Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

HOMOGENIZATION OF PLAIN WEAVE COMPOSITES WITH IMPERFECT MICROSTRUCTURE. PART II. ANALYSIS OF REAL-WORLD MATERIALS

Том 11, Выпуск 5, 2013, pp. 443-462
DOI: 10.1615/IntJMultCompEng.2013004866
Get accessGet access

Краткое описание

A two-layer, statistically equivalent periodic unit cell is offered to predict a macroscopic response of plain weave, multilayer carbon-carbon textile composites. Falling short in describing the most severe geometrical imperfections of these material systems, the original formulation presented in Zeman and Sejnoha (2004) is substantially modified, now allowing for nesting and mutual shifting of individual layers of textile fabric in all three directions. Yet the most valuable asset of the present formulation is seen in the possibility of reflecting the influence of mesoscale porosity through a system of distorted voids. Numerical predictions of both the effective thermal conductivities and elastic stiffnesses provided through the application of the extended finite element method are compared with available laboratory data and the results derived using the Mori-Tanaka averaging scheme to support credibility of the present approach, about as much as the reliability of local mechanical properties found from nanoindentation tests performed directly on the analyzed composite samples.

ЛИТЕРАТУРА
  1. Barbero, E. J., Trovillion, J., Mayugo, J. A., and Sikkil, K. K., Finite element modeling of plain weave fabrics from photomicrograph measurements. DOI: 10.1016/j.compstruct.2005.01.030

  2. Benveniste, Y., A new approach to the application of Mori-Tanaka theory in composite materials. DOI: 10.1016/0167-6636(87)90005-6

  3. Bittnar, Z. and Šejnoha, J., Numerical Methods in Structural Engineering.

  4. Bochenek, B. and Pyrz, R., Reconstruction of random microstructures–a stochastic optimization problem. DOI: 10.1016/j.commatsci.2004.01.038

  5. Boháč, V., Methodology of the testing of model for contact pulse transient method and influence of the disturbance effects on evaluating themophysical parameters of the PMMA.

  6. Černý, M., Glogar, P., and Machota, L. M., Resonant frequency study of tensile and shear elasticity moduli of carbon fibre reinforced composites (CFRC). DOI: 10.1016/S0008-6223(00)00071-3

  7. Chung, P. W. and Tamma, K. K., Woven fabric composites - developments in engineering bounds, homogenization and applications. DOI: 10.1002/(SICI)1097-0207(19990830)45:12<1757::AID-NME653>3.0.CO;2-O

  8. Collins, B. C., Matou&#353;, K., and Rypl, D., Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites. DOI: 10.1615/IntJMultCompEng.v8.i5.50

  9. Cox, B. N. and Flanagan, G., Handbook of analytical methods for textile composites.

  10. Cox, B. and Yang, Q., In quest of virtual tests for structural composites.

  11. Diss, P., Lamon, J., Carpentier, L., Loubet, J. L., and Kapsa, Ph., Sharp indentation behavior of Carbon/Carbon composites and varieties of carbon. DOI: 10.1016/S0008-6223(02)00169-0

  12. Djukic, L. P., Herszberg, I., Walsh, W. R., Schoeppner, G. A., and Gangadhara Prusty, B., Contrast enhancement in visualisation of woven composite architecture using a MicroCT scanner, Part 2: Tow and preform coatings. DOI: 10.1016/j.compositesa.2009.04.002

  13. Djukic, L. P., Herszberg, I., Walsh, W. R., Schoeppner, G. A., Prusty, B. G., and Kelly, D. W., Contrast enhancement in visualisation of woven composite tow architecture using a MicroCT scanner. Part 1: Fabric coating and resin additives. DOI: 10.1016/j.compositesa.2008.12.016

  14. Dobi&#225;&#353;ov&#225;, L., Star&#253;, V., Glogar, P., and Valvoda, V., X-ray structure analysis and elastic properties of a fabric reinforced Carbon/Carbon composite. DOI: 10.1016/S0008-6223(01)00309-8

  15. Dvorak, G. J., Composite materials: Inelastic behavior, damage, fatigue and fracture. DOI: 10.1016/S0020-7683(99)00085-2

  16. Fish, J. and Shek, K., Multiscale analysis of large-scale nonlinear structures and materials.

  17. Fish, J., Yu, Q., and Shek, K., Computational damage mechanics for composite materials based on mathematical homogenization. DOI: 10.1002/(SICI)1097-0207(19990820)45:113.0.CO;2-H

  18. Frigo, M. and Johnson, S. G., The design and implementation of FFTW3.

  19. Gajdo&#353;&#205;k, J., Zeman, J., and &#352;ejnoha, M., Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. DOI: 10.1016/j.probengmech.2005.11.006

  20. Herb, V., Cou&#233;gnat, G., and Martin, E., Damage assessment of thin SiC/SiC composite plates subjected to quasi-static indentation loading. DOI: 10.1016/j.compositesa.2010.08.004

  21. Hivet, G. and Boisse, Ph., Consistent 3D geometrical model of fabric elementary cell, Application to a meshing preprocessor for 3D finite element analysis. DOI: 10.1016/j.finel.2005.05.001

  22. Hrstka, O., Ku&#269;erov&#225;, A., Lep&#353;, M., and Zeman, J., A competitive comparison of different types of evolutionary algorithms. DOI: 10.1016/S0045-7949(03)00217-7

  23. J&#275;kabsons, N. and Bystr&#246;m, J., On the effect of stacked fabric layers on the stiffness of a woven composite. DOI: 10.1016/S1359-8368(02)00038-0

  24. Je&#345;&#225;bek, J., Numerical Framework for Modeling of Cementitious Composites at the Meso-Scale.

  25. Kanari, M., Tanaka, K., Baba, S., and Eto, M., Nanoindentation behavior of a two-dimensional carbon-carbon composite for nuclear applications. DOI: 10.1016/S0008-6223(97)00042-0

  26. Knauss, W. G., Perspectives in experimental solid mechanics. DOI: 10.1016/S0020-7683(99)00092-X

  27. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, P. T., An approach to micro-macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  28. Kuhn, J. L. and Charalambides, P. G., Modeling of plain weave fabric composite geometry. DOI: 10.1177/002199839903300301

  29. Kumar, H., Briant, C. L., and Curtin, W. A., Using microstructure reconstruction to model mechanical behavior in complex microstructures. DOI: 10.1016/j.mechmat.2005.06.030

  30. Kyt&#253;&#345;, D., Jirou&#353;ek, O., and Dammer, J., High resolution X-ray imaging of bone-implant interface by large area flat-panel detector. DOI: 10.1088/1748-0221/6/01/C01038

  31. Lomov, S. V., Verpoest, I., Peeters, T., Roose, D., and Zako, M., Nesting in textile laminates: Geometrical modelling of the laminate. DOI: 10.1016/S0266-3538(02)00318-4

  32. Lomov, S. V., Ivanov, D. S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., and Hirosawa, S., Meso-FE modelling of textile composites: Road map, data flow and algorithms. DOI: 10.1016/j.compscitech.2006.10.017

  33. Lu, B. and Torquato, S., Lineal-path function for random heterogeneous materials. DOI: 10.1103/PhysRevA.45.922

  34. Malvern, L. E., Introduction to the Mechanics of a Continuous Medium.

  35. Marx, D. T. and Riester, L., Mechanical properties of Carbon-Carbon composite components determined using nanoindentation. DOI: 10.1016/S0008-6223(98)00239-5

  36. Matou&#353;, K., Lep&#353;, M., Zeman, J., and &#352;ejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice. DOI: 10.1016/S0045-7825(00)00192-4

  37. Michel, J. C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  38. Mo&#235;s, N., Cloirec, M., Cartraud, P., and Remacle, J.-F., A computational approach to handle complex microstructure geometries. DOI: 10.1016/S0045-7825(03)00346-3

  39. N&#283;me&#269;ek, J., Creep effects in nanoindentation of hydrated phases of cement pastes. DOI: 10.1016/j.matchar.2009.04.008

  40. Oliver, W. C. and Pharr, G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. DOI: 10.1557/JMR.1992.1564

  41. Pastore, C. M., Quantification of processing artifacts in textile composites. DOI: 10.1016/0956-7143(93)90007-U

  42. Povirk, G. L., Incorporation of microstructural information into models of two-phase materials. DOI: 10.1016/0956-7151(94)00487-3

  43. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannergy, B. P., Numerical Recipes in C++.

  44. &#352;ejnoha, M. and Zeman, J., Micromechanical modeling of imperfect textile composites. DOI: 10.1016/j.ijengsci.2008.01.006

  45. Sko&#269;ek, J., Zeman, J., and &#352;ejnoha, M., Effective properties of Carbon-Carbon textile composites: Application of the Mori-Tanaka method. DOI: 10.1088/0965-0393/16/8/085002

  46. Sukumar, N., Chopp, D. L., Mo&#235;s, N., and Belytschko, T., Modeling holes and inclusions by level sets in the extened finite element method. DOI: 10.1016/S0045-7825(01)00215-8

  47. Tomkov&#225;, B., Modelling of Thermophysical Properties of Woven Composites.

  48. Tomkov&#225;, B. and Ko&#353;kov&#225;, B., The porosity of plain weave C/C composite as an input parameter for evaluation of material properties.

  49. Tomkov&#225;, B., &#352;ejnoha, M., Nov&#225;k, J., and Zeman, J., Evaluation of effective thermal conductivities of porous textile composites. DOI: 10.1615/IntJMultCompEng.v6.i2.40

  50. Torquato, S. and Stell, G., Microstructure of two-phase random media, I. The n-point probability functions. DOI: 10.1063/1.444011

  51. Tsukrov, I., Piat, R., Novak, J., and Schnack, E., Micromechanical modeling of porous carbon/carbon composites. DOI: 10.1080/15376490490492034

  52. Vav&#345;&#237;k, D., Dammer, J., Jakubek, J., Jeon, I., Jirou&#353;ek, O., Kroupa, M., and Zl&#225;mal, P., Advanced X-ray radiography and tomography in several engineering applications. DOI: 10.1016/j.nima.2010.06.152

  53. Vorel, J. and &#352;ejnoha, M., Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method. DOI: 10.12989/sem.2009.33.4.429

  54. Wentorf, R., Collar, R., Shephard, M. S., and Fish, J., Automated modeling for complex woven mesostructures. DOI: 10.1016/S0045-7825(98)00232-1

  55. Woo, K. and Whitcomb, J. D., Effects of fiber tow misalignment on the engineering properties of plain weave textile composites. DOI: 10.1016/S0263-8223(97)00025-1

  56. Yeong, C. L. Y. and Torquato, S., Reconstructing random media. DOI: 10.1103/PhysRevE.57.495

  57. Yeong, C. L. Y. and Torquato, S., Reconstructing random media, II. Three-dimensional media from two-dimensional cuts. DOI: 10.1103/PhysRevE.58.224

  58. Yurgartis, S., Morey, K., and Jortner, J., Measurement of yarn shape and nesting in plain-weave composites. DOI: 10.1016/0266-3538(93)90079-V

  59. Yushanov, S. P. and Bogdanovich, A. E., Stochastic theory of composite materials with random waviness of the reinforcements. DOI: 10.1016/S0020-7683(97)00351-X

  60. Zeman, J., Analysis of Composite Materials with Random Microstructure.

  61. Zeman, J. and &#352;ejnoha, M., Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. DOI: 10.1016/S0022-5096(00)00027-2

  62. Zeman, J. and &#352;ejnoha, M., From random microstructures to representative volume elements. DOI: 10.1088/0965-0393/15/4/S01

  63. Zeman, J. and &#352;ejnoha, M., Homogenization of balanced plain weave composites with imperfect microstructure: Part I &mdash; Theoretical formulation. DOI: 10.1016/j.ijsolstr.2004.05.011

ЦИТИРОВАНО В
  1. Bertolesi Elisa, Carozzi Francesca Giulia, Milani Gabriele, Poggi Carlo, Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension, Construction and Building Materials, 70, 2014. Crossref

  2. Wang Hao, Wang Zhong-wei, Quantification of effects of stochastic feature parameters of yarn on elastic properties of plain-weave composite. Part 1: Theoretical modeling, Composites Part A: Applied Science and Manufacturing, 78, 2015. Crossref

  3. Wang Hao, Wang Zhong-wei, Quantification of effects of stochastic feature parameters of yarn on elastic properties of plain-weave composite – Part 2: Statistical predictions vs. mechanical experiments, Composites Part A: Applied Science and Manufacturing, 84, 2016. Crossref

  4. Svoboda Ladislav, Šulc Stanislav, Janda Tomáš, Vorel Jan, Novák Jan, μMech micromechanics library, Advances in Engineering Software, 100, 2016. Crossref

  5. Feng Zhi-Hai, Zhi Jia-Yun, Fan Zhen, Sun Duo, Si Chao, Wang Xiao-Dong, An Analytical Model of Thermal Conductivity for Carbon/Carbon Composites with Pitch-Based Matrix, Advances in Mechanical Engineering, 7, 1, 2015. Crossref

  6. Vlach Tomáš, Laiblová Lenka, Chira Alexandru, Novotná Magdaléna, Fiala Ctislav, Ženíšek Michal, Hájek Petr, Comparison of Different Methods for Determination of Modulus of Elasticity of Composite Reinforcement Produced from Roving, Advanced Materials Research, 1054, 2014. Crossref

  7. Tiberti Simone, Milani Gabriele, 3D voxel homogenized limit analysis of single-leaf non-periodic masonry, Computers & Structures, 229, 2020. Crossref

  8. Zahid Mohammad, Sharma Rajneesh, Bhagat Atul Ramesh, Karra Priyanka, Image-based numerical modeling for the effective thermo-elastic property of 4D carbon/carbon composite at high temperatures, Composite Structures, 267, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain