Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

ADAPTIVE PHASE-FIELD CONCURRENT MULTISCALE METHOD FOR EFFICIENT SIMULATION OF QUASI-BRITTLE FRACTURE

Том 21, Выпуск 4, 2023, pp. 67-89
DOI: 10.1615/IntJMultCompEng.2022046668
Get accessGet access

Краткое описание

An adaptive phase-field concurrent multiscale method for efficient simulation of quasi-brittle fracture is presented. In this method, the analysis model is first subjected to coarse mesh discretization and the corresponding damage phase field calculation analysis. Then, adaptive dynamic local mesh refinement is performed for the coarse scale elements exceeding the given damage threshold during the iterative process. The locally refined mesh is defined as the local subdomain, the outermost coarse elements of the refined mesh, and the coarse elements without refinement are defined as the global subdomain. The variant s-version method is used to realize the direct coupling connection of mismatched meshes in different subdomains and the application of the continuity condition of field variables on the global-local subdomain interface. The division of the local subdomain, the global subdomain, and their overlapping domain are dynamically updated with the crack propagation path in the proposed method. The generation of the global-local computing mesh has great flexibility without the need for scale separation, which provides a more concise and flexible implementation for multiscale phase field adaptive simulation. The proposed method overcomes the extra burden and complexity of field variable conversion between coarse and fine scales, imposition of continuity conditions, and program implementation in existing phase field multiscale methods, which can be easily applied to the analysis on damage-fracture behavior of quasi-brittle structures. Typical examples verify the correctness, robustness, and advantages of the method.

ЛИТЕРАТУРА
  1. Aldakheel, F., Noii, N., Wick, T., Allix, O., and Wriggers, P., Multilevel Global-Local Techniques for Adaptive Ductile Phase-Field Fracture, Comput. Methods Appl. Mech. Eng., vol. 387, p. 114175, 2021.

  2. Ambati, M., Gerasimov, T., and De Lorenzis, L., A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation, Comput. Mech, vol. 55, no. 2, pp. 383-405, 2015.

  3. Ambati, M., Gerasimov, T., and De Lorenzis, L., Phase-Field Modeling of Ductile Fracture, Comput. Mech, vol. 55, no. 5, pp. 1017-1040, 2015.

  4. Atkinson, B.K., Fracuture Mechanics of Rock, Cambridge, MA: Academic Press, pp. 109-116, 1987.

  5. Bazant, Z.P. and Oh, B.H., Crack Band Theory for Fracture of Concrete, Mater. Struct., vol. 16, no. 93, pp. 155-177, 1983.

  6. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., and Landis, C.M., A Phase-Field Description of Dynamic Brittle Fracture, Comput. Methods Appl. Mech. Eng., vol. 217, pp. 77-95, 2012.

  7. Bourdin, B., Francfort, G.A., and Marigo, J.J., Numerical Experiments in Revisited Brittle Fracture, J. Mech. Phys. Solids, vol. 48, no. 4, pp. 797-826, 2000.

  8. Bourdin, B., Francfort, G.A., and Marigo, J.J., The Variational Approach to Fracture, J. Elast., vol. 91, nos. 1-3, pp. 5-148, 2008.

  9. Cervera, M., Barbat, G.B., Chiumenti, M., and Wu, J.Y., A Comparative Review of XFEM, Mixed FEM and Phase-Field Models for Quasi-Brittle Cracking, Arch. Comput. Methods Eng., vol. 29, no. 2, pp. 1009-1083, 2021.

  10. Cheng, P.P., Zhu, H.H., Sun, W., Shen, Y., and Fish, J., A Concurrent Multiscale Approach for Fracturing of Brittle Composites Based on the Superposition-Based Phase Field Model, Int. J. Multiscale Comput. Eng., vol. 21, no. 2, pp. 1-23, 2022b.

  11. Cheng, P.P., Zhu, H.H., Zhang, Y.M., Jiao, Y., and Fish, J., Coupled Thermo-Hydro-Mechanical-Phase Field Modeling for Fire-Induced Spalling in Concrete, Comput. Methods Appl. Mech. Eng., vol. 389C, p. 114327, 2022a.

  12. Dhia, H.B. and Rateau, G., Mathematical Analysis of the Mixed Arlequin Method, C. R. Math., vol. 332, pp. 649-654, 2001.

  13. Fei, F. and Choo, J., A Phase-Field Model of Frictional Shear Fracture in Geologic Materials, Comput. Methods Appl. Mech. Eng., vol. 369, p. 113265,2020.

  14. Fish, J. and Markolefas, S., The S-Version of the Finite Element Method for Multilayer Laminates, Int. J. Numer. Methods Eng., vol. 33, pp. 1081-1105, 1992b.

  15. Fish, J., The S-Version of the Finite Element Method, Comput. Struct., vol. 43, no. 3, pp. 539-547,1992a.

  16. Fish, J., Wagner, G.J., and Keten, S., Mesoscopic and Multiscale Modelling in Materials, Nat. Mater., vol. 20, no. 3, pp. 774-786, 2021.

  17. Francfort, G.A. and Marigo, J.J., Revisiting Brittle Fracture as an Energy Minimization Problem, J. Mech. Phys. Solids, vol. 46, no. 8, pp. 1319-1342, 1998.

  18. Freddi, F. and Iurlano, F., Numerical Insight of a Variational Smeared Approach to Cohesive Fracture, J. Mech. Phys. Solids, vol. 98, pp. 156-171,2017.

  19. Freddi, F. and Mingazzi, L., Refinement Procedures for the Phase Field Approach to Brittle Fracture, Comput. Methods Appl. Mech. Eng., vol. 388, p. 114214, 2022.

  20. Galvez, J.C., Elices, M., Guinea, G.V., and Planas, J., Mixed Mode Fracture of Concrete under Proportional and Nonproportional Loading, Int. J. Fract., vol. 94, no. 3, pp. 267-284,1998.

  21. Geelen, R., Plews, J., Tupek, M., and Dolbow, J., An Extended/Generalized Phase-Field Finite Element Method for Crack Growth with Global-Local Enrichment, Int. J. Numer. Methods Eng., vol. 121, no. 11, pp. 2534-2557, 2020.

  22. Giovanardi, B., Scotti, A., and Formaggia, L., A Hybrid XFEM-Phase Field (Xfield) Method for Crack Propagation in Brittle Elastic Materials, Comput. Methods Appl. Mech. Eng., vol. 320, pp. 396-420, 2017.

  23. Kikuchi, M., Wada, Y., Shintaku, Y., Suga, K., and Li, Y., Fatigue Crack Growth Simulation in Heterogeneous Material Using S-Version FEM, Int. J. Fatigue, vol. 58, pp. 47-55,2014.

  24. Le Bellego, C., Dube, J.F., Pijaudier-Cabot, G., and Gerard, B., Calibration of Nonlocal Damage Model from Size Effect Tests, Eur. J. Mech. A/Sol., vol. 22, no. 11, pp. 33-46,2003.

  25. Miehe, C., Welschinger, F., and Hofacker, M., Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations, Int. J. Numer. Methods Eng., vol. 83, no. 10, pp. 1273-1311, 2010.

  26. Morgan, W.E. and Aral, M.M., An Implicitly Coupled Hydro-Geomechanical Model for Hydraulic Fracture Simulation with the Discontinuous Deformation Analysis, Int. J. Rock Mech. Min. Sci., vol. 73, pp. 82-94, 2015.

  27. Muix, A., Marco, O., Rodrguez-Ferran, A., and Fernndez-Mndez, S., A Combined XFEM Phase-Field Computational Model for Crack Growth without Remeshing, Comput. Mech., vol. 67, no. 1, pp. 231-249, 2020.

  28. Sinaie, S., Application of the Discrete Element Method for the Simulation of Size Effects in Concrete Samples, Int. J. Solids Struct., vol. 108, pp. 244-253, 2017.

  29. Sun, P., Cai, Y.C., and Zhu, H.H., A Simple Approach for Pervasive Quasi-Brittle Fracture Using Independent Cover Meshless Method, Theor. Appl. Fract. Mech, vol. 108, p. 102600, 2020.

  30. Sun, W., Fish, J., and Dhia, H.B., A Variant of the S-Version of the Finite Element Method for Concurrent Multiscale Coupling, Int. J. Multiscale Comput. Eng., vol. 16, no. 2, pp. 187-207, 2018.

  31. Triantafyllou, S.P. and Kakouris, E.G., A Generalised Phase-Field Multiscale Finite Element Method for Brittle Fracture, Int. J. Numer. Methods Eng, vol. 121, no. 9, pp. 1915-1945,2020.

  32. Verhosel, C.V. and de Borst, R., A Phase-Field Model for Cohesive Fracture, Int. J. Numer. Methods Eng, vol. 96, no. 1, pp. 43-62, 2013.

  33. Winkler, B., Hofstetter, G., and Lehar, H., Application of a Constitutive Model for Concrete to the Analysis of a Precast Segmental Tunnel Lining, Int. J. Numer. Anal. Methods Geomech., vol. 28, nos. 7-8, pp. 797-819,2004.

  34. Winkler, B., Hofstetter, G., and Niederwanger, G., Experimental Verification of a Constitutive Model for Concrete Cracking, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., vol. 215, no. 2, pp. 75-86, 2001.

  35. Wu, J.Y., A Geometrically Regularized Gradient-Damage Model with Energetic Equivalence, Comput. Methods Appl. Mech. Eng., vol. 328, pp. 612-637, 2017.

  36. Wu, J.Y., A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure, J. Mech. Phys. Solids, vol. 103, pp. 72-99,2017.

  37. Wu, J.Y., Qiu, J.F., Nguyen, V.P., Mandal, T.K., and Zhuang, L.J., Computational Modeling of Localized Failure in Solids: XFEM vs. PF-CZM, Comput. Methods Appl. Mech. Eng., vol. 345, pp. 618-643,2019.

  38. Wu, J.Y., Robust Numerical Implementation of Non-Standard Phase-Field Damage Models for Failure in Solids, Comput. Methods Appl. Mech. Eng., vol. 340, pp. 767-797, 2018.

  39. Xu, Q., Chen, J., Yue, H., and Li, J., A Study on the S-Version FEM for a Dynamic Damage Model, Int. J. Numer. Methods Eng., vol. 115, no. 4, pp. 427-444, 2018.

  40. Yang, L., Yang, Y., Zheng, H., and Wu, Z., An Explicit Representation of Cracks in the Variational Phase Field Method for Brittle Fractures, Comput. Methods Appl. Mech. Eng., vol. 387, p. 114127, 2021.

  41. Yue, Z. and Robbins, D.H., Jr., Adaptive Superposition of Finite Element Meshes in Elastodynamic Problems, Int. J. Numer. Methods Eng., vol. 63,no. 11,pp. 1604-1635,2005.

  42. Zhang, X., Vignes, C., Sloan, S.W., and Sheng, D., Numerical Evaluation of the Phase-Field Model for Brittle Fracture with Emphasis on the Length Scale, Comput. Mech, vol. 59, no. 5, pp. 737-752, 2017.

  43. Zhou, S.W., Zhuang, X.Y., andRabczuk, T., Phase Field Modeling of Brittle Compressive-Shear Fractures in Rock-Like Materials: A New Driving Force and a Hybrid Formulation, Comput. Methods Appl. Mech. Eng., vol. 355, pp. 729-752, 2019.

  44. Zhou, S.W., Zhuang, X.Y., Zhu, H.H., and Rabczuk, T., Phase Field Modelling of Crack Propagation, Branching and Coalescence in Rocks, Theor. Appl. Fract. Mech, vol. 96, pp. 174-192,2018.

1816 Просмотры статей 21 Загрузка статей Метрики
1816 ПРОСМОТРЫ 21 ЗАГРУЗКИ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

MULTISCALE MODEL WITH EMBEDDED DISCONTINUITY DISCRETE APPROXIMATION CAPABLE OF REPRESENTING FULL SET OF 3D FAILURE MODES FOR HETEROGENEOUS MATERIALS WITH NO SCALE SEPARATION International Journal for Multiscale Computational Engineering, Vol.20, 2022, issue TBD
Samir Suljevic, Adnan Ibrahimbegovic, Ivan Rukavina
MULTISCALE MODEL WITH EMBEDDED DISCONTINUITY DISCRETE APPROXIMATION CAPABLE OF REPRESENTING FULL SET OF 3D FAILURE MODES FOR HETEROGENEOUS MATERIALS WITH NO SCALE SEPARATION International Journal for Multiscale Computational Engineering, Vol.20, 2022, issue 5
Samir Suljevic, Adnan Ibrahimbegovic, Ivan Rukavina
A VARIANT OF THE S-VERSION OF THE FINITE ELEMENT METHOD FOR CONCURRENT MULTISCALE COUPLING International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Hachmi Ben Dhia, Wei Sun, Jacob Fish
LATTICE BOLTZMANN MODEL FOR UPSCALING OF FLOW IN HETEROGENEOUS POROUS MEDIA BASED ON DARCY'S LAW Journal of Porous Media, Vol.22, 2019, issue 9
F. L. Liu, X. Jin, Moran Wang, M. Li, W. F. Lv, Q. Liu, G. Z. Liu
VARIATIONALLY CONSISTENT COMPUTATIONAL HOMOGENIZATION OF MICRO-ELECTRO-MECHANICS AT FINITE DEFORMATIONS International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 4
Daniel Vallicotti, Ashish Sridhar, Marc-Andre Keip
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain