Доступ предоставлен для: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Выходит 4 номеров в год

ISSN Печать: 1093-3611

ISSN Онлайн: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

COMBUSTION SYNTHESIS OF COMPOSITE IN THE Ti-Al-C POWDERS MIXTURE: MODEL AND NUMERICAL SIMULATION

Том 25, Выпуск 3, 2021, pp. 17-35
DOI: 10.1615/HighTempMatProc.2021040545
Get accessGet access

Краткое описание

The basis of conventional combustion theory was used to study a model of combustion synthesis of a composite material in a three-component powder mixture of Ti-Al-C. The model accounted for the dependence of the properties on the composition and structure of the reaction system. The composition of the composite material was analyzed from the reaction initiation stage to the product cool down. The reaction front propagation along the specimen occurred in a stationary regime (with constant rate) for any of the specimens under study. The main synthesis products in the studied concentration range were titanium carbides, titanium aluminide, and ternary phases (MAX-phases) Ti2AlC and Ti3AlC2. I Preliminary heating of the initial reaction mixture prevented the formation of MAX-phases in obtained composites and facilitated the increase in the fraction of carbide phases. Within the framework of the proposed model, the change in an initial porosity of the compact had very little effect on the composition evolution of the product. The ranges of concentrations in the initial reaction mixture that provided the prevalence of either intermetallic (TiAl) or MAX-phase (Ti2AlC, Ti3AlC2) were found in the matrix. The obtained theoretical results are consistent with the experimental results.

ЛИТЕРАТУРА
  1. Arakawa, Y., Kobashi, M., and Kanetake, N., Foaming Behaviour of Long-Scale Al-Ti Intermetallic Foam by SHS Mode Combustion Reaction, Intermetallics, vol. 41, pp. 22-27, 2013. DOI: 10.1016/j.intermet.2013.04.004.

  2. Barsoum, M.W., The MN+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem. vol. 28, pp. 201-281, 2000, DOI: 10.1016/S0079-6786(00)00006-6.

  3. Bazarov, I.P., Thermodynamics: Textbook for Higher Educational Establishments, Moscow: Vysshaya Shkola, 1991 (in Russian).

  4. Bazhin, P.M., and Stolin, A.M., SHS Extrusion of Materials Based on the Ti-Al-C MAX, Phase Dokl. Chem., vol. 439, pp. 630-633, 2011. DOI: 10.1134/S0012500811080052.

  5. Bazhin, P.M., Kovalev, D.Yu., Luginina, M.A., and Averichev, O.A., Combustion of Ti-Al-C Compacts in Air and Helium: A TRXRD Study, Int. J. Self-Propag. High-Temp. Synth., vol. 25, pp. 30-34, 2016. DOI: 10.3103/S1061386216010027.

  6. Binnewies, M. and Milke, E., Thermochemical Data of Elements and Compounds, Weinheim, Germany: Wiley-VCH, 2002.

  7. Bukrina, N.V. and Knyazeva, A.G., Influence of Inert Particles on the Dynamics of Controlled Synthesis of a Composite in Cylindrical Reactor with Thick Walls, Int. J. Heat Mass Transf., vol. 152, 119553, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119553.

  8. Chumakov, Yu.A., Investigation of the Wave Propagation Model of a Solid-Phase Exothermic Reaction in a Three-Component Powder Mixture, AIP Conf. Proc, vol. 2125, no. 1, p. 030018, 2009. DOI: 10.1063/1.5117400.

  9. Chumakov, Yu.A. and Knyazeva, A.G., Thermal Explosion of a Gas Mixture in a Porous Hollow Cylinder, Combust. Explos. Shock Waves, vol. 46, pp. 507-514, 2010. DOI: 10.1007/s10573-010-0066-9.

  10. Chumakov, Yu.A. and Knyazeva, A.G., Modelling Synthesis via Combustion of Composites Based on Mechanoactivated Ti-C, Ti-B, and Ti-Si Powder Systems, Chem. Sustain. Develop., vol. 26, pp. 515-523, 2018. DOI: 10.15372/CSD20180510.

  11. Fedotov, A.F., Amosov, A.P., Latukhin, E.I., and Novikov, V.A., Fabrication of Aluminum-Ceramic Skeleton Composites Based on the Ti2AlC MAX Phase by SHS Compaction, Russ. J. Non-ferrous Metals, vol. 57, pp. 33-40, 2016. DOI: 10.3103/S1067821216010053.

  12. Galyshev, S.N., Zaripov, N.G., Popov, V.A., Bazhin, P.M., and Stolin, A.M., Fabrication of Materials Based on Ti2AlC Max-Phase by Using SHS - Methods, Compos.Nanostruct.s, vol. 14, pp. 5-10, 2012.

  13. Ge, Z., Chen, K., Guo, J., Zhou, H., and Ferreira, J.M.F., Combustion Synthesis of Ternary Carbide Ti3AlC2 ion Ti-Al-C System, J. Eur. Ceram. Soc., vol. 23, pp. 567-574, 2003. DOI: 10.1016/S0955-2219(02)00098-5.

  14. Gorban, A.N., Model Reduction in Chemical Dynamics: Slow Invariant Manifolds, Singular Perturbations, Thermodynamic Estimates, and Analysis of Reaction Graph, Curr. Opin. Chem. Engineer., vol. 21, pp. 48-59, 2018. DOI: 10.1016/j.coche.2018.02.009.

  15. Grigorev, I.S. and Meilikhov, E.Z., Physical Values: Book of Reference, Moscow: Energoatomizdat, 1991 (in Russian).

  16. Gusev, A.I., Phase Equilibria, Phases and Compounds in the Ti-C System, Russ. Chem. Rev., vol. 71, pp. 439-463, 2002. DOI: 10.1070/RC2002v071n06ABEH000721.

  17. Hashimoto, S., Nishina, N., Hirao, K., Zhou, Y, Hyuga, H., Honda, S., and Iwamoto, Y., Formation Mechanism of Ti2AlC Under the Self-Propagating High-Temperature Synthesis (SHS) Mode, Mater. Res. Bull, vol. 47, pp. 1164-1168, 2012. DOI: 10.1016/j.materresbull.2012.02.003.

  18. Hendaoui, A., Andasmas M., Amara. A., Benaldjia, A., Langlois, P., and Vrel, D., SHS of High-Purity MAX Compounds in the Ti-Al-C System, Int. J. Self-Propag. High-Temp. Synth., vol. 17, pp. 129-135, 2008. DOI: 10.3103/S1061386208020088.

  19. Karapetyants, M.X. and Karapetyants, M.L., Basic Thermodynamic Constants of Inorganic and Organic Substances, Moscow: Chemistry, 1968 (in Russian).

  20. Khina, B.B., Combustion Synthesis of Advanced Materials, New York: Nova Science Pub., 2010.

  21. Khina, B.B., Formanek, B., and Solpan I., Limits of Applicability of "Diffusion-Controlled Product Growth" Kinetic Approach to Modeling SHS, PhysicaB, vol. 335, pp. 14-31, 2005. DOI: 10.1016/j. physb.2004.09.104.

  22. Kireev, V.A., Methods of Thermodynamic Calculations, Moscow: Chemistry, 1976 (in Russian).

  23. Knyazeva, A.G., Kryukova, O.N., Sorokova S.S., and Shanin S.A., Coupling Models of New Material Synthesis in Modern Technologies, in Handbook of Mechanics of Materials, Hsueh C.H. et al., Eds., Singapore: Springer, 2018.

  24. Knyazeva, A.G., and Kryukova O.N., Simulation of the Synthesis of Multiphase Composites on a Substrate, Taking into Account the Staging of Chemical Reactions, Appl. Solid State Chem., no.1, pp. 32-44, 2019. DOI: 10.18572/2619-0141-2018-2-3-2-16.

  25. Knyazeva, A.G. and Korosteleva, E.N., Brief Review of Kinetic Regularities of TiXCY-Ti Composites Synthesis, Rev. Adv. Mater. Technol., vol. 2, pp. 1-18, 2020. DOI: 10.17586/2687-0568-2020-2-3-1-18.

  26. Krinitcyn, M.G., Korosteleva, E.N., Knyazeva, A.G., and Sheremet, E.S., Structural-Phase Composition of Tic/Ti Composites and Powders Obtained by Combustion of Ti-C Green Mixtures with a Titanium Excess, High Temp. Mat. Proc, vol. 24, pp. 227-238, 2020. DOI: 10.1615/HighTempMat-Proc.2020036732.

  27. Levashov, E.A., Pogozhev, Y.S., Shtansky, D.V., and Petrzhik, M.I., Self-Propagating High-Temperature Synthesis of Ceramic Materials Based on the Mn+1axn Phases in the Ti-Cr-Al-C System, Russ. J. Non-ferrous Metals, vol. 50, pp. 151-159, 2009. DOI: 10.3103/S1067821209020151.

  28. Ligachev, A.E., Potemkin, G.V., Lepakova, O.K., Zhidkov, M.V., Teresov, A.D., Golobokov, N.N., Maksimov, Yu.M., Kolobov, Yu.R., and Koval', N.N., Ignition of a Ti-Al-C System by an Electron Beam, Combust. Explos. Shock Waves, vol. 54, pp. 158-164, 2018. DOI: 10.1134/S0010508218020041.

  29. Liu, G., Li, J., and Chen, K., Combustion Synthesis of Refractory and Hard Materials: A Review, Int. J. Refract. Hard Met., vol. 39, pp. 90-102, 2013. DOI: 10.1016/j.ijrmhm.2012.09.002.

  30. Lykov, A.V., Heat Conduction Theory, Moscow: Higher School, 1967 (in Russian).

  31. Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Binary Alloy Phase Diagrams (2nd ed.), ASM International, Materials Park, OH, 1990.

  32. Merzhanov, A.G., The Chemistry of Self-Propagating High-Temperature Synthesis, J. Mater. Chem., vol. 14, pp. 1779-1786, 2004. DOI: 10.1039/B401358C.

  33. Nekrasov, E.A., Smolyakov, V.K., and Maksimov, Y.M., Mathematical Model for the Titanium-Carbon System Combustion, Combust. Explos. Shock Waves, vol. 17, pp. 513-520, 1981. DOI: 10.1007/BF00798137.

  34. Prikhna, T.A., Starostina, A.V., Lizkendorf D., Petrusha, I.A., Ivakhnenko, S.A., Borimskii, A.I., Filatov, Yu.D., Loshak, M.G., Serga, M.A., Tkach, V.N., Turkevich, V.Z., Sverdun, V.B., Klimenko, S.A., Turkevich, D.V., Dub, S.N., Basyuk, T.V., Karpets, M.V., Moshchil, V.E., Kozyrev, B.V., Il'nitskaya, G.D., Kovylyaev, V.V., Cabiosh, T., and Chartier, P., Studies of the Oxidation Stability, Mechanical Characteristics of Materials Based on Max Phases of the Ti-Al-(C, N) Systems, and of the Possibility of Their Use as Tool Bonds and Materials for Polishing, J. SuperhardMater., vol. 36, pp. 9-17, 2014. DOI: 10.3103/S106345761401002X.

  35. Rogachev, A.S., Gachon, J.C., Grigoryan, H.E., Vrel, D., Schuster, J.C., and Sachkova N.V., Phase Evolution in the Ti-Al-B And Ti-Al-C Systems During Combustion Synthesis: Time Resolved Study by Synchrotron Radiation Diffraction Analysis, J. Mater Sci, vol. 40, pp. 2689-2691, 2005. DOI: 10.1007/ s10853-005-2107-4.

  36. Rogachev, A.S. and Mukasyan, A.S., Combustion for Materials Synthesis: An Introduction to Structural Macrokinetics, Moscow: Fizmatlit, 2013 (in Russian).

  37. Ronchi, R.M., Arantes, J.T., and Santos, S.F., Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives, Ceram. Int., vol. 45, pp. 18167-18188, 2019. DOI: 10.1016/j.ceramint.2019.06.114.

  38. Samarskiy, A.A., The Theory of Difference Schemes, New York: CRC Press, 2001.

  39. Samarskiy, A.A. and Vabishchevich, P.N., Computational Heat Transf., Moscow: Editorial URSS, 2003 (in Russian).

  40. Seplyarskii, B.S., Kochetkov, R.A., and Vadchenko, S.G., Burning of the Ti + xC (1 > x > 0.5) Powder and Granulated Mixtures, Combust. Expl. Shock Waves, vol. 52, pp. 665-672, 2016. DOI: 10.1134/S001050821606006X.

  41. Skorokhod, V. V., RheologicalFoundations of Sintering Theory, Kiev: Naukova Dumka, 1976 (in Russian).

  42. Thomas, T. and Bowen, C.R., Thermodynamic Predictions for the Manufacture of Ti2AlC MAX-Phase Ceramic by Combustion Synthesis, J. Alloys Compd., vol. 602, pp. 72-77, 2014. DOI: 10.1016/j. jallcom.2014.02.149.

  43. Thomas, T. and Bowen, C.R., Effect of Particle Size on the Formation of Ti2AlC Using Combustion Synthesis, Ceram. Int., vol. 42, pp. 4150-4157, 2016. DOI: 10.1016/j.ceramint.2015.11.088.

  44. Ticha, G., Pabst, W., and Smith, D.S., Predictive Model for the Thermal Conductivity of Porous Materials with Matrix-Inclusion, J. Mater. Sci, vol. 40, pp. 5045-5047, 2005. DOI: 10.1007/s10853-005-1818-x.

  45. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., vol. 24, pp. 79-226, 1998. DOI: 10.1016/S0065-2377(08)60093-9.

  46. Vershinnikov, V.I. and Kovalev, D.Y., Preparation of Ti^AlC and Ti3AlC2 MAX Phases by Self-Propagating High-Temperature Synthesis with the Reduction Stage, Russ. J. Non-FerrousMetals, vol. 61, pp. 554-558, 2020. DOI: 10.3103/S1067821220050156.

  47. Yeh, C.L. and Shen, Y.G., Combustion Synthesis of Ti3AlC2 from Ti/Al/C/Tic Powder Compacts, J. Alloys Compd., vol. 466, pp. 308-313, 2008. DOI: 10.1016/j.jallcom.2007.11.037.

  48. Yeh, C.L. and Shen, Y.G., Formation of TiAl-Ti2AlC in situ Composites by Combustion Synthesis, Inter-metallics, vol. 17, pp. 169-173, 2009. DOI: 10.1016/j.intermet.2008.10.014.

ЦИТИРОВАНО В
  1. Bazhina A.D., Konstantinov A.S., Chizhikov A.P., Avdeeva V.V., Bazhin P.M., Materials based on the MAX phases of the Ti-Al-C system obtained under combustion and high-temperature shear deformation, Materials Letters, 318, 2022. Crossref

  2. Chumakov Yu. A., Multicomponent Powder Initial Composition and Phase Formation in Combustion Synthesis Products, Russian Physics Journal, 65, 4, 2022. Crossref

  3. Chumakov Yurii A., Knyazeva Anna G., EFFECT OF THE RATIO OF COMPONENTS IN Ti-Al-C-Fe2O3 SYSTEM ON THE EVOLUTION OF THE SYNTHESIS PRODUCT COMPOSITION IN COMBUSTION MODE , High Temperature Material Processes An International Quarterly of High-Technology Plasma Processes, 27, 1, 2023. Crossref

3784 Просмотры статей 24 Загрузка статей Метрики
3784 ПРОСМОТРЫ 24 ЗАГРУЗКИ 3 Crossref ЦИТАТЫ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

FORMATION OF A COMPOSITE FROM A Ti−Al−C SYSTEM IN THERMAL EXPLOSION MODE WITH AN ADDITION OF IRON OXIDE TO THE MIXTURE High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.24, 2020, issue 4
Natalia V. Bukrina, A.V. Baranovskiy
Phase equilibria and structure in the Na3AlF6-Na2B407-Ti02 system Advances in Molten Salts, Vol.0, 1998, issue
Stefania Zuca, Elena Maria Anghel, Marina Balasoiu, Evanghelia Pavlatou
STRUCTURAL REGULARITIES OF THE FORMATION OF NITRIDE AND BORIDE COATINGS BASED ON TRANSITION METALS High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.27, 2023, issue 1
Ivan Kolinko, Andrei Yunda, Olga V. Maksakova, Alexander Goncharov
SPRAY SYNTHESIS OF SUPERPLASTIC MATERIALS FOR NEAR-NET-SHAPE MANUFACTURING Atomization and Sprays, Vol.7, 1997, issue 1
Enrique J. Lavernia, Yue Wu
NITRIDING OF COMMERCIAL PURE TITANIUM IN THE PLASMA OF FREQUENCY-PULSED NON-SELF-SUSTAINED GLOW DISCHARGE WITH A HOLLOW CATHODE AT LOW PRESSURE High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.21, 2017, issue 1
E. A. Petrikova, Vladimir V. Denisov, Nikolay N. Koval, Nikolai N. Cherenda, Vitali I. Shymanski, Yurii F. Ivanov, Olga V. Krysina, A. P. Laskovnev, Vladimir V. Uglov
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain