Доступ предоставлен для: Guest
International Journal for Uncertainty Quantification
Главный редактор: Habib N. Najm (open in a new tab)
Ассоциированный редакторs: Dongbin Xiu (open in a new tab) Tao Zhou (open in a new tab)
Редактор-основатель: Nicholas Zabaras (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5080

ISSN Онлайн: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

SIMPLEX STOCHASTIC COLLOCATION FOR PIECEWISE SMOOTH FUNCTIONS WITH KINKS

Том 10, Выпуск 1, 2020, pp. 1-24
DOI: 10.1615/Int.J.UncertaintyQuantification.2019030208
Get accessGet access

Краткое описание

Most approximation methods in high dimensions exploit smoothness of the function being approximated. These methods provide poor convergence results for nonsmooth functions with kinks. For example, such kinks can arise in the uncertainty quantification of quantities of interest for gas networks. This is due to the regulation of the gas flow, pressure, or temperature. But, one can exploit that, for each sample in the parameter space it is known if a regulator was active or not, which can be obtained from the result of the corresponding numerical solution. This information can be exploited in a stochastic collocation method. We approximate the function separately on each smooth region by polynomial interpolation and obtain an approximation to the kink. Note that we do not need information about the exact location of kinks, but only an indicator assigning each sample point to its smooth region. We obtain a global order of convergence of (p + 1)/d, where p is the degree of the employed polynomials and d the dimension of the parameter space.

ЛИТЕРАТУРА
  1. Smith, R.C., Uncertainty Quantification: Theory, Implementation, and Applications, Philadelphia: SIAM, 2014.

  2. Jakeman, J., Archibald, R., and Xiu, D., Characterization of Discontinuities in High-Dimensional Stochastic Problems on Adaptive Sparse Grids, J. Comput. Phys, 230(10):3977-3997,2011.

  3. Rushdi, A., Swiler, L., Phipps, E., D'Elia, M., and Ebeida, M., VPS: Voronoi Piecewise Surrogate Models for High-Dimensional Data Fitting, Int. J. Uncertainty Quantif., 7(1):1-21, 2017.

  4. Witteveen, J. and Iaccarino, G., Refinement Criteria for Simplex Stochastic Collocation with Local Extremum Diminishing Robustness, SIAM J. Sci. Comput., 34(3):A1522-A1543, 2012.

  5. Witteveen, J. and Iaccarino, G., Simplex Stochastic Collocation with Random Sampling and Extrapolation for Nonhypercube Probability Spaces, SIAM J. Sci. Comput., 34(2):814-838, 2012.

  6. Witteveen, J. and Iaccarino, G., Simplex Stochastic Collocation with ENO-Type Stencil Selection for Robust Uncertainty Quantification, J. Comput. Phys, 239:1-21, 2013.

  7. Colombo, I., Nobile, F., Porta, G., Scotti, A., and Tamellini, L., Uncertainty Quantification of Geochemical and Mechanical Compaction in Layered Sedimentary Basins, Comput. Methods Appl. Mech. Eng., 328:122-146, 2018.

  8. Sargsyan, K., Safta, C., Debusschere, B., andNajm, H., Uncertainty Quantification Given Discontinuous Model Response and a Limited Number of Model Runs, SIAMJ. Sci. Comput., 34(1):B44-B64, 2012.

  9. Griebel, M., Kuo, F., and Sloan, I., The Smoothing Effect of Integration in Rd and the ANOVA Decomposition, Math. Comput, 82:383-400,2013.

  10. Griebel, M., Kuo, F., and Sloan, I., Note on "The Smoothing Effect of Integration in Rd and the ANOVA Decomposition," Math. Comput., 86:1855-1876,2017.

  11. Sauer, T. and Xu, Y., A Case Study in Multivariate Lagrange Interpolation, in Approximation Theory, Wavelets and Applications, S. Singh, Ed., Dordrecht, the Netherlands: Springer, pp. 443-452, 1995.

  12. Koch, T., Hiller, B., Pfetsch, M., and Schewe, L., Evaluating Gas Network Capacities, Philadelphia: SIAM, 2015.

  13. Lurie, M., Modeling of Oil Product and Gas Pipeline Transportation, Weinheim, Germany: Wiley-VCH Verlag, 2008.

  14. Schmidt, M., Steinbach, M., and Willert, B., High Detail Stationary Optimization Models for Gas Networks: Validation and Results, Optim. Eng., 17(2):437-472, 2016.

  15. Fuchs, B., Numerical Methods for Uncertainty Quantification in Gas Network Simulation, PhD, University of Bonn, 2018.

  16. Clees, T., Cassirer, K., Hornung, N., Klaassen, B., Nikitin, I., Nikitina, L., Suter, R., and Torgovitskaia, I., MYNTS: Multi-PhYsics NeTwork Simulator, Proc. of 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 179-186, 2016.

  17. Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia: SIAM, 1992.

  18. Halton, J., On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals, Numer. Math., 2:84-90, 1960.

  19. Owen, A., Halton Sequences Avoid the Origin, SIAM Rev, 43(3):487-503,2006.

  20. Pfluger, D., Spatially Adaptive Sparse Grids for High-Dimensional Problems, Miinchen, Germany: Verlag Dr. Hut, 2010.

  21. Pfluger, D., Spatially Adaptive Refinement, Sparse Grids and Applications, J. Garcke and M. Griebel, Eds., Berlin: Springer, pp. 243-262, 2012.

  22. Giovanis, D.G. and Shields, M.D., Variance-Based Simplex Stochastic Collocation with Model Order Reduction for High-Dimensional Systems, Int. J. Numer. Methods Eng., 117(11):1079-1116,2019.

  23. Devroye, L., Non-Uniform Random Variate Generation, New York: Springer, 1986.

ЦИТИРОВАНО В
  1. Fuhg Jan N., Fau Amélie, Nackenhorst Udo, State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging, Archives of Computational Methods in Engineering, 28, 4, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain