Доступ предоставлен для: Guest
Catalysis in Green Chemistry and Engineering

Выходит 4 номеров в год

ISSN Печать: 2572-9896

ISSN Онлайн: 2572-990X

H-Index: 2

Indexed in

EXPLORING THE CATALYTIC POTENTIALS OF SUPPORTED MOLTEN SALTS TOWARD TRANSESTERIFICATION OF WASTE COOKING OIL FOR THE PRODUCTION OF BIODIESEL

Том 2, Выпуск 2, 2019, pp. 133-141
DOI: 10.1615/CatalGreenChemEng.2020031663
Get accessGet access

Краткое описание

Biodiesel derived from vegetable oils or animal fats are prominent candidates as one of the green constituents (blend) to diesel fuels. Herein we report an efficient and sustainable methodology in which silica-supported molten salt (SMS) tetrabutylammonium hexafluorophosphate was used as a catalyst for the process of transesterification between waste sunflower oil and an alcohol to give high-quality biodiesel as product. Furthermore, the resulting biodiesel and its blend (B5) was characterized by utilizing thermal methods like thermogravimetric analysis and differential scanning calorimetry along with other standard physicochemical processes of characterization. For an efficient utilization of blend (B5) as fuel, the thermogram obtained was used to calculate the specific heat capacity behavior as a function of temperature. In addition, the present protocol directs an extraordinary route to construct materials with unique surface properties, as the transfer of specific properties from the molten salt framework to silica gel surface may accomplish a "designer surface" with properties having a potential to alter the method of organic transformations.

ЛИТЕРАТУРА
  1. Amit, S., Biodiesel Production and Properties, Cambridge, UK: The Royal Society of Chemistry, 2012. Ayhan, D., Biodiesel A Realistic Fuel Alternative for Diesel Engines, London: Springer-Verlag, 2003.

  2. Chris, H. and Vasile, P., Catalysis in Ionic Liquids from Catalyst Synthesis to Application, Cambridge, UK: The Royal Society of Chemistry, 2014.

  3. Erisandro, S.S., Marta, M.C., Eduardo, H.S.C., Valter, J.F., Ana, C.D.M., and Antonio, G.S., Analysis of Thermal and Oxidative Stability of Biodiesel from Jatropha Curcas L. and Beef Tallow, J. Therm. Anal. Calorim., vol. 113, pp. 437-442, 2013.

  4. Fehrmann, R., Riisager, A., and Haumann, M., Supported Ionic Liquids Fundamentals and Applications, Weinheim, Germany: Wiley-VCH, 2014.

  5. Gupta, G.R., Ganesh, R.C., Tomar, P.A., Gaikwad, Y., Azad, R., Pandya, G.H., Waghulade, G.P., and Patil, K.J., Synthesis of Bis(indolyl)methanes Using W-Butyl-Pyridinium Bromide, Eur. J. Chem., vol. 3, pp. 475-479, 2012a.

  6. Gupta, G.R., Ganesh, R.C., Tomar, P.A., Waghulade, G.P., and Patil, K.J., Molten Ammonium Salt as a Solvent for Menschutkin Quaternization Reaction (Synthesis of Ionic Liquids) and Other Heterocyclic Compounds, Asian J. Chem., vol. 24, pp. 4675-4678,2012b.

  7. Gupta, G.R., Ganesh, R.C., Tomar, P.A., Gaikwad, Y., Azad, R., Pandya, G.H., Waghulade, G.P., and Patil, K.J., Mass Spectrometry of Ionic Liquids ESI-MS/MS Studies, Asian J. Chem, vol. 25, pp. 8261-8263, 2013.

  8. Gupta, G.R., Patil, P.D., Shaikh, V.R., Kolhapurkar, R.R., Dagade, D.H., and Patil, K.J., Analytical Estimation of Water Contents, Specific Heat Capacity and Thermal Profiles Associated with Enzymatic Model Compound B-Cyclodextrin, Curr. Sci., vol. 114, pp. 2525-2529,2018a.

  9. Gupta, G.R., Shaikh, V.R., and Patil, K.J., Synchronous Thermogravimetry and Differential Scanning Calorimetry Estimates of Urea Inclusion Complexes Using TGA/DSC, Curr. Phys. Chem, vol. 8, pp. 175-185, 2018b.

  10. Hui, L., Shengli, N., Chunmei, L., and Yongzheng, W., Comprehensive Investigation of the Thermal Degradation Characteristics of Biodiesel and Its Feedstock Oil through TGA-FTIR, Energy Fuels, vol. 29, pp. 5145-5153, 2015.

  11. Linguo, Y., Aiqing, Z., and Xinsheng, Z., Shrimp Shell Catalyst for Biodiesel Production, Energy Fuels, vol. 23, pp. 3859-3865, 2009.

  12. Martino, D.S., Riccardo, T., Lu, P., and Elio, S., Heterogeneous Catalysts for Biodiesel Production, Energy Fuels, vol. 22, pp. 207-217, 2008.

  13. Mushtaq, A., Mir, A.K., Muhammad, Z., and Shazia, S., Practical Handbook on Biodiesel Production and Properties, Boca Raton, FL: CRC Press, 2013.

  14. Naresh, N.M. and Yusuf, G., A Fourier Transform Infrared Spectroscopy (FTIR) Method to Monitor Soya Biodiesel and Soybean Oil in Trans Esterification Reactions, Petro-Diesel-Biodiesel Blends and Blend Adulteration with Soy Oil, Energy Fuels, vol. 23, pp. 3773-3782, 2009.

  15. Patil, K.S., Zope, P.H., Patil, U.T., Patil, P.D., Dubey, R.S., and Gupta, G.R., Synthesis and Thermophysical Studies of Polyanilines, Bull. Mater. Sci., vol. 42, pp. 24-32, 2019.

  16. Priyanka, C.V., Reddy, C., John, G., and David, G., Enhancing Biodiesel Production from Soybean Oil Using Ultrasonics, Energy Fuels, vol. 24, pp. 2010-2015, 2010.

  17. Sarode, C.H., Gupta, G.R., Chaudhari, G.R., and Waghulde, G.P., Investigations Related to the Suitability of Imidazolium based Room Temperature Ionic Liquids and Pyridinium based Sponge Ionic Liquids towards the Synthesis of 2-Aminothiazole Compounds as Reaction Medium and Catalyst, Curr. Green Chem., vol. 5, pp. 191-197, 2018.

  18. Seung, H.Y., Su, H.P., and Chang, S.L., Experimental Investigation on the Fuel Properties of Biodiesel and Its Blends at Various Temperatures, Energy Fuels, vol. 22, pp. 652-656, 2008.

  19. Sevilay, T., Hakan, T., and Ahmet, Y., Alkali-Catalyzed Biodiesel Production from Mixtures of Sunflower Oil and Beef Tallow, Energy Fuels, vol. 23, pp. 4112-4115, 2009.

  20. Titipong, I. and Ajay, K.D., Biodiesel Production from Green Seed Canola Oil, Energy Fuels, vol. 24, pp. 4652-4658, 2010.

  21. Vasim, R.S., Terdale, S.T., Gupta, G.R., Dagade, D.H., and Patil, K.J., Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of n-Butyl-Pyridinium Bromide at 298.15 K, J. Mol. Liq., vol. 186, pp. 14-22, 2013.

  22. Wasserscheid, P. and Welson, T., Ionic Liquids in Synthesis, Weinheim, Germany: Wiley-VCH Verlag, 2008.

  23. Wenlei, X. and Ning, M., Immobilized Lipase on Fe3O4 Nanoparticles as Biocatalyst for Biodiesel Production, Energy Fuels, vol. 23, pp. 1347-1353,2009.

ЦИТИРОВАНО В
  1. Sarode Chandrakant H., Yeole Sachin D., Gupta Gaurav R., Waghulde Govinda P., Diazo-coupling Reaction Between 2-Aminothiazole and Thymol; Synthesis, DFT Studies, and Specific Heat Capacity Calculations Using TGA-DSC, Current Physical Chemistry, 12, 1, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain