Доступ предоставлен для: Guest
Eighth International Symposium on Turbulence and Shear Flow Phenomena
August, 28-30, 2013, Poitiers, Futuroscope, France

DOI: 10.1615/TSFP8

INVESTIGATION OF THE CONTINUOUS AND DISCRETE ADJOINT IN THE CONTROL OF PLANE JETS

pages 1-6
DOI: 10.1615/TSFP8.2120
Get accessGet access

Краткое описание

A comparison of the optimal control of two- and three-dimensional plane jets using the continuous and discrete adjoint of the instationary Navier-Stokes equations was performed. The control aim was to reduce the sound emission in the near far-field by using a heat source actuation within the transitioning jet shear layers. The fully compressible Navier-Stokes equations were solved using dispersion-relation preserving spatial discretization schemes and a low-dissipation- dispersion Runge-Kutta scheme. The Reynolds number based on the slot diameter was set to 2000 and the Mach number to 0.9. Direct numerical as well as large-eddy simulations in two and three dimensions where performed to estimate the influence of modelling and resolution on the results. The results show a slight advantage of using the discrete adjoint, especially when handling boundary conditions, since the calculation of the gradient of the cost functional is more accurate. It is interesting, too, that the control efficiency reduces with increasing resolution and therefore dimension of the control. Reducing it by applying a selected interpolation in the control area shows an increase in efficiency and sound reduction.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain