Доступ предоставлен для: Guest
International Journal for Uncertainty Quantification
Главный редактор: Habib N. Najm (open in a new tab)
Ассоциированный редакторs: Dongbin Xiu (open in a new tab) Tao Zhou (open in a new tab)
Редактор-основатель: Nicholas Zabaras (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5080

ISSN Онлайн: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

SURROGATE BASED MUTUAL INFORMATION APPROXIMATION AND OPTIMIZATION FOR URBAN SOURCE LOCALIZATION

Том 11, Выпуск 5, 2021, pp. 39-55
DOI: 10.1615/Int.J.UncertaintyQuantification.2021034400
Get accessGet access

Краткое описание

The ability to efficiently and accurately localize potentially threatening nuclear radiation sources in urban environments is of critical importance to national security. Techniques to infer the location and intensity of a source using data from a configuration of radiation detectors, and the effectiveness of the source localization depends critically on how the detectors are configured. In this paper, we introduce a framework that uses surrogate models to efficiently compare and optimize different detector configurations. We compare our technique to others and demonstrate its effectiveness for selecting optimal detector configurations in the context of urban source localization.

ЛИТЕРАТУРА
  1. Morelande, M., Ristic, B., and Gunatilaka, A., Detection and Parameter Estimation of Multiple Radioactive Sources, in FUSION 2007-2007 10th Int. Conf. on Information Fusion, Quebec City, Canada, 2007.

  2. Rao, N.S., Shankar, M., Srivathsan, S., Iyengar, S.S., Chin, J.C., Yau, D.K., Yang, Y., and Hou, J.C., Identification of Low-Level Point Radiation Sources Using a Sensor Network, in Proc. Int. Conf. on Information Processing in Sensor Networks, IPSN2008, St Louis, MO, IEEE, pp. 493-504,2008.

  3. Vilim, R. and Klann, R.T., RadTarc: A System for Detecting, Localizing, and Tracking Radioactive Sources in Real Time, Nucl. Technol., 168(1):61-73,2009.

  4. Chandy, M., Pilotto, C., and McLean, R., Networked Sensing Systems for Detecting People Carrying Radioactive Material, in Proc. of INSS 2008-5th International Conference on Networked Sensing Systems, Kanazawa, Japan, IEEE, pp. 148-155, 2008.

  5. Cox, J. and Partensky, M.B., Spatial Localization Problem and the Circle of Apollonius, Phys. Educ., arXiv:physics/0701146, 2007.

  6. Chin, J.C., Yau, D.K., Rao, N.S., Yang, Y., Ma, C.Y., and Shankar, M., Accurate Localization of Low-Level Radioactive Source under Noise and Measurement Errors, in SenSys '08-Proc. of the 6th ACM Conf. on Embedded Networked Sensor Systems, Raleigh, NC, ACM, pp. 183-196, 2008.

  7. Baidoo-Williams, H.E., Dasgupta, S., Mudumbai, R., and Bai, E., On the Gradient Descent Localization of Radioactive Sources, IEEE Signal Process. Lett., 20(11):1046-1049,2013.

  8. Gunatilaka, A., Ristic, B., and Gailis, R., On Localisation of a Radiological Point Source, in Conf. Proc. of2007Information, Decision and Control, IDC, New Orleans, LA, IEEE, pp. 236-241, 2007.

  9. Hite, J., Mattingly, J., Archer, D., Willis, M., Rowe, A., Bray, K., Carter, J., and Ghawaly, J., Localization of a Radioactive Source in an Urban Environment Using Bayesian Metropolis Methods, Nucl. Instrum. Methods Phys. Res., Sect. A, 915:82-93, 2019.

  10. Jarman, K.D., Miller, E.A., Wittman, R.S., and Gesh, C.J., Bayesian Radiation Source Localization, Nucl. Technol., 175(1):326-334, 2011.

  11. Stefanescu, R., Schmidt, K., Hite, J., Smith, R.C., and Mattingly, J., Hybrid Optimization and Bayesian Inference Techniques for a Non-Smooth Radiation Detection Problem, Int. J. Numer. Methods Eng., 111(10):955-982, 2017.

  12. Penny, R.D., Crowley, T.M., Gardner, B.M., Mandell, M.J., Guo, Y., Haas, E.B., Knize, D.J., Kuharski, R.A., Ranta, D., Shyffer, R., Labov, S., Nelson, K., Seilhan, B., and Valentine, J.D., Improved Radiological/Nuclear Source Localization in Variable NORM Background: An MLEM Approach with Segmentation Data, Nucl. Instrum. Methods Phys. Res., Sect. A, 784:319-325,2015.

  13. Michaud, I.J., Simulation-Based Bayesian Experimental Design Using Mutual Information, PhD, North Carolina State University, 2019.

  14. Schmidt, K., Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering, PhD, North Carolina State University, 2016.

  15. Haario, H., Laine, M., Mira, A., and Saksman, E., DRAM: Efficient Adaptive MCMC, Stat. Comput, 16:339-354, 2006.

  16. Briesmeister, J.F., MCNPTM-A General Monte Carlo N-Particle Transport Code, accessed from https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M, 2000.

  17. Swinney, M.W., Peplow, D.E., Nicholson, A.D., and Patton, B.W., NORM Concentration Determination in Common Materials in an Urban Environment, Trans. Am. Nucl. Soc., 114:635-638,2016.

  18. Horne, S.M., Thoreson, G.G., Theisen, L.A., Mitchell, D.J., Harding, L., and Amai, W.A., GADRAS-DRF 18.5 User's Manual, Tech. Rep., Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2014.

  19. Knoll, G.G., Radiation Detection andMeasuremen, 4th ed., Hoboken, NJ: John Wiley and Sons, 2010.

  20. Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., and Hjelm, R.D., Mutual Information Neural Estimation, in ICML Proc. 35th Int. Conf. on Machine Learning, pp. 531-540, Stockholm, Sweden, 2018.

  21. Gao, S., Ver Steeg, G., and Galstyan, A., Efficient Estimation of Mutual Information for Strongly Dependent Variables, in Proc. of Artificial Intelligence and Statistics, pp. 277-286, San Diego, CA, 2015.

  22. Gao, S., Ver Steeg, G., and Galstyan, A., Estimating Mutual Information by Local Gaussian Approximation, in Uncertainty in Artificial Intelligence, Proc. of the 31st Conf., UAI, pp. 278-287, Amsterdam, Netherlands, 2015.

  23. Kraskov, A., Stogbauer, H., and Grassberger, P., Estimating Mutual Information, Phys. Rev. E, 69:066138, 2004.

  24. Han, Z.H., Zhang, K.S., Song, W.P., and Qiao, Z.D., Optimization of Active Flow Control over an Airfoil Using a Surrogate-Management Framework, J. Aircraft, 47(2):603-612, 2010.

  25. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, K.P., Surrogate-Based Analysis and Optimization, Prog. Aerosp. Sci., 41(1):1-28, 2005.

  26. McKay, M.D., Beckman, R.J., and Conover, W. J., A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21(2):239-245, 1979.

  27. Stein, M., Large Sample Properties of Simulations Using Latin Hypercube Sampling, Technometrics, 29(2):143-151, 1987.

  28. Santner, T.J., Williams, B.J., and Notz, W.I., The Design and Analysis of Computer Experiments, 2nd ed., New York, NY: Springer, 2018.

  29. Roustant, O., Ginsbourger, D., and Deville, Y., DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, J. Stat. Software, 51:1-55, 2012.

  30. Friedman, J.H., Multivariate Adaptive Regression Splines, Ann. Stat., 19(1):1-67, 1991.

  31. Banerjee, A., Dunson, D.B., and Tokdar, S.T., Efficient Gaussian Process Regression for Large Datasets, Biometrika, 100(1):75-89, 2013.

  32. 0stergard, T., Jensen, R.L., andMaagaard, S.E., A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations, Appl. Energy, 211:89-103,2018.

  33. Denison, D.G., Mallick, B.K., and Smith, A.F., Bayesian MARS, Stat. Comput., 8:337-346, 1998.

  34. Francom, D., Sanso, B., Kupresanin, A., and Johannesson, G., Sensitivity Analysis and Emulation for Functional Data Using Bayesian Adaptive Splines, Stat. Sin., 28:791-816,2018.

  35. Francom, D. and Sanso, B., BASS: An R Package for Fitting and Performing Sensitivity Analysis of Bayesian Adaptive Spline Surfaces, accessed from https://cran.r-project.org/package=BASS, 2017.

  36. Neto, J.P., Radial Basis Functions, accessed from https://github.com/jpneto/Markdowns/tree/master/rbf, 2013.

  37. Wolters, M.A., A Genetic Algorithm for Selection of Fixed-Size Subsets with Application to Design Problems, J. Stat. Soft-ware, 68:1-18,2015.

  38. Miles, P., pymcmcstat: A Python Package for Bayesian Inference Using Delayed Rejection Adaptive Metropolis, J. Open Source Software, 4(38):1417, 2019.

  39. Scrucca, L., GA: A Package for Genetic Algorithms in R, J. Stat. Software, 53:1-37, 2013.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain