Доступ предоставлен для: Guest
International Journal of Fluid Mechanics Research
Главный редактор: Atle Jensen (open in a new tab)
Заместитель главного редактора: Valery Oliynik (open in a new tab)
Редактор-основатель: Victor T. Grinchenko (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5102

ISSN Онлайн: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Electrohydrodynamic Kelvin − Helmholtz Instability of Cylindrical Interface through Porous Media

Том 40, Выпуск 5, 2013, pp. 455-467
DOI: 10.1615/InterJFluidMechRes.v40.i5.80
Get accessGet access

Краткое описание

The effect of saturated porous bed structure on the linear analysis of Kelvin− Helmholtz instability of cylindrical interface has been carried out, using viscous potential flow theory. The fluids are subjected to be uniform electric field which is acting in the axial direction. The fluids are considered to be viscous and incompressible with different kinematic viscosities. In viscous potential flow theory, viscosity enters through normal stress balance and tangential stresses are not considered. A dispersion relation that accounts for the axisymmetric waves has been obtained and stability criterion has been given in terms of relative velocity. Various graphs have been drawn to show the effect of various physical parameters such as porosity and permeability of medium, viscosity ratio, upper fluid fraction on the stability of the system. It is observed that axial electric field has stabilizing effect while porous media has destabilizing effect on the stability of the system.

ЦИТИРОВАНО В
  1. Umadevi R., Chandrashekhar D.V., Dinesh P.A., Jayalakshmamma D.V., Fluid Flow in Composite Cylindrical Regions, Advanced Engineering Forum, 40, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain