Доступ предоставлен для: Guest
Plasma Medicine

Выходит 4 номеров в год

ISSN Печать: 1947-5764

ISSN Онлайн: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Cold Atmospheric Helium Plasma Induces Apoptosis by Increasing Intracellular Reactive Oxygen and Nitrogen Species

Том 10, Выпуск 4, 2020, pp. 243-257
DOI: 10.1615/PlasmaMed.2021036830
Get accessDownload

Краткое описание

Cold atmospheric pressure plasma (CAPP) has been proposed as a novel method for anticancer therapy. This field gained much interest in the last decade, with biological applications such as wound healing, bacterial sterilization, and cancer treatment. However, the mechanism at the basis of plasma-cell interaction remains unclear. Here, we studied the effect of helium (He) gas CAPP on oral squamous cell carcinoma (OSCC) in vitro. CAPP treatment was performed under different treatment time conditions: 1, 3, and 5 min. Results showed that CAPP treatment induces cell death in OSCC cells in a dose-dependent manner. He-CAPP also induces cell death and G1 cell cycle arrest associated with the ATM/P53 pathway. Furthermore, CAPP activates the mitochondria-mediated apoptosis pathway by enhancing Bax expression and of the Bcl-2 protein suppression. Hydrogen peroxide (H2O2) generation increased immediately after He plasma treatment but reached basal level after 3 h. Further studies showed that CAPP increases intracellular ROS and RNS and reverts after a long period of plasma treatment. Taken together, these results indicated that He-CAPP induces cell death and cell cycle arrest and activates mitochondria-mediated apoptosis by increasing intracellular reactive oxygen and nitrogen species (ROS and RNS) in OSCC cells. Our study provides deep understanding of He-CAPP's effect on OSCC cells. We suggest that CAPP could be a potential therapeutic and clinical research tool for oral cancer treatment.

ЛИТЕРАТУРА
  1. Stoffels E, Sakiyama Y, Graves DB. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci. 2008;36(4):1441-57.

  2. Weltmann KD, von Woedtke T. Plasma medicine-current state of research and medical application. Plasma Physics Controlled Fusion. 2017;59(1):014031.

  3. Heaselgrave W, Shama G, Andrew PW, Kong MG. Inactivation of Acanthamoeba spp. and other ocular pathogens by application of cold atmospheric gas plasma. Appl Environ Microbiol. 2016;82(10):3143-8.

  4. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: Infection control and bacterial responses. Int J Antimicrob Agents. 2014;43(6):508-17.

  5. Nosenko T, Shimizu T, Morfill GE. Designing plasmas for chronic wound disinfection. New J Physics. 2009;11(11):115013.

  6. Daeschlein G, Woedtke TV, Kindel E, Brandenburg R, Weltmann KD, Junger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010;7: 224-31.

  7. Lloyd G, Friedman G, Jafri S, Schultz G, Friedman A, Harding K. Gas plasma: Medical uses and developments in wound care. Plasma Process Polym. 2009;7:194-211.

  8. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pimpl R, Stolz W. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78-82.

  9. Rupf S, Lehmann A, Hannig M, Schafer B, Schubert A, Feldmann U, Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol. 2010;59:206-12.

  10. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL. Plasma medicine: An introductory review. New J Physics. 2009;11(11):115012.

  11. Kim JY, Kim SO, Wei YZ, Li JH. A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy. Appl Phys Lett. 2010;96:203701.

  12. Barekzi N, Laroussi M. Effects of low temperature plasmas on cancer cells. Plasma Process Polym. 2013;10:1039-50.

  13. Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH. Cold atmospheric air plasma jet for medical applications. Appl Phys Lett. 2008; 92:241501.

  14. Kim HS, Cho YI, Hwang IH, Lee DH, Cho DJ, Rabinovich A, Fridman A. Use of plasma gliding arc discharges on the inactivation of E. coli in water. Sep Purif Technol. 2013;120:423-8.

  15. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma-a tool for decontamination and disinfection. Biotechnol Adv. 2015;33:1108-19.

  16. Randeniya LK, de Groot GJJB. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Process Polym. 2015;12(7):608-23.

  17. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97-110.

  18. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28-44.

  19. Duprez L, Wirawan E, Berghe TV, Vandenabeele P. Major cell death pathways at a glance. Microbes Infect. 2009;11:1050-62.

  20. Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell. 2014;5:737-49.

  21. Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018;52(5):507-43.

  22. Weiss M, Gumbel D, Hanschmann EM, Mandelkow R, Gelbrich N, Zimmermann U, Walther R, Ekkernkamp A, Sckell A, Kramer A, Burchardt M, Lillig CH, Stope MB. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015;10(7):e0130350.

  23. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Physics D: Appl Physics. 2012;45(26):263001.

  24. Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Baek SJ, Lee K, Kim CH. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway. Arch Biochem Biophys. 2014;545:133-40.

  25. Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E, Choi KS, Yang SS, Lee JS. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One. 2014;9(1):e86173.

  26. Barekzi N, Laroussi M. Dose-dependent killing of leukemia cells by low-temperature plasma. J Physics D: Appl Physics. 2012;45(42):422002.

  27. Nehra V, Kumar A, Dwivedi HK. Atmospheric non-thermal plasma sources. Int J Eng. 2008;1:53-68.

  28. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695-709.

  29. Lee JH, Om JY, Kim YH, Kim KM, Choi EH, Kim KN. Selective killing effects of cold atmospheric pressure plasma with NO induced dysfunction of epidermal growth factor receptor in oral squamous cell carcinoma. PLoS One. 2016;11(2):e0150279.

  30. Machala Z, Janda M, Hensel K, Jedlovsky I, Lestinka L, Foltin V, Martisovits V, Morvova M. Emission spectroscopy of atmospheric pressure plasmas for biomedical and environmental applications. J Mol Spectrosc. 2007;243:194-201.

  31. Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8(9):e73741.

  32. Ishaq M, Kumar S, Varinli H, Han ZJ, Rider AE, Evans MD, Murphy AB, Ostrikov K. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014;25(9):1523-31.

  33. Koritzer J, Boxhammer V, Schafer A, Shimizu T, Klampfl TG, Li YF,Welz C, Zieger SS, Morfill GE, Zimmermann JL, Schelgel J. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013;8(5):e644998.

  34. Lunov O, Zablotskii V, Churpita O, Chanova E, Sykova E, Dejneka A, Kubinova S. Cell death induced by ozone and various non-thermal plasmas: Therapeutic perspectives and limitations. Sci Rep. 2014;4:7129.

  35. Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, Yang SS, Lee JS, Moon E, Lee K, Kim CH. Nonthermal plasma induces head and neck cancer cell death: The potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 2014;5:e1056.

  36. Cheng Q, Chen J. Mechanism ofp53 stabilization by ATM after DNA damage. Cell Cycle. 2010;9:472.

  37. Lim D, Jocelyn JM, Yip GW, Bay BH. Silencing the metallothionein-2A gene inhibits cell cycle progression from G1- to S-phase involving ATM and CDC25A signaling in breast cancer cells. Cancer Lett. 2009;276:109-17.

  38. Kang J, Ferguson D, Song H, Bassing C, Ckersdorff M, Alt FW, Xu Y. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol. 2005;25:661-70.

  39. Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, Friedlander P, Brown KD, Gilbert J. The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms. Oral Oncol. 2005;41:1013-20.

  40. Lu X, Naidis GV, Laroussi M, Ostrikov K. Guided ionization waves: Theory and experiments. Phys Rep. 2014;540:123-66.

  41. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Rep. 2016;630:1-84.

  42. Wang Y, Xiao J, Zhou H, Yang S, Wu X, Jiang C, Zhao Y, Liang D, Li X, Liang G. A novel mono-carbonyl analogue of curcumin, (1E,4E)-1,5-Bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J Med Chem. 2011;54:3768-78.

  43. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-56.

  44. Li W, Yu KN, Ma J, Shen J, Cheng C, Zhou F, Zhiming C, Han W. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells. Arch Biochem Biophys. 2017;633:68-77.

  45. Kim SJ, Chung TH. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep. 2016;6:20332.

  46. Yan X, Xiong ZL, Zou F, Zhao SS, Lu X, Yang G, He G, Ostrikov K. Plasma-induced death of HepG2 Cancer Cells: Intracellular effects of reactive species. Plasma Process Polym. 2011;9:59-66.

  47. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503-33.

  48. Spencer SL, Sorger PK. Measuring and modeling apoptosis in single cells. Cell. 2011;144(6):926-39.

  49. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011;6:28154.

  50. Zhao S, Xiong Z, Mao X, Meng D, Lei Q, Li Y, Deng P, Chen M, Tu M, Lu X, Yang G, He G. Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS One. 2013;8:73665.

ЦИТИРОВАНО В
  1. Perrotti Vittoria, Caponio Vito Carlo Alberto, Muzio Lorenzo Lo, Choi Eun Ha, Marcantonio Maria Carmela Di, Mazzone Mariangela, Kaushik Nagendra Kumar, Mincione Gabriella, Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review, International Journal of Molecular Sciences, 23, 18, 2022. Crossref

1348 Просмотры статей 551 Загрузка статей Метрики
1348 ПРОСМОТРЫ 551 ЗАГРУЗКИ 1 Crossref ЦИТАТЫ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

Induction of Apoptosis by Cold Atmospheric Pressure Plasma for Oral Squamous Cell Carcinoma Cells Plasma Medicine, Vol.8, 2018, issue 4
Jyh Wei Lee, Chuan Li, Latha Ramireddy, Hui Yu Wu, Jang Hsing Hsieh, Bih Show Low, Chih Ho Lai
Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma Plasma Medicine, Vol.8, 2018, issue 3
George T. Williams, Robert D. Short, Amber E. Young, Sarah L. Allinson, Naing T. Thet, Andrew Toby A. Jenkins, Hollie Hathaway, Bethany Lee Patenall, Adam C. Sedgwick
Cold Atmospheric Pressure Plasma as a Tool to Control the Proliferation of Various Mammalian Cells Including Human Mesenchymal Stem Cells for Regenerative Medicine Plasma Medicine, Vol.10, 2020, issue 4
Kiwon Song, Jeongyeon Park
10H-3,6-Diazaphenothiazine-Induced, Caspases-Mediated Mitochondrial-Dependent Apoptosis on HepG2 Hepatocellular Carcinoma Cells and Suppressed Cancer Cells Invasion via Inhibiting Mitochondrial Thioredoxin Reductase Enzymatic Activities Journal of Environmental Pathology, Toxicology and Oncology, Vol.38, 2019, issue 4
Kok Pian Ang, Kah Kooi Ooi, Jinhui Zhang, Fa Fang, Qinwen Tai, Yi Gao, Yiqiang Zhu, Yuanxi Wang, Junsheng Kang, Feng Gao, Feng Zhong, Liquan Cai
Acidification and Nitrite/Nitrate Accumulation by Nonthermal Dielectric Barrier Discharge (DBD) Affect Human Dermal Fibroblasts Plasma Medicine, Vol.5, 2015, issue 1
Sabrina Baldus, Paul C. Fuchs, Christian Oplander, Kiara Heuer, Christoph V. Suschek, Julian Balzer, Peter Awakowicz, Erhan Demir, Martin A. Hoffmanns
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain