Доступ предоставлен для: Guest
Atomization and Sprays
Editor-in-Chief Europe: Günter Brenn (open in a new tab)
Editor-in-Chief Americas: Marcus Herrmann (open in a new tab)
Редактор-основатель: Norman Chigier (open in a new tab)

Выходит 12 номеров в год

ISSN Печать: 1044-5110

ISSN Онлайн: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

NONLINEAR STABILITY ANALYSIS OF VISCOELASTIC FALLING FLUID FILM WITH COUNTERCURRENT GAS FLOW

Том 23, Выпуск 10, 2013, pp. 889-924
DOI: 10.1615/AtomizSpr.2013007973
Get accessGet access

Краткое описание

The nonlinear stability analysis of Walters B' viscoelastic falling fluid film with countercurrent gas flow has been investigated. A normal mode approach is first employed to compute the linear stability solution for the film flow. The results of linear analysis indicate that the viscoelasticity parameter and Weber number have stabilizing effects, and the Reynolds number has a destabilizing effect, while the countercurrent shear stress parameter has a dual role on the stability of the flow system. The method of multiple scales is then used to obtain the weak nonlinear dynamics of the film flow in the form of the Ginzburg-Landau equation. It is shown that both subcritical instability and supercritical stability conditions are possible when the gas flows in the countercurrent direction. The results further indicate that in the subcritical unstable region, the threshold amplitude increases (and then decreases) depending on the wave number value by increasing the viscoelasticity parameter and the countercurrent shear stress parameter, while in the supercritical stable region, it decreases by increasing the viscoelasticity parameter and Weber number, and it increases by increasing the countercurrent shear stress parameter and Reynolds number. It is found also that the nonlinear wave speed decreases by increasing the Weber number, and it decreases and then slightly increases by increasing the Reynolds number in the subcritical unstable region, while it increases by increasing Weber number, countercurrent shear stress parameter, viscoelasticity parameter, and it decreases by increasing Reynolds number in the supercritical stable region.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain