415. .

  113. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256-63. .

  114. Wurbel H. Behaviour and the standardization fallacy. Nat Genet. 2000;26:263. .

  115. Roberts I, Kwan I, Evans P, Haig S. Does animal experimentation inform human healthcare? Observations from a systematic review of international animal experiments on fluid resuscitation. BMJ. 2002;324(7335):474-6. .

  116. Martic-Kehl M, Schibli R, Schubiger P. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging. 2012;39:1492-6. .

  117. Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018;16(1):304. .

  118. Seyhan AA. Lost in translation: The valley of death across preclinical and clinical divide - identification of problems and overcoming obstacles. Transl Med Commun. 2019;4:1-19. .

  119. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016;47:20-33. .

  120. Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020;323(9):844-53. .

  121. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273-86. .

  122. Abou-El-Enein M, Duda GN, Gruskin EA, Grainger DW. Strategies for derisking translational processes for biomedical technologies. Trends Biotechnol. 2017;35(2):100-8. .

  123. Anchordoquy TJ, Barenholz Y, Boraschi D, Chorny M, Decuzzi P, Dobrovolskaia MA, Farhangrazi ZS, Farrell D, Gabizon A, Ghandehari H, Godin B, La-Beck NM, Ljubimova J, Moghimi SM, Pagliaro L, Park JH, Peer D, Ruoslahti E, Serkova NJ, Simberg D. Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions. ACS Nano. 2017; 11(1): 12-8. .

  124. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. Int J Nanomed. 2014;9:467-83. .

  125. Floc'h N, Ashton S, Ferguson D, Taylor P, Carnevalli LS, Hughes AM, Harris E, Hattersley M, Wen S, Curtis NJ, Pilling JE, Young LA, Maratea K, Pease EJ, Barry ST. Modeling dose and schedule effects of AZD2811 nanoparticles targeting aurora b kinase for treatment of diffuse large B-cell lymphoma. Mol Cancer Ther. 2019;18(5):909-19. .

  126. Johnson ML, Cosaert JGCE, Falchook GS, Jones SF, Strickland D, Greenlees C, Charlton J, MacDonald A, Overend P, Adelman C, Burris HA, Pease EJ, Patel GS, Wang JS-Z. A phase I, open label, multicenter dose escalation study of AZD2811 nanoparticle in patients with advanced solid tumors. J Clin Oncol. 2019;37. .

  127. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1. .

  128. Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WCW. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12:8423-35. .

  129. Cheng Y, He, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano. 2020;14:3075-95. .

  130. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194-8. .

  131. Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. 2019;38:205-22. .

  132. Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 2019;38:93-101. .

  133. Boedtkjer E, Pedersen SF. The acidic tumor microen-vironment as a driver of cancer. Annu Rev Physiol. 2020;82:103-26. .

  134. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000;6:15-9. .

  135. Lutz NW, Le Fur Y, Chiche J, Pouyssegur J, Cozzone PJ. Quantitative in vivo characterization of intracellular and extracellular pH profiles in heterogeneous tumors: A novel method enabling multiparametric pH analysis. Cancer Res. 2013;73:4616-28. .

  136. Koltai T. Cancer: Fundamentals behind pH targeting and the double-edged approach. Onco Targets Ther. 2016;9:6343-60. .

  137. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1527. .

  138. Tebaldi ML, Oda CMR, Monteiro LOF, de Barros ALB, Santos CJ, Ferreira Soares DC. Biomedical nanoparticle carriers with combined thermal and magnetic response: Current preclinical investigations. J Magn Magn Mater. 2018;461:116-27. .

  139. Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1571. .

  140. White BD, Duan C, Townley HE. Nanoparticle activation methods in cancer treatment. Biomolecules. 2019;9:202. .

  141. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Suess R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758:1633-40. .

  142. Russell LM, Hultz M, Searson PC. Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release. 2018;269:171-6. .

  143. Leong HS, Butler KS, Brinker CJ, Azzawi M, Conlan S, Dufes C, Owen A, Rannard S, Scott C, Chen C, Dobrovolskaia MA, Kozlov SV, Prina-Mello A, Schmid R, Wick P, Caputo F, Boisseau P, Crist RM, McNeil SE, Fadeel B, Tran L, Hansen SF, Hartmann NB, Clausen LPW, Skjolding LM, Baun A, Agerstrand M, Gu Z, Lamprou DA, Hoskins C, Huang L, Song W, Cao H, Liu X, Jandt KD, Jiang W, Kim BYS, Wheeler KE, Chetwynd AJ, Lynch I, Moghimi SM, Nel A, Xia T, Weiss PS, Sarmento B, das Neves J, Santos HA, Santos L, Mitragotri S, Little S, Peer D, Amiji MM, Alonso MJ, Petri-Fink A, Balog S, Lee A, Drasler B, Rothen-Rutishauser B, Wilhelm S, Acar H, Harrison RG, Mao C, Mukherjee P, Ramesh R, McNally LR, Busatto S, Wolfram J, Bergese P, Ferrari M, Fang RH, Zhang L, Zheng J, Peng C, Du B, Yu M, Charron DM, Zheng G, Pastore C. On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol. 2019;14:629-35. .

  144. Faria M, Bjornmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F. Minimum information reporting in bio-nano experimental literature. Nat Nanotechnol. 2018;13:777-85. .

  145. Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23-30. .

  146. Schneid ADC, Silveira CP, Galdino FE, Ferreira LF, Bouchmella K, Cardoso MB. Colloidal stability and redis-persibility of mesoporous silica nanoparticles in biological media. Langmuir. 2020;36:11442-9. .

  147. Li J, Shen S, Kong F, Jiang T, Tang C, Yin C. Effects of pore size on in vitro and in vivo anticancer efficacies of meso-porous silica nanoparticles. RSC Adv. 2018;8:24633-40. .

  148. Ma B, He L, You Y, Mo J, Chen T. Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Deliv. 2018;25:293-306. .

  149. Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH, Wang X, Tang I, Zheng E, Qiu W, Wainberg ZA, Nel AE, Meng H. Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer. ACS Nano. 2019;13:38-53. .

  150. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794-805. .

  151. Colbern GT, Hiller AJ, Musterer RS, Pegg E, Henderson IC, Working PK. Significant increase in antitumor potency of doxorubicin HCl by its encapsulation in pegylated liposomes. J Liposome Res. 1999;9:523-38. .

  152. Colbern G, Vaage J, Donovan D, Uster P, Working P. Tumor uptake and therapeutic effects of drugs encapsulated in long-circulating pegylated stealth (R) liposomes. J Liposome Res. 2000;10:81-92. .

  153. Charrois G, Allen T. Rate of biodistribution of STEALTHR liposomes to tumor and skin: Influence of liposome diameter and implications for toxicity and therapeutic activity. Biochim Biophys Acta. 2003;1609:102-8. .

  154. Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia. 2004;6:343-53. .

  155. Brouckaert P, Takahashi N, van Tiel ST, Hostens J, Eggermont AM, Seynhaeve AL, Fiers W, ten Hagen TL. Tumor necrosis factor-alpha augmented tumor response in B16BL6 melanoma-bearing mice treated with stealth liposomal doxorubicin Doxil correlates with altered Doxil pharmacokinetics. Int J Cancer. 2004;109:442-48. .

  156. Frenkel V, Etherington A, Greene M, Quijano J, Xie J, Hunter F, Dromi S, Li KC. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol. 2006;13:469-79. .

  157. Shan S, Flowers C, Peltz CD, Sweet H, Maurer N, Kwon EJ, Krol A, Yuan F, Dewhirst MW. Preferential extravasation and accumulation of liposomal vincristine in tumor comparing to normal tissue enhances antitumor activity. Cancer Chemother Pharmacol. 2006;58:245-55. .

  158. ElBayoumi, TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol Pharm. 2009;6:246-54. .

  159. Seip R, Leyvi E, Raju BI, Shi WT, Bohmer M, Chlon C, Sio C, Reibling K, Swanson T. Ultrasound and micro-bubble mediated Doxil delivery in a murine breast cancer model: Therapeutic efficacy dependence on tumor growth rate. ULTSYM, 2011:1894-7. .

  160. Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immuno-liposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther. 2014;15:69-80. .

  161. Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GA, de Vries HE, Maussang D, van Tellingen O. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9:e82331. .

  162. Wang T, Hartner WC, Gillespie JW, Praveen KP, Yang S, Mei LA, Petrenko VA, Torchilin VP. Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein. Nanomedicine. 2014;10:421-30. .

  163. Kohli AG, Kivimae S, Tiffany MR, Szoka FC. Improving the distribution of Doxil in the tumor matrix by depletion of tumor hyaluronan. J Control Release. 2014;191:105-14. .

  164. Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release. 2015;220:275-86. .

  165. Petersen AL, Henriksen JR, Binderup T, Elema DR, Rasmussen PH, Hag AM, Kjsr A, Andresen TL. In vivo evaluation of PEGylated Cu-64-lipo somes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging. 2016;43:941-52. .

  166. Moosavian SA, Abnous K, Badiee A, Jaafari MR. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf B Biointerfaces. 2016;139:228-36. .

  167. Singh MS, Goldsmith M, Thakur K, Chatterjee S, Landesman-Milo D, Levy T, Kunz-Schughart LA, Barenholz Y, Peer D. An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale. 2020;12:1894-903. .

  168. Charrois G, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta. 2004;1663:167-77. .

  169. Ogawara K, Un K, Minato K, Tanaka K, Higaki K, Kimura T. Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: Importance of vascular permeability within tumors. Int J Pharm. 2008;359:234-40. .

  170. Razavi-Azarkhiavi K, Jafarian AH, Abnous K, Razavi BM, Shirani K, Zeinali M, Jaafari MR, Karimi G. The comparison of biodistribution, efficacy and toxicity of two PEGylated liposomal doxorubicin formulations in mice bearing C-26 colon carcinoma: A preclinical study. Drug Res. 2016;66:330-6. .

  171. Karmali PP, Kotamraju VR, Kastantin M, Black M, Missirlis D, Tirrell M, Ruoslahti E. Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine. 2009;5:73-82. .

  172. Shao H, Tang H, Salavaggione OE, Yu C, Hylander B, Tan W, Repasky E, Adjei AA, Dy GK. Improved response to nab-paclitaxel compared with cremophor-solubilized paclitaxel is independent of secreted protein acidic and rich in cysteine expression in non-small cell lung cancer. J Thorac Oncol. 2011;6:998-1005. .

  173. Yang Y, Niu X, Zhang Q, Hao L, Ding Y, Xu H. The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci. 2012;344:199-205. .

  174. Beyer I, Cao H, Persson J, Song H, Richter M, Feng Q, Yumul R, van Rensburg R, Li Z, Berenson R, Carter D, Roffler S, Drescher C, Lieber A. Coadministration of epithelial junction opener jo-1 improves the efficacy and safety of chemotherapeutic drugs. Clin Cancer Res. 2012;18:3340-51. .

  175. Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, Cheng RH, Wang L, Lam KS. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30:6006-16. .

  176. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31:7106-14. .

  177. Pandya AD, Jager E, Bagheri Fam S, Hocherl A, Jager A, Sincari V, Nystrom B, Stepanek P, Skotland T, Sandvig K, Hruby M, Mslandsmo GM. Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy. Int J Nanomed. 2019;14:6269-85. .

  178. Feng Z, Zhao G, Yu L, Gough D, Howell SB. Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer Chemother Pharmacol. 2010;65:923-30. .

  179. Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release. 2012;162:575-81. .

  180. Yin T, Cai H, Liu J, Cui B, Wang L, Yin L, Zhou J, Huo M. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel. Eur J Pharm Sci. 2016;83:79-87. .

  181. Koo H, Min KH, Lee SC, Park JH, Park K, Jeong SY, Choi K, Kwon IC, Kim K. Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery. J Control Release. 2013;172:823-31. .

  182. Simon-Gracia L, Hunt H, Scodeller P, Gaitzsch J, Kotamraju VR, Sugahara KN, Tammik O, Ruoslahti E, Battaglia G, Teesalu T. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials. 2016;104:247-57. .

  183. Bhattacharyya J, Bellucci JJ, Weitzhandler I, McDaniel JR, Spasojevic I, Li X, Lin CC, Chi JT, Chilkoti A. A paclitaxel-loaded recombinant polypeptide nanoparticle out-performs Abraxane in multiple murine cancer models. Nat Commun. 2015;6:7939. .

  184. Huang J, Wu B, Zhou Z, Hu S, Xu H, Piao Y, Zheng H, Tang J, Liu X, Shen Y. Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicinee. 2019;21:102058. .

  185. Lee JE, Kim MG, Jang YL, Lee MS, Kim NW, Yin Y, Lee JH, Lim SY, Park JW, Kim J, Lee DS, Kim SH, Jeong JH. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Delivery. 2018;25:1570-8. .

  186. Xiong J, Zhang H. Antibody-nanoparticle conjugate constructed with trastuzumab and nab-paclitaxel for the targeted therapy of positive human epidermal growth factor receptor 2 gastric cancer. J Clin Oncol. 2017;35:e15506. .

  187. Banskota S, Saha S, Bhattacharya J, Kirmani N, Yousefpour P, Dzuricky M, Zakharov N, Li X, Spasojevic I, Young K, Chilkoti A. Genetically Encoded stealth nanoparticles of a zwitterionic polypeptide-paclitaxel conjugate have a wider therapeutic window than abraxane in multiple tumor models. Nano Lett. 2020;20:2396-409. .

  188. Teijeiro-Valino C, Novoa-Carballal R, Borrajo E, Vidal A, Alonso-Nocelo M, de la Fuente Freire M, Lopez-Casas PP, Hidalgo M, Csaba N, Alonso MJ. A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release. 2019;294:154-64. .

  189. Pinder MC, Ibrahim NK. Nanoparticle albumin-bound paclitaxel for treatment of metastatic breast cancer. Drugs of Today. 2006;42:599-6.4. .

  190. Stinchcombe TE. Nanoparticle albumin-bound paclitaxel: A novel Cremophor-EL(R)-free formulation of paclitaxel. Nanomedicine. 2007;2:415-23. .

  191. Desai N, De T, Ci S, Louis L, Trieu V. Characterization and in vitro/in vivo dissolution of nab-paclitaxel nanoparticles. 99th AACR Annual Meeting, 2008:5624. .

  192. Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. Mater Sci Eng C Mater Biol Appl. 2018;90:257-63. .

  193. Ren X, Shi L, Yu X, Liu W, Sheng J, Wan J, Li Y, Wan Y, Luo Z, Yang X. Multifunctional hierarchical mesoporous silica and black phosphorus nanohybrids as chemo-photothermal synergistic agents for enhanced cancer therapy. Nanoscale. 2020;12:12578-88. .

  194. Han L, Tang C, Yin C. pH-responsive core-shell structured nanoparticles for triple-stage targeted delivery of doxorubicin to tumors. ACS Appl Mater Interfaces. 2016;8:23498-508. .

  195. Chen L, Zhou X, Nie W, Zhang Q, Wang W, Zhang Y, He C. Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging. ACS Appl Mater Interfaces. 2016;8:33829-41. .

  196. Li E, Yang Y, Hao G, Yi X, Zhang S, Pan Y, Xing B, Gao M. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics. 2018;2:233-42. .

  197. Wang J, Han J, Zhu C, Han N, Xi J, Fan L, Guo R. Gold nanorods/polypyrrole/m-SiO2 core/shell hybrids as drug nanocarriers for efficient chemo-photothermal therapy. Langmuir. 2018;34:14661-9. .

  198. Gao Q, Xie W, Wang Y, Wang D, Guo Z, Gao F, Zhao L, Cai Q. A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe3O4 nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Adv. 2018;8:4321-8. .

  199. Chen Z, Wan L, Yuan Y, Kuang Y, Xu X, Liao T, Liu J, Xu Z, Jiang B, Li C. pH/GSH-dual-sensitive hollow mesoporous silica nanoparticle-based drug delivery system for targeted cancer therapy. ACS Biomater Sci Eng. 2020;6:3375-87. .

  200. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5:4131-44. .

  201. Gao F, Li L, Liu T, Hao N, Liu H, Tan L, Li H, Huang X, Peng B, Yan C, Yang L, Wu X, Chen D, Tang F. Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects. Nanoscale. 2012;4:3365-72. .

  202. Turan O, Bielecki P, Perera V, Lorkowski M, Covarrubias G, Tong K, Yun A, Rahmy A, Ouyang T, Raghunathan S, Gopalakrishnan R, Griswold MA, Ghaghada KB, Peiris PM, Karathanasis E. Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale. 2019;11:11910-21. .

  203. Turan O, Bielecki P, Tong K, Covarrubias G, Moon T, Rahmy A, Cooley S, Park Y, Peiris PM, Ghaghada KB, Karathanasis E. Effect of dose and selection of two different ligands on the deposition and antitumor efficacy of targeted nanoparticles in brain tumors. Mol Pharm. 2019;16:4352-60. .

  204. Yang S, Chen D, Li N, Xu Q, Li H, Gu F, Xie J, Lu J. Hollow mesoporous silica nanocarriers with multifunctional capping agents for in vivo cancer imaging and therapy. Small. 2016;12:360-70. .

  205. Li L, Lu Y, Jiang C, Zhu Y, Yang X, Hu X, Lin Z, Zhang Y, Peng M, Xia H, Mao C. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfidemesoporous silica core-shell nanoparticles. Adv Funct Mater. 2018;28:1704623. .

  206. Li C, Feng K, Xie N, Zhao W, Ye L, Chen B, Tung C, Wu L. Mesoporous silica-coated gold nanorods with designable anchor peptides for chemo-photothermal cancer therapy. ACS Appl Nanomater. 2020;3:5070-8. .

  207. Li C, Yang XQ, An J, Cheng K, Hou XL, Zhang XS, Song XL, Huang KC, Chen W, Liu B, Zhao YD, Liu TC. A near-infrared light-controlled smart nanocarrier with reversible polypeptide-engineered valve for targeted fluorescence-photoacoustic bimodal imaging-guided chemo-photo-thermal therapy. Theranostics. 2019;9:7666-79. .

  208. Wei Q, Chen Y, Ma X, Ji J, Qiao Y, Zhou B, Ma F, Ling D, Zhang H, Tian M, Tian J, Zhou M. High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy. Adv Funct Mater. 2018;28:1704634. .

  209. Zhang M, Liu X, Luo Q, Wang Q, Zhao L, Deng G, Ge R, Zhang L, Hu J, Lu J. Tumor environment responsive degradable CuSmSiO2MnO2/DOX for MRI guided synergistic chemo-photothermal therapy and chemodynamic therapy. Chem Eng J. 2020;389:124450. .

  210. Li C, Yang XQ, Zhang MZ, Song YY, Cheng K, An J, Zhang XS, Xuan Y, Liu B, Zhao YD. In vivo imaging-guided nanoplatform for tumor targeting delivery and combined chemo-, gene- and photothermal therapy. Theranostics. 2018;8:5662-75. .

  211. Li Z, Zhang L, Tang C, Yin C. Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy. Pharm Res. 2017;34:2829-41. .

  212. Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian K, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett. 2020;20:936-46. .

  213. Xing Y, Zhou Y, Zhang Y, Zhang C, Deng X, Dong C, Shuang S. Facile fabrication route of janus gold-mesoporous silica nanocarriers with dual-drug delivery for tumor therapy. ACS Biomater Sci Eng. 2020;6:1573-81. .

  214. Zhao S, Xu M, Cao C, Yu Q, Zhou Y, Liu J. A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. J Mater Chem B. 2017;5:6908-19. .

  215. Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomed. 2017;12:5993-6003. .

  216. Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F. Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater. 2012;24:755-61. .

  217. Li Y, Miao Y, Chen M, Chen X, Li F, Zhang X, Gan Y. Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy. Theranostics. 2020;10:3722-36. .

  218. Li XD, Wang Z, Wang XR, Shao D, Zhang X, Li L, Ge MF, Chang ZM, Dong WF. Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition. Int J Nanomedicine. 2019;14:3967-82. .

  219. Shao L, Li Y, Huang F, Wang X, Lu J, Jia F, Pan Z, Cui X, Ge G, Deng X, Wu Y. Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopaminemesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging. Theranostics. 2020;10:7273-86. .

  220. Sun W, Ge K, Jin Y, Han Y, Zhang H, Zhou G, Yang X, Liu D, Liu H, Liang XJ, Zhang J. Bone-targeted nano-platform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano. 2019;13:7556-67. .

  221. Wu J, Williams GR, Niu S, Gao F, Tang R, Zhu LM. A multifunctional biodegradable nanocomposite for cancer theranostics. Adv Sci. 2019;6:1802001. .

  222. Thapa RK, Nguyen HT, Gautam M, Shrestha A, Lee ES, Ku SK, Choi HG, Yong CS, Kim JO. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Deliv. 2017;24:1690-102. .

  223. He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of clinical translation of cancer nanomedicines-les-sons learned from successes and failures. Acc Chem Res. 2019;52:2445-61. .

  224. Xu J, Zhang Y, Yin H, Zhong H, Su M, Tian Z, Li J. Shell-isolated nanoparticle-enhanced raman and fluorescence spectroscopies: Synthesis and applications. Adv Opt Mater. 2018;6:1701069. .

  225. Bangham AD. Liposomes - the Babraham connection. Chem Phys Lipids. 1993;64:275-85. .

  226. Vartuli JC, KD Schmitt, CT Kresge, WJ Roth, ME Leonowicz, SB Mccullen, SD Hellring, JS Beck, JL Schlenker, DH Olson, EW Sheppard. Development of a formation mechanism for M41s materials. Amsterdam; Sara Burgerhartstraat 25, Po Box 211, 1000 AE Amsterdam, Nether-lands: Elsevier Science Publ B V; 1994. p. 60. .

  227. Huo QS, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater. 1996;8:1147-60. .

  228. Schumacher K, Ravikovitch PI, Du Chesne A, Neimark A, Unger KK. Characterization of MCM-48 materials. Langmuir. 2000;16:4648-54. .

  229. Huo Q, Leon R, Petroff PM, Stucky GD. Mesostructure design with gemini surfactants: Supercage formation in a 3-dimensional hexagonal array. Science. 1995;268:1324-7. .

  230. Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature. 2000;408:449-53. .

  231. El Haskouri J, Cabrera S, Caldes M, Guillem C, Latorre J, Beltran A, Beltran D, Marcos MD, Amoros P. Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater. 2002;14:2637-43. .

  232. Zhao DY, Huo QS, Feng JL, Kim JM, Han YJ, Stucky GD. Novel mesoporous silicates with two-dimensional meso-structure direction using rigid bolaform surfactants. Chem Mater. 1999;11:2668-72. .

  233. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120:6024-36. .

  234. Sakamoto Y, Diaz I, Terasaki O, Zhao DY, Perez-Pariente J, Kim JM, Stucky GD. Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography. J Phys Chem B. 2002;106:3118-23. .

  235. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548-52. .

  236. Yu CZ, Yu YH, Zhao DY. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer. Chem Commun. 2000; 575-576. .

  237. Shen S, Li Y, Zhang Z, Fan J, Tu B, Zhou W, Zhao D. A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant. Chem Commun. 2002;19:2212-3. .

  238. Liu X, Tian B, Yu C, Gao F, Xie S, Tu B, Che R, Peng LM, Zhao D. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew Chem Int Ed Engl. 2002;41:3876-8. .

  239. Shen S, Garcia-Bennett AE, Liu Z, Lu Q, Shi Y, Yan Y, Yu C, Liu W, Cai Y, Terasaki O, Zhao D. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J Am Chem Soc. 2005;127:6780-7. .

  240. Hodgkins RP, Garcia-Bennett AE, Wright PA. Structure and morphology of propylthiol-functionalised mesoporous silicas templated by non-ionic triblock copolymers. Microporous Mesoporous Mater. 2005;79: 241-52. .

  241. Yu T, Zhang H, Yan X, Chen Z, Zou X, Oleynikov P, Zhao D. Pore structures of ordered large cage-type mesoporous silica FDU-12s. J Phys Chem B. 2006;110:21467-72. .

  242. Schmidt-Winkel P, Glinka CJ, Stucky GD. Micro-emulsion templates for mesoporous silica. Langmuir. 2000;16:356-61. .

  243. Inagaki S, Fukushima Y, Kuroda K. Synthesis and characterization of highly ordered mesoporous material-Fsm-16, from a layered polysilicate. Amsterdam; Sara Burgerhartstraat 25, Po Box 211, 1000 AE Amsterdam, Netherlands: Elsevier Science Publ B V; 1994. p. 132. .

  244. Bagshaw SA, Prouzet E, Pinnavaia TJ. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science. 1995;269:1242-4. .

  245. Chen M, Hu J, Wang L, Li Y, Zhu C, Chen C, Shi M, Ju Z, Cao X, Zhang Z. Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy. Sci Rep. 2020;10:14447. .

  246. Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 2017;9: 18462-73. .

  247. Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, Luo L, Zuo Y, Wang X, Zhang X, Zeng X, Mei L. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13. doi: 10.1002/smll/201700623. .

  248. Dai L, Zhang Q, Li J, Shen X, Mu C, Cai K. Dendrimer like mesoporous silica nanoparticles as pH-responsive nanocontainers for targeted drug delivery and bioimaging. ACS Appl Mater Interfaces. 2015;7:7357-72. .

  249. Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery. Int J Nanomedicine. 2019;14:5785-97. .

  250. Hou J, Guo C, Shi Y, Liu E, Dong W, Yu B, Liu S, Gong J. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. Int J Pharm. 2017;533:73-83. .

  251. Hou R, Wang Y, Xu Y, Zheng Y, Ma M, Hu B. Theranostic hollow/mesoporous organosilica nanospheres enhance the therapeutic efficacy of anticancer drugs in metastatic hormone-resistant prostate cancer. RSC Adv. 2016;6:94058-67. .

  252. Huang L, Zhang Q, Dai L, Shen X, Chen W, Cai K. Phenylboronic acid-modified hollow silica nanoparticles for dual-responsive delivery of doxorubicin for targeted tumor therapy. Regen Biomater. 2017;4:111-24. .

  253. Kang Y, Sun W, Li S, Li M, Fan J, Du J, Liang XJ, Peng X. Oligo hyaluronan-coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv Sci. 2019;6:1900716. .

  254. Khatoon S, Han HS, Lee M, Lee H, Jung DW, Thambi T, Ikram M, Kang YM, Yi GR, Park JH. Zwitterionic meso-porous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomater. 2016;40:282-92. .

  255. Li QL, Sun Y, Sun YL, Wen J, Zhou Y, Bing QM, Isaacs LD, Jin Y, Gao H, Yang YW. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem Mater. 2014;26:6418-31. .

  256. Liu J, Zhao L, Shi L, Yuan Y, Fu D, Ye Z, Li Q, Deng Y, Liu X, Lv Q, Cheng Y, Xu Y, Jiang X, Wang G, Wang L, Wang Z. A sequentially responsive nanosystem breaches cascaded bio-barriers and suppresses P-glycoprotein function for reversing cancer drug resistance. ACS Appl Mater Interfaces. 2020;12(49):54343-55. .

  257. Liu Y, Dai R, Wei Q, Li W, Zhu G, Chi H, Guo Z, Wang L, Cui C, Xu J, Ma K. Dual-functionalized janus mesoporous silica nanoparticles with active targeting and charge reversal for synergistic tumor-targeting therapy. ACS Appl Mater Interfaces. 2019;11:44582-92. .

  258. Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, Weng WB, Guo SM. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gate-keeper for cancer treatment. Colloids Surf B Biointerfaces. 2019;175:477-86. .

  259. Liu J, Li Q, Zhang J, Huang L, Qi C, Xu L, Liu X, Wang G, Wang L, Wang Z. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small. 2017;13:1602567. .

  260. Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, Cai K. Hollow mesoporous silica nanoparticles facilitated drugdelivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials. 2016;83:51-65. .

  261. Palanikumar L, Choi ES, Oh JY, Park SA, Choi H, Kim K, Kim C, Ryu JH. Importance of encapsulation stability of nanocarriers with high drug loading capacity for increasing in vivo therapeutic efficacy. Biomacromolecules. 2018;19:3030-9. .

  262. Qiao H, Jia J, Shen H, Zhao S, Chen E, Chen W, Di B, Hu C. Capping silica nanoparticles with tryptophan-mediated cucurbit[8]uril complex for targeted intracellular drug delivery triggered by tumor-overexpressed IDO1 enzyme. Adv Healthc Mater. 2019;8:1900174. .

  263. Ramya AN, Joseph MM, Maniganda S, Karunakaran V, Sreelekha TT, Maiti KK. Emergence of gold-mesoporous silica hybrid nanotheranostics: Dox-encoded, folate targeted chemotherapy with modulation of SERS fingerprinting for apoptosis toward tumor eradication. Small. 2017;13. doi: 10.1002/smll.201700819. .

  264. Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, Chen QX, Dong WF, Chen L. Janus "nano-bullets" for magnetic targeting liver cancer chemotherapy. Biomaterials. 2016;100:118-33. .

  265. Shen L, Pan S, Niu D, He J, Jia X, Hao J, Gu J, Zhao W, Li P, Li Y. Facile synthesis of organosilica-capped meso-porous silica nanocarriers with selective redox-triggered drug release properties for safe tumor chemotherapy. Bio-mater Sci. 2019;7:1825-32. .

  266. Si P, Shi J, Zhang P, Wang C, Chen H, Mi X, Chu W, Zhai B, Li W. MUC-1 recognition-based activated drug nano-platform improves doxorubicin chemotherapy in breast cancer. Cancer Lett. 2020;472:165-74. .

  267. Tian Y, Guo R, Jiao Y, Sun Y, Shen S, Wang Y, Lu D, Jiang X, Yang W. Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horiz. 2016;1:480-7. .

  268. Wan L, Chen Z, Deng Y, Liao T, Kuang Y, Liu J, Duan J, Xu Z, Jiang B, Li C. A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy. J Colloid Interface Sci. 2020;573:263-77. .

  269. Wang M, Liu W, Zhang Y, Dang M, Zhang Y, Tao J, Chen K, Peng X, Teng Z. Intercellular adhesion molecule 1 anti-body-mediated mesoporous drug delivery system for targeted treatment of triple-negative breast cancer. J Colloid Interface Sci. 2019;538:630-7. .

  270. Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017;24:681-91. .

  271. Xu J, Gao F, Li L, Ma HL, Fan Y, Liu W, Guo S, Zhao X, Wang H. Gelatin-mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Microporous and Mesoporous Materials. 2013;182:165-72. .

  272. Yang Y, Wang A, Wei Q, Schlesener C, Haag R, Li Q, Li J. Hyperbranched polyglycerol-induced porous silica nanoparticles as drug carriers for cancer therapy in vitro and in vivo. ChemistryOpen. 2017;6:158-64. .

  273. Yang D, Wang T, Su Z, Xue L, Mo R, Zhang C. Reversing cancer multidrug resistance in xenograft models via orchestrating multiple actions of functional mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016;8:22431-41. .

  274. You Y, He L, Ma B, Chen T. High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater. 2017;27:1703313. .

  275. Zhang Y, Dang M, Tian Y, Zhu Y, Liu W, Tian W, Su Y, Ni Q, Xu C, Lu N, Tao J, Li Y, Zhao S, Zhao Y, Yang Z, Sun L, Teng Z, Lu G. Tumor acidic microenvironment targeted drug delivery based on pHLIP-modified mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces. 2017;9:30543-52. .

  276. Zhang Q, Wang X, Li P, Nguyen KT, Wang X, Luo Z, Zhang H, Tan NS, Zhao Y. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater. 2014;24:2450-61. .

  277. Zhao P, Li L, Zhou S, Qiu L, Qian Z, Liu X, Cao X, Zhang H. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C Mater Biol Appl. 2018;84:108-17. .

  278. Zhao X, Zhou S, Wang D, He W, Li J, Zhang S. Dual-intelligent functionalized silica nanoparticles for liver cancer imaging and therapy. Int J Clin Exp Med. 2016;9:13584-94. .

  279. Zhou J, Li M, Lim WQ, Luo Z, Phua SZF, Huo R, Li L, Li K, Dai L, Liu J, Cai K, Zhao Y. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics. 2018;8:518-32. .

  280. Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, Wang M, Wang Q, Qian Y, Wang S. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2 LDH for anti-neuroblastoma therapy. Acta Biomater. 2017;63:163-80. .

  281. Cao Y, Wu C, Liu Y, Hu L, Shang W, Gao Z, Xia N. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv. 2020;27:258-68. .

  282. Chai S, Kan S, Sun R, Zhou R, Sun Y, Chen W, Yu B. Fabricating polydopamine-coated MoSe2-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. Int J Nanomedicine. 2018;13:7607-21. .

  283. Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, Zhang W, Wang P. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale. 2019;11:11012-24. .

  284. Cheng X, Li D, Lin A, Xu J, Wu L, Gu H, Huang Z, Liu J, Zhang Y, Yin X. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. Int J Nanomed. 2018;13:3661-77. .

  285. Fang J, Liu Y, Chen Y, Ouyang D, Yang G, Yu T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and syner-gistic chemo-photothermal therapy. Int J Nanomedicine. 2018;13:5991-6007. .

  286. Feng S, Mao Y, Wang X, Zhou M, Lu H, Zhao Q, Wang S. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. J Colloid Interface Sci. 2020;559:51-64. .

  287. Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X. Core-satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Adv Funct Mater. 2018;28:1801961. .

  288. Lei W, Sun C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater Sci Eng C Mater Biol Appl. 2019;105:110103. .

  289. Lei Q, Qiu WX, Hu JJ, Cao PX, Zhu CH, Cheng H, Zhang XZ. Multifunctional mesoporous silica nanoparticles with thermal-responsive gatekeeper for NIR light-triggered chemo/photothermal-therapy. Small. 2016;12:4286-98. .

  290. Li D, Zhang T, Min C, Huang H, Tan D, Gu W. Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chem Eng J. 2020;388:124253. .

  291. Lu Y, Li L, Lin Z, Li M, Hu X, Zhang Y, Peng M, Xia H, Han G. Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth sulfidemesoporous silica nanoparticles. Adv Healthc Mater. 2018;7:1800602. .

  292. Wang J, Zhang W, Li S, Miao D, Qian G, Su G. Engineering of porous silica coated gold nanorods by surface-protected etching and their applications in drug loading and combined cancer therapy. Langmuir. 2019;35:14238-47. .

  293. Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supra-molecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics. 2020;10:615-29. .

  294. Zhong R, Wang R, Hou X, Song L, Zhang Y. Polydopamine-doped virus-like structured nanoparticles for photoacoustic imaging guided synergistic chemo-/photo-thermal therapy. RSC Adv. 2020;10:18016-24. .

  295. Fang J, Wang Q, Yang G, Xiao X, Li L, Yu T. Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids Surf B Biointerfaces. 2019;179:250-9. .

  296. Li Z, Han J, Yu L, Qian X, Xing H, Lin H, Wu M, Yang T, Chen Y. Synergistic Sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosono sensitizers. Adv Funct Mater. 2018;28:1800145. .

  297. Liu G, Ma J, Li Y, Li Q, Tan C, Song H, Cai S, Chen D, Hou Z, Chen Q, Zhu X. Core-interlayer-shell Fe3O4 mSiO(2)lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy. Int J Pharm. 2017;521:19-32. .

  298. Vijayakameswara RN, Han HS, Lee H, Nguyen VQ, Jeon S, Jung DW, Lee J, Yi GR, Park JH. ROS-responsive mesoporous silica nanoparticles for MR imaging-guided photodynamically maneuvered chemotherapy. Nanoscale. 2018;10:9616-27. .

  299. Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7:523-37. .

  300. Wang D, Li X, Li X, Kang A, Sun L, Sun M, Yang F, Xu C. Magnetic and pH dual-responsive nanoparticles for synergistic drug-resistant breast cancer chemo/photodynamic therapy. Int J Nanomed. 2019;14:7665-79. .

  301. Xu P, Yao J, Li Z, Wang M, Zhou L, Zhong G, Zheng Y, Li N, Zhai Z, Yang S, Wu Y, Zhang D, Dai Z. Therapeutic effect of doxorubicin-chlorin E6-loaded mesoporous silica nanoparticles combined with ultrasound on triple-negative breast cancer. Int J Nanomedicine. 2020;15:2659-68. .

  302. Wang Z, Shao D, Chang Z, Lu M, Wang Y, Yue J, Yang D, Li M, Xu Q, Dong WF. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano. 2017;11:12732-41. .

  303. Chen Z, Zhu P, Zhang Y, Liu Y, He Y, Zhang L, Gao Y. Enhanced sensitivity of cancer stem cells to chemotherapy using functionalized mesoporous silica nanoparticles. Mol Pharm. 2016;13:2749-59. .

  304. Ding X, Yu W, Wan Y, Yang M, Hua C, Peng N, Liu Y. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydr Polym. 2020;245:116493. .

  305. He Y, Shao L, Usman I, Hu Y, Pan A, Liang S, Xu H. A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomater Sci. 2020;8:3418-29. .

  306. He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Control Release. 2016;229:80-92. .

  307. Hu JJ, Lei Q, Peng MY, Zheng DW, Chen YX, Zhang XZ. A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials. 2017;128:136-46. .

  308. Kankala RK, Liu C, Yang D, Wang S, Chen A. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem Eng J. 2020;383:123138. .

  309. Kong M, Tang J, Qiao Q, Wu T, Qi Y, Tan S, Gao X, Zhang Z. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics. 2017;7:3276-92. .

  310. Liu H, Luan X, Feng H, Dong X, Yang S, Chen Z, Cai Q, Lu Q, Zhang Y, Sun P, Zhao M, Chen H, Lovell JF, Fang C. Integrated combination treatment using a "smart" chemotherapy and microRNA delivery system improves outcomes in an orthotopic colorectal cancer model. Adv Funct Mater. 2018;28:1801118. .

  311. Ramasamy T, Ruttala HB, Sundaramoorthy P, Poudel BK, Youn YS, Ku SK, Choi H, Yong CS, Kim JO. Multimodal selenium nanoshell-capped Au@mSiO(2) nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. Npg Asia Mater. 2018;10:197-216. .

  312. Su T, Long Y, Deng C, Feng L, Zhang X, Chen Z, Li C. Construction of a two-in-one liposomal system (TWO-Lips) for tumor-targeted combination therapy. Int J Pharm. 2014;476:241-52. .

  313. Xie J, Xu W, Wu Y, Niu B, Zhang X. Macroporous organosilicon nanocomposites co-deliver Bcl2-converting peptide and chemotherapeutic agent for synergistic treatment against multidrug resistant cancer. Cancer Lett. 2020;469:340-54. .

  314. Xue H, Yu Z, Liu Y, Yuan W, Yang T, You J, He X, Lee RJ, Li L, Xu C. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. Int J Nanomedicine. 2017;12:5271-87. .

  315. Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB. Overcoming chemoresistance in cancer via combined MicroRNA therapeutics with anticancer drugs using multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10:26954-63. .

  316. Zhang F, Jia Y, Zheng X, Shao D, Zhao Y, Wang Z, Dawulieti J, Liu W, Sun M, Sun W, Pan Y, Cui L, Wang Y, He K, Zhang M, Li J, Dong WF, Chen L. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater. 2019;100:352-64. .

  317. Zhang B, Luo Z, Liu J, Ding X, Li J, Cai K. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release. 2014;192:192-201. .

  318. Ansari L, Jaafari MR, Bastami TR, Malaekeh-Nikouei B. Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: In vitro and in vivo studies. Artif Cells Nanomed Biotechnol. 2018;46:594-606. .

  319. Babaei M, Abnous K, Taghdisi SM, Taghavi S, Sh Saljooghi A, Ramezani M, Alibolandi M. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA into colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm. 2020;156:84-96. .

  320. Che E, Gao Y, Wan L, Zhang Y, Han N, Bai J, Li J, Sha Z, Wang S. Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo. Microporous Mesoporous Mater. 2015;204: 226-34. .

  321. Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. ChemMedChem. 2020;15:1940-6. .

  322. Chen J, Zhang S, Zhang S, Gao S, Wang J, Lei D, Du P, Xu Z, Zhu C, Sun H. Mesoporous silica nanoparticle-based combination of NQO1 inhibitor and 5-fluorouracil for potent antitumor effect against head and neck squamous cell carcinoma (HNSCC). Nanoscale Res Lett. 2019;14:387. .

  323. Choi JY, Ramasamy T, Kim SY, Kim J, Ku SK, Youn YS, Kim JR, Jeong JH, Choi HG, Yong CS, Kim JO. PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater. 2016;39:94-105. .

  324. Ding J, Yao J, Xue J, Li R, Bao B, Jiang L, Zhu JJ, He Z. Tumor-homing cell-penetrating peptide linked to colloidal mesoporous silica encapsulated (-)-epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Appl Mater Interfaces. 2015;7: 18145-55. .

  325. Du X, Zhang T, Ma G, Gu X, Wang G, Li J. Glucose-responsive mesoporous silica nanoparticles to generation of hydrogen peroxide for synergistic cancer starvation and chemistry therapy. Int J Nanomedicine. 2019;14:2233-51. .

  326. Fei W, Zhang Y, Han S, Tao J, Zheng H, Wei Y, Zhu J, Li F, Wang X. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int J Pharm. 2017;519:250-62. .

  327. Feng Y, Li NX, Yin HL, Chen TY, Yang Q, Wu M. Thermo- and pH-responsive, lipid-coated, mesoporous silica nanoparticle-based dual drug delivery system to improve the antitumor effect of hydrophobic drugs. Mol Pharm. 2019;16:422-36. .

  328. Gao J, Fan K, Jin Y, Zhao L, Wang Q, Tang Y, Xu H, Liu Z, Wang S, Lin J, Lin D. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci. 2019;140:105070. .

  329. Goto A, Yen H, Anraku Y, Fukushima S, Lai P, Kato M, Kishimura A, Kataoka K. Facile preparation of delivery platform of water-soluble low-molecular-weight drugs based on polyion complex vesicle (PICsome) encapsulating mesoporous silica nanoparticle. ACS Biomater Sci Eng. 2017;3:807-15. .

  330. Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm. 2015;89:248-58. .

  331. Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Abnous K, Malaekeh-Nikouei B. Co-delivery of epirubicin and siRNA using functionalized mesoporous silica nanoparti cles enhances in vitro and in vivo drug efficacy. Curr Drug Deliv. 2016;13:1176-82. .

  332. Hu Y, Wang Z, Qiu Y, Liu Y, Ding M, Zhang Y. Anti-miRNA21 and resveratrol-loaded polysaccharide-based mesoporous silica nanoparticle for synergistic activity in gastric carcinoma. J Drug Target. 2019;27:1135-43. .

  333. Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun. 2017;8:357. .

  334. Ke Y, Xiang C. Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy. Int J Nanomedicine. 2018;13:8339-54. .

  335. Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. Mater Sci Eng C Mater Biol Appl. 2020;116:111239. .

  336. Li Z, Zhang Y, Zhu C, Guo T, Xia Q, Hou X, Liu W, Feng N. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int J Pharm. 2020;586:119576. .

  337. Li Y, Tang Y, Chen S, Liu Y, Wang S, Tian Y, Wang C, Teng Z, Lu G. Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Adv. 2019;9:19690-8. .

  338. Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J Nanobiotechnology. 2020;18:114. .

  339. Liu J, Guo X, Luo Z, Zhang J, Li M, Cai K. Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale. 2018;10:13737-50. .

  340. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794-805. .

  341. Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9:3540-57. .

  342. Mu S, Liu Y, Wang T, Zhang J, Jiang D, Yu X, Zhang N. Unsaturated nitrogen-rich polymer poly(L-histidine) gated reversibly switchable mesoporous silica nanoparticles using "graft to" strategy for drug controlled release. Acta Biomater. 2017;63:150-62. .

  343. Murugan C, Venkatesan S, Kannan S. Cancer therapeutic proficiency of dual-targeted mesoporous silica nanocomposite endorses combination drug delivery. ACS Omega. 2017;2:7959-75. .

  344. Pan G, Jia TT, Huang QX, Qiu YY, Xu J, Yin PH, Liu T. Mesoporous silica nanoparticles (MSNs)-based or-ganic/inorganic hybrid nanocarriers loading 5-fluoro- uracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B Biointerfaces. 2017; 159:375-85. .

  345. Ovejero Paredes K, Diaz-Garcia D, Garcia-Almodovar V, Lozano Chamizo L, Marciello M, Diaz-Sanchez M, Prashar S, Gomez-Ruiz S, Filice M. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers. 2020;12:187. .

  346. Qu W, Meng B, Yu Y, Wang S. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. Int J Nanomed. 2018;13:4379-89. .

  347. Ren S, Yang J, Ma L, Li X, Wu W, Liu C, He J, Miao L. Ternary-responsive drug delivery with activatable dual mode contrast-enhanced in vivo imaging. ACS Appl Mater Interfaces. 2018;10:31947-58. .

  348. Tang L, Gabrielson NP, Uckun FM, Fan TM, Cheng J. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol Pharm. 2013;10:883-92. .

  349. Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-conjugated "core-shell" hybrid nanovehicles for targeted and pH-triggered delivery of arsenic trioxide into glioma. Mol Pharm. 2019;16:786-97. .

  350. Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(IV) prodrug for liver cancer therapy. J Mater Chem B. 2017;5:7591-7. .

  351. Wu D, Zhu ZQ, Tang HX, Shi ZE, Kang J, Liu Q, Qi J. Efficacy-shaping nanomedicine by loading calcium peroxide into tumor microenvironment-responsive nanoparticles for the antitumor therapy of prostate cancer. Theranostics. 2020;10:9808-29. .

  352. Xu X, Wu C, Bai A, Liu X, Lv H, Liu Y. Folate-functionalized mesoporous silica nanoparticles as a liver tumor-targeted drug delivery system to improve the antitumor effect of paclitaxel. J Nanomaterials. 2017: 2069685. .

  353. Zhang X, He C, Liu X, Chen Y, Zhao P, Chen C, Yan R, Li M, Fan T, Altine B, Yang T, Lu Y, Lee RJ, Gai Y, Xiang G. One-pot synthesis of a microporous organosilica-coated cisplatin nanoplatform for HIF-1-targeted combination cancer therapy. Theranostics. 2020;10:2918-29. .

  354. Zhao R, Han X, Li Y, Wang H, Ji T, Zhao Y, Nie G. Photothermal effect enhanced cascade targeting strategy for improved pancreatic cancer therapy by gold nanoshell-mesoporous silica nanorod. ACS Nano. 2017;11:8103-13. .

  355. Huang C, Chen T, Zhu D, Huang Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem. 2020;8:225. .

  356. Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis. ACS Appl Mater Interfaces. 2019;11:39688-705. .

  357. Li Y, Jian X, Zhou S, Lu Y, Zhao C, Gao Z, Song YY. Protein shell-encapsulated pt clusters as continuous O-2-supplied biocoats for photodynamic therapy in hypoxic cancer cells. ACS Appl Mater Interfaces. 2019;11: 17215-25. .

  358. Luo G, Chen W, Lei Q, Qiu W, Liu Y, Cheng Y, Zhang X. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv Funct Mater. 2016;26:4339-50. .

  359. Wang Z, Liu J, Zhao N, Li C, Lv S, Hu Y, Lv H, Wang D, Wang S. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl Nanomater. 2020;3:7105-18. .

  360. Wang Z, Chang ZM, Shao D, Zhang F, Chen F, Li L, Ge MF, Hu R, Zheng X, Wang Y, Dong WF. Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer. ACS Appl Mater Interfaces. 2019;11:34755-65. .

  361. Xing H, Wang Z, Shao D, Chang Z, Ge M, Li L, Wu M, Yan Z, Dong W. Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Adv. 2018;8:30448-54. .

  362. Zhang Y, Zhang L, Lin X, Ke L, Li B, Xu L, Lv T, Li Z, Chen H, Gao Y. Dual-responsive nanosystem for precise molecular subtyping and resistant reversal of EGFR targeted therapy. Chem Eng J. 2019;372:483-95. .

  363. Brezaniova I, Zaruba K, Kralova J, Sinica A, Adamkova H, Ulbrich P, Pouckova P, Hruby M, Stepanek P, Kral V. Silica-based nanoparticles are efficient delivery systems for temoporfin. Photodiagnosis Photodyn Ther. 2018;21:275-84. .

  364. Du W, Liu T, Xue F, Chen Y, Chen Q, Luo Y, Cai X, Ma M, Chen H. Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chem Eng J. 2020;379:122251. .

  365. Yang S, You Q, Yang L, Li P, Lu Q, Wang S, Tan F, Ji Y, Li N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for nIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces. 2019;11:6777-88. .

  366. Zhang X, Wang L, Wu X, Cong C. Synthesis of SiO2Cu2-xSe nanospheres for efficient near-infrared radiation mediated treatment and care of gastric cancer patients. J Photochem Photobiol B. 2020;206:111849. .

  367. Liu J, Liang H, Li M, Luo Z, Zhang J, Guo X, Cai K. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials. 2018;157:107-24. .

  368. Wang Z, Zhang F, Shao D, Chang Z, Wang L, Hu H, Zheng X, Li X, Chen F, Tu Z, Li M, Sun W, Chen L, Dong WF. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv Sci. 2019;6:1901690. .

  369. Zhang L, Yang Z, Ren J, Ba L, He W, Wong C. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy. Nano Research. 2020;13:1389-98. .

  370. Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, Liu X, Zhai G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces. 2020;196:111284. .

  371. Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials. 2017;143:1-16. .

  372. Gabizon A, Tzemach D, Mak L, Bronstein M, Horowitz AT. Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Target. 2002;10:539-48. .

  373. Huang SK, Mayhew E, Gilani S, Lasic DD, Martin FJ, Papahadjopoulos D. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon-carcinoma. Cancer Res. 1992;52:6774-81. .

  374. Mayer LD, Bally MB, Cullis PR, Wilson SL, Emerman JT. Comparison of free and liposome encapsulated doxorubicin tumor drug uptake and antitumor efficacy in the Sc115 murine mammary-tumor. Cancer Lett. 1990;53:183-90. .

  375. Mayhew EG, Lasic D, Babbar S, Martin FJ. Pharmacokinetics and antitumor-activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer. 1992;51:302-9. .

  376. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C. Sterically stabilized liposomes - improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88:11460-4. .

  377. Unezaki S, Maruyama K, Ishida O, Suginaka A, Hosoda J, Iwatsuru M. Enhanced tumor targeting and improved antitumor activity of doxorubicin by long-circulating liposomes containing amphipathic poly(ethylene glycol). Int J Pharm. 1995;126:41-8. .

  378. Vaage J, Donovan D, Mayhew E, Abra R, Huang A. Therapy of human ovarian-carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes. Cancer. 1993;72:3671-5. .

  379. Vaage J, Donovan D, Mayhew E, Uster P, Woodle M. Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomes. Int J Cancer. 1993;54:959-64. .

  380. Vaage J, Barbera-Guillem E, Abra R, Huang A, Working P. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer. 1994;73:1478-84. .

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain