Доступ предоставлен для: Guest
International Journal for Uncertainty Quantification
Главный редактор: Habib N. Najm (open in a new tab)
Ассоциированный редакторs: Dongbin Xiu (open in a new tab) Tao Zhou (open in a new tab)
Редактор-основатель: Nicholas Zabaras (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5080

ISSN Онлайн: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

FIELD SENSITIVITY ANALYSIS OF TURBULENCE MODEL PARAMETERS FOR FLOW OVER A WING

Том 12, Выпуск 1, 2022, pp. 85-106
DOI: 10.1615/Int.J.UncertaintyQuantification.2021036467
Get accessGet access

Краткое описание

Reynolds-averaged-Navier-Stokes (RANS) turbulence models are a critical tool in computational-fluid-dynamics simulations of aerodynamic systems, but simulation results can be highly sensitive to RANS-model parameter choices. Sensitivity analysis can be used to quantify these impacts, and the objective of this study is to demonstrate field sensitivity analysis with respect to ten parameters in the 2003 Menter shear-stress-transport (SST) turbulence model. The analysis is demonstrated for an application relevant to wind energy, namely, flow over a NACA 0015 wing at 12° angle of attack and a Reynolds number of 1.5 × 106. We quantify sensitivity using Sobol indices and the mean-squared gradient, which are estimated using polynomial chaos and active subspace models, respectively. Our results indicate that there are substantial spatial variations in parameter sensitivities, with different sets of most-sensitive parameters near the wing, as well as in the downstream wake, consistent with the physical interpretations of the turbulence model inputs. We show that, for this particular turbulence model and flow, simultaneous dimension reduction is possible across all quantities of interest, enabling efficient exploration of model outcomes. Ultimately, this analysis provides new insights into turbulence model parameter sensitivities in incompressible flows, and also demonstrates the implementation of field sensitivity analysis for applications relevant to aerodynamics simulations.

ЛИТЕРАТУРА
  1. Menter, F.R., Kuntz, M., and Langtry, R., Ten Years of Industrial Experience with the SST Turbulence Model, Turbul. Heat Mass Transf, 4(1):625-632, 2003.

  2. ge Krogstad, P. and Eriksen, P.E., Blind Test Calculations of the Performance and Wake Development for a Model Wind Turbine, Renewable Energy, 50:325-333, 2013.

  3. Mittal, A., Sreenivas, K., Taylor, L.K., Hereth, L., and Hilbert, C.B., Blade-Resolved Simulations of a Model Wind Turbine: Effect of Temporal Convergence, Wind Energy, 19(10):1761-1783, 2016.

  4. Manwell, J.F., McGowan, J.G., and Rogers, A.L., Wind Energy Explained: Theory, Design and Application, Hoboken, NJ: John Wiley & Sons, 2010.

  5. Massouh, F. and Dobrev, I., Exploration of the Vortex Wake behind of Wind Turbine Rotor, J. Phys. Conf. Ser., 75:012036, 2007.

  6. McAlister, K.W. and Takahashi, R., NACA 0015 Wing Pressure and Trailing Vortex Measurements, Tech. Rep., National Aeronautics and Space Administration Moffett Field Ca, Ames Research, 1991.

  7. Hsiao, C.T. and Pauley, L.L., Numerical Study of the Steady-State Tip Vortex Flow over a Finite-Span Hydrofoil, J Fluids Eng., 120(2):345-353, 1998.

  8. Barone, M., Ananthan, S., Churchfield, M., Domino, S., de Frahan, M.H., Knauss, R., Melvin, J., Moser, R., Sprague, M., and Thomas, S., Final Report for ALCC Allocation: Predictive Simulations of Complex Flow in Wind Farms, Tech. Rep., Sandia National Lab. (SNL-NM), Albuquerque, NM, 2017.

  9. Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M., and Rasheed, A., Simulation of Airflow past a 2D NACA0015 Airfoil Using an Isogeometric Incompressible Navier-Stokes Solver with the Spalart-Allmaras Turbulence Model, Comput. Methods Appl. Mech. Eng., 290:183-208, 2015.

  10. Kamkar, S., Wissink, A., Sankaran, V., and Jameson, A., Feature-Driven Cartesian Adaptive Mesh Refinement for Vortex-Dominated Flows, J. Comput. Phys, 230(16):6271-6298, 2011.

  11. Sitaraman, J., Floros, M., Wissink, A., and Potsdam, M., Parallel Domain Connectivity Algorithm for Unsteady Flow Computations Using Overlapping and Adaptive Grids, J. Comput. Phys, 229(12):4703-4723, 2010.

  12. Katz, A., Wissink, A.M., Sankaran, V., Meakin, R.L., and Chan, W.M., Application of Strand Meshes to Complex Aerodynamic Flow Fields, J. Comput. Phys, 230(17):6512-6530, 2011.

  13. Peron, S. and Benoit, C., Automatic Off-Body Overset Adaptive Cartesian Mesh Method Based on an Octree Approach, J. Comput. Phys., 232(1):153-173, 2013.

  14. Sankaran, V., Wissink, A., Datta, A., Sitaraman, J., Potsdam, M., Jayaraman, B., Katz, A., Kamkar, S., Roget, B., and Mavriplis, D., Overview of the Helios Version 2.0 Computational Platform for Rotorcraft Simulations, in Proc. of 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 1105,2011.

  15. Joulain, A., Desvigne, D., Alfano, D., and Leweke, T., Numerical Study of the Reliability of Wind-Tunnel Wall Corrections for Wingtip Flow, J Aircraft, 54:354-358, 2016.

  16. Tzimas, M. and Prospathopoulos, J., Wind Turbine Rotor Simulation Using the Actuator Disk and Actuator Line Methods, J. Phys, 753:032056,2016.

  17. Buchner, A., Lohry, M.W., Martinelli, L., Soria, J., and Smits, A.J., Dynamic Stall in Vertical Axis Wind Turbines: Comparing Experiments and Computations, J. Wind Eng. Indust. Aerodyn., 146:163-171, 2015.

  18. Moshfeghi, M., Song, Y.J., and Xie, Y.H., Effects of Near-Wall Grid Spacing on SST-K-ω Model Using NREL Phase VI Horizontal Axis Wind Turbine, J. Wind Eng. Indust. Aerodyn., 107:94-105,2012.

  19. Schaefer, J., Hosder, S., West, T., Rumsey, C., Carlson, J.R., and Kleb, W., Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, AIAA J, 55(1):195-213, 2016.

  20. Zhao, Y., Yan, C., Wang, X., Liu, H., and Zhang, W., Uncertainty and Sensitivity Analysis of SST Turbulence Model on Hypersonic Flow Heat Transfer, Int. J. Heat Mass Transf, 136:808-820, 2019.

  21. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J, 32(8):1598-1605, 1994.

  22. Matyushenko, A. and Garbaruk, A., Adjustment of the k-ω SST Turbulence Model for Prediction of Airfoil Characteristics near Stall, J. Phys, 769:012082, 2016.

  23. Sobol, I. and Kucherenko, S., Derivative Based Global Sensitivity Measures and Their Link with Global Sensitivity Indices, Math. Comput. Simul., 79(10):3009-3017, 2009.

  24. Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D., CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, Rep. NASA/CR2014-218178, NASA, Hanover, MD, 2014.

  25. Kim, C.S., Kim, C., and Rho, O.H., Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models, AIAA J, 39(5):838-845, 2001.

  26. Bischof, C.H., Biicker, H.M., and Rasch, A., Sensitivity Analysis of Turbulence Models Using Automatic Differentiation, SIAMJ Sci. Comput., 26(2):510-522, 2004.

  27. Papadimitriou, D.I. and Papadimitriou, C., Optimal Sensor Placement for the Estimation of Turbulence Model Parameters in CFD, Int. J. Uncertainty Quantif., 5(6):545-568, 2015.

  28. Saltelli, A. and Annoni, P., How to Avoid a Perfunctory Sensitivity Analysis, Env. Modell. Software, 25(12):1508-1517,2010.

  29. Xiao, H. and Cinnella, P., Quantification of Model Uncertainty in RANS Simulations: A Review, Prog. Aerospace Sci., 108:1-31,2019.

  30. Mishra, A.A., Mukhopadhaya, J., Iaccarino, G., and Alonso, J., Uncertainty Estimation Module for Turbulence Model Predictions in SU2, AIAA J, 57(3):1066-1077, 2019.

  31. Xiao, H., Wang, J.X., and Ghanem, R.G., A Random Matrix Approach for Quantifying Model-Form Uncertainties in Turbulence Modeling, Comput. Methods Appl. Mech. Eng., 313:941-965, 2017.

  32. Margheri, L., Meldi, M., Salvetti, M.V., and Sagaut, P., Epistemic Uncertainties in RANS Model Free Coefficients, Comput. Fluids, 102:315-335,2014.

  33. Iooss, B. and Lemaitre, P., A Review on Global Sensitivity Analysis Methods, Berlin: Springer, 2015.

  34. Sobol, I.M., Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates, Math. Comput. Simul., 55(1):271-280, 2001.

  35. Wang, P., Lu, Z., and Tang, Z., An Application of the Kriging Method in Global Sensitivity Analysis with Parameter Uncertainty, Appl. Math. Model, 37(9):6543-6555, 2013.

  36. Tarantola, S. and Mara, T.A., Variance-Based Sensitivity Indices of Computer Models with Dependent Inputs: The Fourier Amplitude Sensitivity Test, Int. J. Uncertainty Quantif, 7(6):511-523, 2017.

  37. Zhu, Z., A Simple Sensitivity Analysis of the Turbulence-Induced Flocculation Model of Cohesive Sediment, Water Sci. Technol., 79(6):1144-1151, 2019.

  38. Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., and Shah, N., Monte Carlo Evaluation of Derivative-Based Global Sensitivity Measures, Reliab. Eng. System Saf., 94(7):1135-1148, 2009.

  39. Robertson, A.N., Sethuraman, L., Jonkman, J., and Quick, J., Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads, Tech. Rep. NREL/CP-5000-70445, National Renewable Energy Lab., Golden, CO, 2018.

  40. Constantine, P.G. and Diaz, P., Global Sensitivity Metrics from Active Subspaces, Reliab. Eng. Syst. Saf., 162:1-13, 2017.

  41. Jinghui, G., Guiping, L., Xueqin, B., and Hao, L., Sensitivity Analysis of Flowfield Modeling Parameters upon the Flow Structure and Aerodynamics of an Opposing Jet over a Hypersonic Blunt Body, Chin. J. Aeronaut., 33:161-175, 2020.

  42. Stephanopoulos, K., Witte, I., Wray, T., and Agarwal, R.K., Uncertainty Quantification of Turbulence Model Coefficients in OpenFOAM and Fluent for Mildly Separated Flows, in Proc. of 46th AIAA Fluid Dynamics Conf., p. 4401, 2016.

  43. Anderlini, A., Salvetti, M., Agresta, A., and Matteucci, L., Stochastic Sensitivity Analysis of Numerical Simulations of Injector Internal Flows to Cavitation Modeling Parameters, Comput. Fluids, 183:130-147,2019.

  44. Constantine, P.G., Zaharatos, B., and Campanelli, M., Discovering an Active Subspace in a Single-Diode Solar Cell Model, Stat. Anal. Data Min., 8(5-6):264-273, 2015.

  45. Erdal, D. andCirpka, O.A., Global Sensitivity Analysis and Adaptive Stochastic Sampling of a Subsurface-Flow Model Using Active Subspaces, Hydrol. Earth Syst. Sci, 23(9):3787-3805, 2019.

  46. Cortesi, A.F., Constantine, P.G., Magin, T.E., and Congedo, P.M., Forward and Backward Uncertainty Quantification with Active Subspaces: Application to Hypersonic Flows around a Cylinder, J. Comput. Phys, 407:109079, 2020.

  47. Ji, W., Wang, J., Zahm, O., Marzouk, Y.M., Yang, B., Ren, Z., and Law, C.K., Shared Low-Dimensional Subspaces for Propagating Kinetic Uncertainty to Multiple Outputs, Combust. Flame, 190:146-157, 2018.

  48. Sprague, M., Boldyrev, S., Fischer, P., Grout, R., Gustafson, W.I., Jr., and Moser, R., Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, Tech. Rep. NREL/TP-2C00-67648, U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, Golden, CO, 2017.

  49. Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C.L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomaki, V., Lundquist, J.K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A.M., Smith, J.C., Tuohy, A., and Wiser, R., Grand Challenges in the Science of Wind Energy, Science, 366(6464):1-22, 2019.

  50. Robinson, M.C. and Sprague, M.A., Looking Forward: The Promise and Challenge of Exascale Computing, in Wind Energy Modeling and Simulation-Volume 1: Atmosphere and Plant, Energy Engineering, Chap. 1, Institution of Engineering and Technology, National Renewable Energy Laboratory, Golden, CO, 2019.

  51. Clifton, A., Smith, A., and Fields, M., Wind Plant Preconstruction Energy Estimates, Current Practice and Opportunities, Tech. Rep. NREL/TP-5000-64735, National Renewable Energy Lab., Golden, CO (United States), 2016.

  52. Kwon, S.D., Uncertainty Analysis of Wind Energy Potential Assessment, Appl. Energy, 87(3):856-865, 2010.

  53. Murcia, J., Rethore, P.E., Natarajan, A., and Serensen, J.D., How Many Model Evaluations Are Required to Predict the AEP of a Wind Power Plant?, J. Phys, 625:012030, 2015.

  54. Padron, A.S., Thomas, J., Stanley, A.P., Alonso, J.J., and Ning, A., Polynomial Chaos to Efficiently Compute the Annual Energy Production in Wind Farm Layout Optimization, Wind Energy Sci., 4(2):211-231, 2019.

  55. King, R., Glaws, A., Geraci, G., and Eldred, M.S., A Probabilistic Approach to Estimating Wind Farm Annual Energy Production with Bayesian Quadrature, AIAA Scitech 2020 Forum, p. 1951,2020.

  56. Graf, P., Dykes, K., Damiani, R., Jonkman, J., and Veers, P., Adaptive Stratified Importance Sampling: Hybridization of Extrapolation and Importance Sampling Monte Carlo Methods for Estimation of Wind Turbine Extreme Loads, Wind Energy Sci., 3:475-487, 2018.

  57. Murcia, J.P., Rethore, P.E., Dimitrov, N., Natarajan, A., Serensen, J.D., Graf, P., and Kim, T., Uncertainty Propagation through an Aeroelastic Wind Turbine Model Using Polynomial Surrogates, Renew. Energy, 119:910-922, 2018.

  58. Slot, R.M., Serensen, J.D., Sudret, B., Svenningsen, L., and Thegersen, M.L., Surrogate Model Uncertainty in Wind Turbine Reliability Assessment, Renew. Energy, 151:1150-1162, 2020.

  59. Santiago, A., Alonso, J., Palacios, F., Barone, M., and Eldred, M., Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine under an Extreme Gust, in Proc. of 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., AIAA 2014-3013, Atlanta, GA, 2014.

  60. Rethore, P.E., Fuglsang, P., Larsen, G.C., Buhl, T., Larsen, T.J., and Madsen, H.A., TOPFARM: Multi-Fidelity Optimization ofWind Farms, Wind Energy, 17(12):1797-1816, 2014.

  61. Menhorn, F., Geraci, G., Seidl, D.T., Eldred, M.S., King, R., Bungartz, H.J., and Marzouk, Y., Higher Moment Multilevel Estimators for Optimization under Uncertainty Applied to Wind Plant Design, in AIAA Scitech 2020 Forum, p. 1952, 2020.

  62. Quick, J., King, J., King, R.N., Hamlington, P.E., and Dykes, K., Wake Steering Optimization under Uncertainty, Wind Energy Sci., 5(1):413-426, 2020.

  63. Zhang, J. and Zhao, X., Quantification of Parameter Uncertainty in Wind Farm Wake Modeling, Energy, 196:117065, 2020.

  64. King, R.N., Adcock, C., Annoni, J., and Dykes, K.L., Data-Driven Machine Learning for Wind Plant Flow Modeling, J. Phys. Conf. Ser., 1037:072004, 2018.

  65. Wang, J., Wu, J.L., and Xiao, H., Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainty in RANS Simulations, Int. J. Uncertainty Quantif, 6(2):109-126, 2016.

  66. Nalu-Wind Documentation, https://nalu-wind.readthedocs.io/en/latest/index.html, retrieved on 2/1/2020.

  67. Sprague, M.A., Ananthan, S., Vijayakumar, G., and Robinson, M.C., ExaWind: A Multi-Fidelity Modeling and Simulation Environment for Wind Energy, J. Phys, 1452:012071,2020.

  68. Grinderslev, C., Vijayakumar, G., Ananthan, S., Serensen, N.N., Zahle, F., and Sprague, M.A., Validation of Blade-Resolved Computational Fluid Dynamics for a MW-Scale Turbine Rotor in Atmospheric Flow, J. Phys, 1618:052049, 2020.

  69. Wilcox, D.C., Turbulence Modeling for CFD, Vol. 2, Canada, CA: DCW Industries, 1998.

  70. Chien, K.Y., Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model, AIAA J., 20(1):33-38, 1982.

  71. Witte, I., Uncertainty Quantification of Turbulence Model Closure Coefficients on Openfoam and Fluent for Mildly Separated Flows, Master's, Washington University, 2017.

  72. Nagib, H.M. and Chauhan, K.A., Variations of Von Karman Coefficient in Canonical Flows, Phys. Fluids, 20(10):101518, 2008.

  73. Marusic, I., McKeon, B., Monkewitz, P.A., Nagib, H., Smits, A., and Sreenivasan, K., Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues, Phys. Fluids, 22(6):065103, 2010.

  74. Adams, B.M., Ebeida, M.S., Eldred, M.S., Geraci, G., Jakeman, J.D., Maupin, K.A., Monschke, J.A., Swiler, L.P., Stephens, J.A., Vigil, D.M., and Wildey, T.M., Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis, Version 6.8 Theory Manual, Tech. Rep. SAND2010-2183, Sandia National Laboratories, Albuquerque, NM, 2019.

  75. Hadigol, M. and Doostan, A., Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies, Comput. Methods Appl. Mech. Eng., 332:382-407, 2018.

  76. Diaz, P., King, R., Sigler, D., Cole, W., and Jones, W., Uncertainty Quantification for Capacity Expansion Planning, Tech. Rep. NREL/TP-2C00-76708, National Renewable Energy Lab., Golden, CO, 2020.

  77. Gratiet, L.L., Marelli, S., and Sudret, B., Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Handbook of Uncertainty Quantification, Chap. 38, Berlin: Springer, pp. 1-37, 2016.

  78. Sudret, B., Global Sensitivity Analysis Using Polynomial Chaos Expansions, Reliab. Eng. Syst. Saf., 93(7):964-979, 2008.

  79. Glaws, A., Constantine, P.G., and Cook, R.D., Inverse Regression for Ridge Recovery: A Data-Driven Approach for Parameter Reduction in Computer Experiments, Stat. Comput., 30:237-253, 2020.

  80. Loyal, J., Sliced, from https://github.com/joshloyal/sliced, 2018.

  81. Viana, F.A., Things You Wanted to Know about the Latin Hypercube Design and Were Afraid to Ask, in Proc. of 10th World Congress on Structural and Multidisciplinary Optimization, Vol. 19, 2013.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain