Доступ предоставлен для: Guest
International Journal for Uncertainty Quantification
Главный редактор: Habib N. Najm (open in a new tab)
Ассоциированный редакторs: Dongbin Xiu (open in a new tab) Tao Zhou (open in a new tab)
Редактор-основатель: Nicholas Zabaras (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5080

ISSN Онлайн: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

A COMPREHENSIVE COMPARISON OF TOTAL-ORDER ESTIMATORS FOR GLOBAL SENSITIVITY ANALYSIS

Том 12, Выпуск 2, 2022, pp. 1-18
DOI: 10.1615/Int.J.UncertaintyQuantification.2021038133
Get accessDownload

Краткое описание

Sensitivity analysis helps identify which model inputs convey the most uncertainty to the model output. One of the most authoritative measures in global sensitivity analysis is the Sobol' total-order index, which can be computed with several different estimators. Although previous comparisons exist, it is hard to know which estimator performs best since the results are contingent on the benchmark setting defined by the analyst (the sampling method, the distribution of the model inputs, the number of model runs, the test function or model and its dimensionality, the weight of higher order effects, or the performance measure selected). Here we compare several total-order estimators in an eight-dimension hypercube, where these benchmark parameters are treated as random parameters. This arrangement significantly relaxes the dependency of the results on the benchmark design. We observe that the most accurate estimators are from Razavi and Gupta, Jansen, or Janon/Monod for factor prioritization, and from Jansen, Janon/Monod, or Azzini and Rosatifor approaching the "true" total-order indices. The rest lag considerably behind. Our work helps analysts navigate myriad total-order formulae by reducing the uncertainty in the selection of the most appropriate estimator.

ЛИТЕРАТУРА
  1. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., Global Sensitivity Analysis: The Primer, Chichester, UK: Wiley, 2008.

  2. Jakeman, A., Letcher, R., and Norton, J., Ten Iterative Steps in Development and Evaluation of Environmental Models, Env. Modell. Software, 21(5):602-614, 2006.

  3. Eker, S., Rovenskaya, E., Obersteiner, M., and Langan, S., Practice and Perspectives in the Validation of Resource Management Models, Nat. Commun., 9(1):1-10, 2018.

  4. Saltelli, A., Sensitivity Analysis for Importance Assessment, Risk Anal., 22(3):579-590,2002.

  5. Iooss, B. and Lemaitre, P., A Review on Global Sensitivity Analysis Methods, in Uncertainty Management in Simulation-Optimization of Complex Systems, Vol. 59, G. Dellino and C. Meloni, Eds., pp. 101-122, Boston: Springer, 2015.

  6. Becker, W. and Saltelli, A., Design for Sensitivity Analysis, in Handbook of Design and Analysis of Experiments, A. Dean, M. Morris, J. Stufken, and D. Bingham, Eds., Boca Raton, FL: CRC Press, Taylor & Francis, pp. 627-674,2015.

  7. Homma, T. and Saltelli, A., Importance Measures in Global Sensitivity Analysis of Nonlinear Models, Reliab. Eng. Syst. Saf., 52:1-17,1996.

  8. Le Gratiet, L., Marelli, S., and Sudret, B., Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, in Handbook of Uncertainty Quantification, Cham, Switzerland: Springer, pp. 1289-1325, 2017.

  9. Saltelli, A., Tarantola, S., and Chan, K.P.S., A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output, Technometrics, 41(1):39-56, 1999.

  10. Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., and Schaibly, J.H., Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I Theory, The J. Chem. Phys., 59(8):3873-3878,1973.

  11. Cukier, R.I., Levine, H.B., and Shuler, K.E., Nonlinear Sensitivity Analysis of Multiparameter Model Systems, J. Comput. Phys, 26(1):1-42, 1978.

  12. Sobol', I.M., On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals, USSR Comput. Math. Math. Phys, 7(4):86-112, 1967.

  13. Sobol', I.M., Uniformly Distributed Sequences with an Additional Uniform Property, USSR Comput. Math. Math. Phys, 16(5):236-242,1976.

  14. Lo Piano, S., Ferretti, F., Puy, A., Albrecht, D., and Saltelli, A., Variance-Based Sensitivity Analysis: The Quest for Better Estimators and Designs between Explorativity and Economy, Reliab. Eng. Syst. Saf., 206:107300, 2021.

  15. Jansen, M., Analysis of Variance Designs for Model Output, Comput. Phys. Commun., 117(1-2):35-43,1999.

  16. Janon, A., Klein, T., Lagnoux, A., Nodet, M., and Prieur, C., Asymptotic Normality and Efficiency of Two Sobol Index Estimators, ESAIM: Probab. Stat, 18(3):342-364,2014.

  17. Glen, G. and Isaacs, K., Estimating Sobol Sensitivity Indices Using Correlations, Env. Modell. Software, 37:157-166,2012.

  18. Azzini, I., Mara, T., and Rosati, R., Monte Carlo Estimators of First- and Total-Orders Sobol' Indices, Stat. Appl., arXiv:2006.08232, 2020.

  19. Monod, H., Naud, C., and Makowski, D., Uncertainty and Sensitivity Analysis for Crop Models, in Working with Dynamic Crop Models, D. Wallach, D. Makowski, and J.W. Jones, Eds., New York: Elsevier, pp. 35-100,2006.

  20. Razavi, S. and Gupta, H.V., A New Framework for Comprehensive, Robust, and Efficient Global Sensitivity Analysis: 2. Application, Water Res. Res., 52(1):440-455, 2016.

  21. Becker, W., Metafunctions for Benchmarking in Sensitivity Analysis, Reliab. Eng. Syst. Saf., 204:107189, 2020.

  22. Kucherenko, S., Feil, B., Shah, N., and Mauntz, W., The Identification of Model Effective Dimensions Using Global Sensitivity Analysis, Reliab. Eng. Syst. Saf., 96(4):440-449, 2011.

  23. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S., Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index, Comput. Phys. Commun., 181(2):259-270, 2010.

  24. Ishigami, T. and Homma, T., An Importance Quantification Technique in Uncertainty Analysis for Computer Models, Proc. First Int. Symp. Uncert. Modell. Anal., 12:398-403, 1990.

  25. Sobol', I.M., On Quasi-Monte Carlo Integrations, Math. Comput. Simul., 47(2-5):103-112,1998.

  26. Bratley, P. and Fox, B.L., ALGORITHM 659: Implementing Sobol's Quasirandom Sequence Generator, ACMTrans. Math. Software, 14(1):88-100,1988.

  27. Borgonovo, E. and Plischke, E., Sensitivity Analysis: A Review of Recent Advances, Eur. J. Oper. Res, 248(3):869-887, 2016.

  28. Saltelli, A., A Short Comment on Statistical versus Mathematical Modelling, Nat. Commun., 10(1):8-10, 2019.

  29. Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., NelsonEspeland, W., Kay, J., Lo Piano, S., Mayo, D., Pielke, R., Jr., Portaluri, T., Porter, T.M., Puy, A., Rafols, I., Ravetz, J.R., Reinert, E., Sarewitz, D., Stark, P.B., Stirling, A., van der Sluijs, J., and Vineis, P., Five Ways to Ensure That Models Serve Society: A Manifesto, Nature, 582(7813):482-484, 2020.

  30. Sheikholeslami, R., Razavi, S., Gupta, H.V., Becker, W., and Haghnegahdar, A., Global Sensitivity Analysis for High- Dimensional Problems: How to Objectively Group Factors and Measure Robustness and Convergence While Reducing Computational Cost, Env. Modell. Software, 111:282-299, 2019.

  31. Sarrazin, F., Pianosi, F., and Wagener, T., Global Sensitivity Analysis of Environmental Models: Convergence and Validation, Env. Modell. Software, 79:135-152,2016.

  32. Haghnegahdar, A., Razavi, S., Yassin, F., and Wheater, H., Multicriteria Sensitivity Analysis as a Diagnostic Tool for Understanding Model Behaviour and Characterizing Model Uncertainty, Hydrol. Proces., 31(25):4462-4476, 2017.

  33. Azzini, I. and Rosati, R., The IA-Estimator for Sobol' Sensitivity Indices, in 9th Int. Conf. on Sensitivity Analysis of Model Output, Barcelona, Spain, 2019.

  34. Shin, M.J., Guillaume, J.H.A., Croke, B.F.W., and Jakeman, A.J., Addressing Ten Questions about Conceptual Rainfall-Runoff Models with Global Sensitivity Analyses in R, J. Hydrol., 503:135-152, 2013.

  35. Paleari, L. and Confalonieri, R., Sensitivity Analysis of a Sensitivity Analysis: We Are Likely Overlooking the Impact of Distributional Assumptions, Ecol. Modell, 340:57-63,2016.

  36. Spearman, C., The Proof and Measurement of Association between Two Things, Am. J. Psychol, 15(1):72-101, 1904.

  37. Kendall, M.G. and Smith, B.B., The Problem of m Rankings, Ann. Math. Stat., 10(3):275-287,1939.

  38. Savage, I.R., Contributions to the Theory of Rank Order Statistics: The Two Sample Case, Ann. Math. Stat., 27:590-615, 1956.

  39. Razavi, S. and Gupta, H.V., A New Framework for Comprehensive, Robust, and Efficient Global Sensitivity Analysis: 1. Theory, Water Resour. Res., 52(1):423-439, 2016.

  40. Owen, A.B., Better Estimation of Small Sobol' Sensitivity Indices, ACM Trans. Modell. Comput. Simul., 23(2):1-17, 2013.

  41. Iooss, B., Janon, A., Pujol, G., Baptiste, B., Boumhaout, K., Veiga, S.D., Delage, T., Amri, R.E., Fruth, J., Gilquin, L., Guillaume, J., Le Gratiet, L., Lemaitre, P., Marrel, A., Meynaoui, A., Nelson, B.L., Monari, F., Oomen, R., Rakovec, O., Ramos, B., Roustant, O., Song, E., Staum, J., Sueur, R., Touati, T., and Weber, F., Sensitivity: Global Sensitivity Analysis of Model Outputs, Rpackage version 1.22.1, 2020.

  42. Puy, A., Lo Piano, S., and Saltelli, A., A Sensitivity Analysis of the PAWN Sensitivity Index, Env. Modell. Software, 127:104679,2020.

  43. Owen, A.B., Randomly Permuted (t, m, s)-Nets and (t, s)-Sequences, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Vol. 106, New York: Springer, pp. 299-317, 1995.

  44. Box, G.E.P., Hunter, J.S., and Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery, Hoboken, NJ: Wiley, 2005.

  45. Pareto, V., Manuale Di Economia Politica, Vol. 13, Societa Editrice, 1906.

  46. Box, G.E.P. and Meyer, R.D., An Analysis for Unreplicated Fractional Factorials, Technometrics, 28(1):11-18,1986.

  47. Azzini, I., Listorti, G., Mara, T.A., and Rosati, R., Uncertainty and Sensitivity Analysis for Policy Decision Making: An Introductory Guide, Luxembourg, 2020.

  48. Liu, H., Chen, W., and Sudjianto, A., Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design, J Mech. Des. Trans. ASME, 128(2):326-336,2006.

  49. Borgonovo, E., A New Uncertainty Importance Measure, Reliab. Eng. System Safety, 92(6):771-784, 2007.

  50. Pianosi, F. and Wagener, T., A Simple and Efficient Method for Global Sensitivity Analysis Based on Cumulative Distribution Functions, Env. Modell. Software, 67:1-11, 2015.

  51. Pianosi, F. and Wagener, T., Distribution-Based Sensitivity Analysis from a Generic Input-Output Sample, Env. Modell. Software, 108:197-207, 2018.

  52. Puy, A., R Code of "A Comprehensive Comparison of Total-Order Estimators for Global Sensitivity Analysis", Zenodo, p. 4946559,2021.

  53. Puy, A., Lo Piano, S., Saltelli, A., and Levin, S.A., Sensobol: An R Package to Compute Variance-Based Sensitivity Indices, Stat. Comput, arXiv:2101.10103, 2021.

ЦИТИРОВАНО В
  1. West Todd, Sessions John, Strimbu Bogdan M., Steep Slope Harvest System Models for Small to Large Trees, Forests, 13, 2, 2022. Crossref

  2. Puy Arnald, Lankford Bruce, Meier Jonas, van der Kooij Saskia, Saltelli Andrea, Large variations in global irrigation withdrawals caused by uncertain irrigation efficiencies, Environmental Research Letters, 17, 4, 2022. Crossref

  3. Hao Na, Li Xu, Li Yanlong, Jia Jinsheng, Gao Liang, A novel reliability-based method of calibrating safety factor: Application to the cemented sand and gravel dams, Engineering Geology, 306, 2022. Crossref

  4. Adelung Sandra, Global sensitivity and uncertainty analysis of a Fischer-Tropsch based Power-to-Liquid process, Journal of CO2 Utilization, 65, 2022. Crossref

  5. Puy Arnald, Beneventano Pierfrancesco, Levin Simon A., Lo Piano Samuele, Portaluri Tommaso, Saltelli Andrea, Models with higher effective dimensions tend to produce more uncertain estimates, Science Advances, 8, 42, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain