Доступ предоставлен для: Guest
Computational Thermal Sciences: An International Journal

Выходит 6 номеров в год

ISSN Печать: 1940-2503

ISSN Онлайн: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

A CONTROL-VOLUME FINITE ELEMENT METHOD FOR THE PREDICTION OF THREE-DIMENSIONAL DIFFUSION-TYPE PHENOMENA IN ANISOTROPIC MEDIA

Том 5, Выпуск 3, 2013, pp. 249-260
DOI: 10.1615/ComputThermalScien.2013006532
Get accessGet access

Краткое описание

The formulation and testing of a control-volume finite element method (CVFEM) for the prediction of 3D, linear and nonlinear, diffusion-type phenomena in anisotropic media in irregular calculation domains are presented. The calculation domain is discretized into four-node tetrahedral elements. Contiguous, nonoverlapping, polyhedral control volumes are then associated with each node, and the governing differential equation is integrated over these control volumes. In each tetrahedral element, the dependent variable is interpolated linearly, centroidal values of the diffusion coefficients are assumed to prevail, and nodal values of the coefficients in the linearized source term are assumed to prevail over the polyhedral sub–control volumes. These interpolation functions are used to derive the discretized equations, which, in general, are nonlinear and coupled, and are solved using an iterative procedure. Comments are provided on the sufficient conditions for ensuring positive coefficients in the discretized equations. The proposed CVFEM appears to be the first numerical method for the solution of anisotropic diffusion-type problems that is based on tetrahedral elements and vertex-centered polyhedral control volumes. These features make it particularly attractive for amalgamation with adaptive-grid schemes and applications to problems with complex irregular geometries. The proposed 3D CVFEM and its computer implementation were tested using several steady conduction–type problems, for which analytical solutions were constructed using a special technique. In all cases, the agreement between the numerical and analytical solutions was excellent.

ЦИТИРОВАНО В
  1. Baliga Bantwal R., Lokhmanets Iurii, Cimmino Massimo, Numerical Methods for Conduction-Type Phenomena, in Handbook of Thermal Science and Engineering, 2017. Crossref

  2. Baliga Bantwal R., Lokhmanets Iurii, Cimmino Massimo, Numerical Methods for Conduction-Type Phenomena, in Handbook of Thermal Science and Engineering, 2018. Crossref

  3. Reddy J. N., Kim Namhee, Martinez Matthew, A dual mesh control domain method for the solution of nonlinear Poisson’s equation and the Navier–Stokes equations for incompressible fluids, Physics of Fluids, 32, 9, 2020. Crossref

  4. Reddy J.N., Martinez Matthew, Nampally Praneeth, A novel numerical method for the solution of nonlinear equations with applications to heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 31, 6, 2021. Crossref

Статьи, принятые к публикации

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain