Доступ предоставлен для: Guest
Atomization and Sprays
Editor-in-Chief Europe: Günter Brenn (open in a new tab)
Editor-in-Chief Americas: Marcus Herrmann (open in a new tab)
Редактор-основатель: Norman Chigier (open in a new tab)

Выходит 12 номеров в год

ISSN Печать: 1044-5110

ISSN Онлайн: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

THE DROPLET SIZE AND PENETRATION HEIGHT OF A KEROSENE JET IN A CROSSFLOW

Том 30, Выпуск 7, 2020, pp. 495-515
DOI: 10.1615/AtomizSpr.2020034358
Get accessDownload

Краткое описание

The atomization and mixing processes of fuel in crossflows are among the important aspects of research into rocket-based combined-cycle (RBCC) engine technology. In this paper, the droplet size and penetration height of the kerosene jet in crossflows are studied. The influences of the orifice diameter, number, and arrangement, the injection pressure drop of fuel, the orifice diameter and the Mach number of the crossflow are analyzed applying different optical measuring methods. The results reveal that the injection pressure drop of fuel and the crossflow Mach number are both positively correlated with the atomization performance, whereas the orifice diameter is negatively correlated with the atomization performance. By analyzing the penetration height under different operating conditions, it can be seen that when the other factors are kept constant, the penetration height increases with increasing orifice diameter and pressure drop. Using a least-squares, an empirical formula for the jet penetration height in terms of momentum flux ratio and axial distance was obtained.

ЛИТЕРАТУРА
  1. Allan, S. and Joseph, S., Breakup of Liquid Sheets and Jets in a Supersonic Gas Stream, AIAA J., vol. 9, no. 4, pp. 666-673,1971. DOI: 10.2514/6.1970-89.

  2. Ebrahimi, H., Numerical Investigation of Jet Interaction in a Supersonic Freestream, J. Spacecraft Rockets., vol. 45, no. 1,pp. 95-103,2013. DOI: 10.2514/1.29847.

  3. Gad, H.M., Ibrahim, I.A., and Abdel-baky, M.E., Experimental Study of Diesel Fuel Atomization Performance of Air Blast Atomizer, Exp. Therm.. Fluid Sci., vol. 99, pp. 211-218, 2018. DOI: 10.1016/j.expthermflusci.2018.07.006.

  4. Huang, W., Transverse Jet in Supersonic Crossflow, Aerospace Sci. Technol., vol. 50, no. 3, pp. 183-195, 2016. DOI: 10.1016/j.ast.2016.01.001.

  5. Joshi, P.B. and Schetz, J.A., Effect of Injector Shape on Penetration and Spread of Liquid Jets, AIAA J., vol. 13, no. 9, pp. 1137-1138,2015. DOI: 10.2514/3.60518.

  6. Jinbum, H. and Seungsoo, L., Numerical Study on Lateral Jet Interaction in Supersonic Crossflows, Aerospace Sci. Technol., vol. 80, pp. 315-328,2018. DOI: 10.1016/j.ast.2018.07.022.

  7. Kolpin, M.A., Horn, K.P., and Reichenbach, R.E., Study of Penetration of a Liquid Injectant into a Supersonic Flow, AIAA J, vol. 6, no. 5, pp. 853-858,1968. DOI: 10.2514/3.4609.

  8. Kush, E.A. Jr. and Schetz, J.A., Liquid Jet Injection into a Supersonic Flow, AIAA J., vol. 11, no. 9, pp. 1223-1224,1973. DOI: 10.2514/3.50567.

  9. Krishnan, M., The Interaction of Jets with Crossflow, Annu. Rev. FluidMech, vol. 45, no. 3, pp. 379-407, 2013. DOI: 10.1146/annurev-fluid-120710-101115.

  10. Li, Y., Wei, H., Hao, L., et al., Numerical Investigation and Optimization on Mixing Enhancement Factors in Supersonic Jet-to-Crossflow Flow Fields, Acta Astronautica, vol. 127, no. 10, pp. 321-325, 2016. DOI: 10.1016/j.actaastro.2016.06.011.

  11. Lin, K.C. and Kennedy, P., Spray Penetration Heights of Angle-Injected Aerated-Liquid Jets in Supersonic Crossflows, Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 10-13, 2000.

  12. Lin, K.C. and Kennedy, P.J., Penetration Heights of Liquid Jets in High-Speed Crossflows, 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002.

  13. Lin, K.C., Kennedy, P., and Jackson, T., Structures of Water Jets in a Mach 1.94 Supersonic Crossflow, 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp. 12096-12115,2004.

  14. Liu, J., Wang, L., Zhang, J., et al., Experimental and Numerical Simulation of Atomization of Liquid Jet in Supersonic Crossflow, J. Aerospace Power, vol. 23, no. 4, pp. 724-729,2008. (in Chinese).

  15. Miller, B.D., Digital Holographic Diagnostics of Aerated Liquid Jets in a Subsonic Crossflow, MSME, Oklahoma State University, 2006.

  16. Morad, M.R. and Khosrobeygi, H., Penetration of Elliptical Liquid Jets in Low-Speed Crossflow, J. Fluids Eng., vol. 141, no. 1,pp. 1-7,2019. DOI: 10.1115/1.4040373.

  17. Portz, R. and Segal, C., Penetration of Gaseous Jets in Supersonic Flows, AIAA J., vol. 44, no. 10, pp. 2426-2429,2006. DOI: 10.2514/1.23541.

  18. Stenzler, J.N., Lee, J.G., Santavicca, D.A., et al., Penetration of Liquid Jets in a Crossflow, Atomization Sprays, vol. 16,no. 8, pp. 887-906,2006. DOI: 10.1615/AtomizSpr.v16.i8.30.

  19. Sun, M.B., Gong, C., Zhang, S.P., et al., Spark Ignition Process in a Scramjet Combustor Fueled by Hydrogen and Equipped with Multi-Cavities at Mach 4 Flight Condition, Exp. Therm. Fluid Sci., vol. 43, pp. 90-96,2012. DOI: 10.1016/j.expthermflusci.2012.03.028.

  20. Sun, M.B., Zhang, S.P., Zhao, Y.H., et al., Experimental Investigation on Transverse Jet Penetration into a Supersonic Turbulent Crossflow, Sci. China Technol. Sci., vol. 56, no. 8, pp. 1442-1447,2013. DOI: 10.1007/s11431-013-5265-7.

  21. Tambe, S.B., Jeng, S.-M., and Mongia, H., Liquid Jets in Subsonic Crossflow, 43nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 10-13,2005.

  22. Wang, H.B., Wang, Z.G., Sun, M.B., et al., Combustion Modes of Hydrogen Jet Combustion in a Cavity-Based Supersonic Combustor, SciVerse ScienceDirect, vol. 38, no. 27, pp. 12078-12089, 2013. DOI: 10.1016/j.ijhydene.2013.06.132.

  23. Wang, Z.G., Wu, L., Li, Q., et al., Experimental Investigation on Structures and Velocity of Liquid Jets in a Supersonic Crossflow, Appl. Phys. Lett., vol. 105,no. 13,pp. 134-102,2014. DOI: 10.1063/1.4893008.

  24. Wang, Y.S., Lin, Y.Z., Li, L., et al., Research on Penetration of Aviation Kerosene Injected into Crossflows based on PLIF Technique, J. Propuls. Technol., vol. 36, no. 09, pp. 1395-1402,2015a. (in Chinese).

  25. Wang, Z.G., Sun, M.B., Wang, H.B., et al., Mixing-Related Low Frequency Oscillation of Combustion in an Ethylene-Fueled Supersonic Combustor, Proc. Combust. Inst., vol. 35, no. 2, pp. 2137-2144,2015b. DOI: 10.1016/j.proci.2014.09.005.

  26. Wang, H.B., Wang, Z.G., Sun, M.B., et al., Large Eddy Simulation of a Hydrogen-Fueled Scramjet Combustor with Dual Cavity, Acta Astronautica, vol. 108, pp. 119-128, 2015c. DOI: 10.1016/j.actaastro.2014.12.008.

  27. Wu, P.K., Kirkendall, K.A., Fuller, R.P., et al., Spray Structures of Liquid Jets Atomized in Subsonic Crossflows, J. Propuls. Power, vol. 14, no. 2, pp. 173-182,1998. DOI: 10.2514/2.5283.

  28. Yu, G., Li, J.G., Zhao, J.R., et al., An Experimental Study of Kerosene Combustion in a Supersonic Model Combustor Using Effervescent Atomization, Symposium Combust., vol. 30, no. 2, pp. 2859-2866,2004. DOI: 10.1016/j.proci.2004.07.050.

ЦИТИРОВАНО В
  1. Yang Kai, Li Chen-yang, Pan Yu, Wang Zhen-guo, Liu Chao-yang, Wang Ning, Investigation of the evaporation characteristics of a transverse vaporized kerosene jet in supersonic flow, Acta Astronautica, 185, 2021. Crossref

  2. Fdida N., Mallart-Martinez N., Le Pichon T., Vincent-Randonnier A., Penetration of a kerosene liquid jet injected in a high temperature Mach 2 supersonic crossflow, Experiments in Fluids, 63, 10, 2022. Crossref

  3. Zhou Wenyuan, Xing Kai, Dou Suyi, Yang Qingchun, Xu Xu, Experimental and Numerical Investigations on the Mixing Process of Supercritical Jet Injected into a Supersonic Crossflow, Aerospace, 9, 11, 2022. Crossref

  4. Aref’ev K. Yu., Voronetskii A. V., Prokhorov A. N., Suchkov S. A., Filimonov L. A., Abramov M. A., Numerical Modeling of High-Enthalpy Two-Phase Flow in a Channel with Transverse Injection of a Reactive Liquid, Journal of Engineering Physics and Thermophysics, 95, 5, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain